YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 1/57

07-Solar Resource Part 2

ECEGR 452

Renewable Energy Systems

Page 2: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 2/57

Overview

• Angle of Incidence Components

• Effect of Declination

• Effect of Latitude

• Effect of Tilt

Effect of Hour Angle• Hours of Day Light

Dr. Louie 2

Page 3: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 3/57

Introduction

• Last lecture we determined that the angle ofincidence affects the irradiance received by asurface

• We now investigate the variables that affect theangle of incidence

Dr. Louie 3

Page 4: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 4/57

Introduction

• Angle of incidence depends on many factors,including:

Tilt of the surface (already discussed)

Latitude (f)

Declination angle (d)

Surface azimuth angle (g)

Hour angle (w)

Dr. Louie 4

Page 5: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 5/57

Introduction

Dr. Louie 5

N

ES

W

Zenith

qz 

g

We will assume that g = 0For horizontal surfaces:

q = qz

Normal totilted surface

Page 6: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 6/57

Effect of Declination Angle

Earth is tilted on an axis, which causes seasons• Axis is tilted at 23.5o

• Declination ( ): angular position of the sun atsolar noon wrt the plane of the equator (degrees)

Dr. Louie 6

JuneDecember

23.5o 

δ  

Page 7: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 7/57

Effect of Declination Angle

Dr. Louie 7

δ  

δ  

summer

δ  

δ  

winter

negative

declination

positive

declination

For Northern Hemisphere

Page 8: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 8/57

Effect of Declination Angle

Declination angle is zero during the equinoxes

Dr. Louie 8

March September

viewed from the sun viewed from the sun

Page 9: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 9/57

Effect of Declination Angle

• Declination is computed as:

• where

d0 = 23.5o 

Dr. Louie 9

0

360 284

365sin d 

d d   

(where does the 284 come from?)

Page 10: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 10/57

Effect of Declination Angle

• Summer solstice:

• Winter solstice:• Spring equinox:

• Autumn equinox:

Dr. Louie 10

0  23 5.   od d 

0   23 5.  o

d d  0d  

0d  

Page 11: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 11/57

Effect of Declination Angle

• Northern Hemisphere: the axial tilt increases thedaylight hours in March-September

• Southern Hemisphere: the axial tilt increases thedaylight hours in the September-March

• More daylight hours means more daily insolation

Dr. Louie 11

Page 12: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 12/57

Effect of Declination Angle

• Daylight on April 9th, 2012 at 13:57:25

Dr. Louie 12

Source: time.gov

Page 13: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 13/57

Effect of Declination Angle

• Declination affects zenith angle

• Assume solar noon (sun directly overhead)

• Assume the surface is at the equator (latitude=0o)

spring and autumn equinox:

summer solstice: winter solstice:

Dr. Louie 13

G0n 

March

June

G0n 

 z q 

0q      o

 z 

23 5

. z q 

 

23 5. z 

q   

Page 14: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 14/57

Effect of Latitude

• Let

f: latitude of the surface (degrees)

• Assume North is positive, South is negative

• -90 f 90

Dr. Louie 14

equatorf 

 

Page 15: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 15/57

Effect of Latitude

• Assume:

declination = 0o (i.e. Spring/Autumn Equinox)

Sun directly overhead (solar noon)

Horizontal surface is at latitude f (degrees) 

• It follows that q qz

 = f and G0

 = G0n

cos(f)

Dr. Louie 15

Gon 

equator

Earth tilted outof the paper

Page 16: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 16/57

Effect of Latitude

• Combining the effects of declination and latitude

Assume solar noon (sun directly overhead) Assume the surface is horizontal (q qz )

• Using trigonometry:

q qz  f d

cos(q) = cos(qz) = sin(d)sin(f ) + cos(d)cos(f ) 

Dr. Louie 16

Gon 

equator

Page 17: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 17/57

Example

• What is the irradiance for a horizontal surface at

the top of the atmosphere (extraterrestrial)above Seattle, Washington (latitude 47.60) onJanuary 23 at solar noon? Account for intra-yearirradiance variation.

Dr. Louie 17

Page 18: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 18/57

Example

• What is the irradiance for a horizontal surface at

the top of the atmosphere (extraterrestrial)above Seattle, Washington (latitude 47.60) onJanuary 23 at solar noon?

Dr. Louie 18

0

23

1 0 034 2 1408 6365

360 284 360 284 2323 5 19 75

365 365

( ) . cos .

( ) ( )sin . sin .

 

d d 

on sc  

d G d G 

Page 19: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 19/57

Example

• What is the irradiance for a horizontal surface at

the top of the atmosphere (extraterrestrial)above Seattle, Washington (latitude 47.60) onJanuary 23 at solar noon?

Dr. Louie 19

20

47 6 19 75 67 4

1408 6 0 385 542

. . .

cos . .

 z 

n z W G G 

m

Page 20: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 20/57

Effect of Declination Angle

• At large values of (f – d , the angle of incidence

is large (cosine effect is significant)

• How can we compensate for this?

Dr. Louie 20

q (f  – d

Page 21: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 21/57

Surface Orientation

• Tilt the surface

• Want the surface to be normal to the irradiance

b = (f-d) (Northern Hemisphere)

Want angle of incidence to be zero

Dr. Louie 21

b

Page 22: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 22/57

Surface Orientation

• Tilt should equal latitude during equinox

• As increases, less tilt needed

At solar noon: cos(q) = cos(f-d-b)

• In the southern hemisphere:

cos(q) = cos(-f+d-b)

Dr. Louie 22

March

latitude

δ  

Page 23: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 23/57

Surface Orientation

Dr. Louie 23

b

f d 

Surface is normal to Gwhen b = f - d

Page 24: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 24/57

Surface Orientation

• General rule of thumb: tilt a PV panel at the

latitude

Normal to irradiance on equinoxes

Too much tilt in summer

Too little tilt in winter

Dr. Louie 24

Page 25: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 25/57

Where in the world are these PV panels?

Dr. Louie 25

Singapore

Snohomish

Ellensburg

Page 26: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 26/57

Surface Orientation

• cos(q) = cos(f-d-b)

Note: cos(w+z) = cos(w)cos(z) – sin(w)sin(z)

Note: sin(w+z) = sin(w)cos(z)+cos(w)sin(z)

• cos(f-d-b)= cos(q + x) [set x =-d-b]

• cos(f + x)= cos(f)cos(x) – sin(f)sin(x)

Dr. Louie 26

Page 27: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 27/57

Page 28: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 28/57

Surface Orientation

= cos(f)[cos(d)cos(b) – sin(d)sin(b)] – sin(f)sin(x)

[back substituting for the remaining x =-d-b]

=cos(f)[cos(d)cos(b) – sin(d)sin(b)] – sin(f)sin(-d -b)

[Using sin(w+z) = sin(w)cos(z)+cos(w)sin(z)]=cos(f)[cos(d)cos(b) – sin(d)sin(b)]

– sin(f)[sin(-b)cos(-d)+cos(-b)sin(-d )]

Dr. Louie 28

Page 29: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 29/57

Surface Orientation

=cos(f)[cos(d)cos(b) – sin(d)sin(b)]

– sin(f)[sin(-b)cos(-d)+cos(-b)sin(-d )]

[multiplying out]

=cos(f)cos(d)cos(b) – cos(f)sin(d)sin(b)

– sin(f)sin(-b )cos(-d) - sin(f)cos(-b)sin(-d )

[using cos(-u) =cos(u) and sin(-u) = -sin(u)]

cos(q)=cos(f)cos(d)cos(b) – cos(f)sin(d)sin(b)

+ sin(f)sin(b)cos(d ) + sin(f)cos(b)sin(d )

Dr. Louie 29

Page 30: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 30/57

Surface Orientation

• Extraterrestrial irradiance accounting for the tilt,

latitude and declination of a surface at solarnoon:

G0T = G0ncos(q) = G0ncos(f-d-b)

= G0n[cos(f)cos(d)cos(b)

– cos(f)sin(d)sin(b)

+ sin(f)sin(b)cos(d)

+ sin(f)cos(b)sin(d )]

Dr. Louie 30

Important result

Page 31: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 31/57

Surface Orientation

• Compute the extraterrestrial irradiance on a

vertical surface above 30o N on April 15 at solarnoon.

Hint: April 15 is the 105th day of the year

Dr. Louie 31

Page 32: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 32/57

Surface Orientation

• Compute the extraterrestrial irradiance on a

vertical surface above 30o N on April 15 at solarnoon.

Hint: April 15 is the 105th day of the year

Dr. Louie 32

30

90

 b 

Page 33: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 33/57

Surface Orientation

• Compute the extraterrestrial irradiance on a

vertical surface above 30o N on April 15 at solarnoon.

Hint: April 15 is the 105th day of the year

Dr. Louie 33

2

0

1051 0 033 2 1356 4

365

360 284 360 284 10523 5 9 4

365 365

. cos . W/m

sin . sin .

 

d d 

on sc  G d G 

30

90

 b 

Page 34: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 34/57

Surface Orientation 

G0T = G0n[cos(f)cos(d)cos(b)

– cos(f)sin(d)sin(b)

+ sin(f)sin(b)cos(d)

+ sin(f)cos(b)sin(d )] = 476 W/m2 

or G0T = G0ncos(f-d-b) = 476 W/m2 

Dr. Louie 34

Page 35: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 35/57

Effect of Hour Angle

We want to relate this angle to time• How many degrees does the Earth rotate each

hour?

Dr. Louie 35

36015

24

Page 36: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 36/57

Dr. Louie 36

N

ES

W

Zenith

qz 

g

We will assume that g = 0For horizontal surfaces:

q = qz

Normal totilted surface

Page 37: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 37/57

Effect of Hour Angle

We define the hour angle,ω

, as:

h local civil time (hours)

  λ longitude (degrees)

  λ zone longitude of the meridian defining the localtime (degrees)

• w: angle that the Earth has rotated since solarnoon

Dr. Louie 37

15 12w     zone

h

Page 38: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 38/57

Effect of Hour Angle

• UTC (Coordinated Universal Time) is defined at 0o 

longitude

• Seattle is 8 hours behind UTC during standardtime

zone is then 8 x 15o = 120o W

• During Day Light Savings Time (roughly March – Nov) we are 7 hours behind UTC

zone is then 7 x 15o = 105o W

• For a more accurate calculation use the Equation

of Time

• We will assume that solar time = civil time

( zone = 0)

Dr. Louie 38

Page 39: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 39/57

Effect of Hour Angle

• Hour Angle is:

negative in the morning (before solar noon)

positive in the evening (after solar noon)

Dr. Louie 39

w

Page 40: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 40/57

Effect of Hour Angle

• If f = d = 0 and b = 0, then

cos(q) =cos(w)

Dr. Louie 40

w

Page 41: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 41/57

Angle of Incidence

• Derivation of the angle of incidence is more

difficult, so the result is provided cos(q) =sin(d)sin(f)cos(b)

-sin(d)cos(f)sin(b)

+cos(d)cos(f)cos(b)cos(w)

+cos(d)sin(f)sin(b)cos(w)

Dr. Louie 41

Important result

Page 42: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 42/57

Simplifications

• If b = 0 (no tilt), then qz = q and 

cos(q) =sin(d)sin(f)+cos(d)cos(f)cos(w)

• For surfaces tilted at their latitude

• cos(q) =cos(d)cos(w)

For surfaces at solar noon

• cos(q) = cos(f-d-b)

Dr. Louie 42

Page 43: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 43/57

Angle of Incidence

• Note: cos(q) must be greater than or equal to 0,

otherwise the sun is shining on the rear of thesurface (set the value to 0)

• Note: angle of incidence equations do notaccount for the Earth blocking the sun’s

irradiance Try: w =180, b = 90, f =0 and d=1 (sunny at

midnight!)

• Only use the angle of incidence for daylight hours

Dr. Louie 43

Page 44: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 44/57

Astronomy Trivia

How many hours of daylight are there in Seattleduring the spring equinox?

A. 6

B. 10

C. 12

D. 14

E. 16

F. 18

Dr. Louie 44

Page 45: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 45/57

Astronomy Trivia

How many hours of daylight are there in Seattleduring the spring equinox?

A. 6

B. 10

C. 12

D. 14

E. 16

F. 18

Dr. Louie 45

Page 46: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 46/57

Hours of Day Light

• Daylight hours vary depending on latitude and

declination• For a horizontal surface the sun sets (G = 0)

when q = 90o

• Find w such that:

cos(q) =sin(d)sin(f)+cos(d)cos(f)cos(w) = 0

• Solving yields:

cos(ws) = -tan(d)tan(f)

ws: sunset angle

Dr. Louie 46

Page 47: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 47/57

Hours of Day Light

• Since every 150 is one hour:

Hours of daylight is:

Dr. Louie 47

12

15cos tan tan N    d f 

Page 48: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 48/57

Effect of Hour Angle

• Visualization

Dr. Louie 48

During Equinox,Sunrise at -90o Sunset 90o 

w w

Looking downon the North pole

In Summer:Sunrise <-90o 

Sunset >90o

 

Page 49: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 49/57

Side Note

How did Eratosthenes estimate the circumference in

the third century BCE?

Dr. Louie 49

Page 50: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 50/57

Dr. Louie 50

Welcome to

Syene

Page 51: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 51/57

Dr. Louie 51

June 21

Page 52: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 52/57

Dr. Louie 52

Page 53: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 53/57

Dr. Louie 53

Page 54: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 54/57

Dr. Louie 54

Syene f = 23o 

d = -23.5o 

June 21

Page 55: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 55/57

Dr. Louie 55

Welcome to

Alexandria

Syene

500 miles South

North

7.2o From another angle

Page 56: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 56/57

Dr. Louie 56

Syene

angles exaggerated

x

x

Alexandria

x

Page 57: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 57/57

• Therefore, Syene and Alexandria are 7.2o of

latitude apart Syene: 24o N, 33o E

Alexandria: 31o N, 30o E 

• Distance between Syene and Alexandria: 500

miles• (7.2/360)C = 500 miles

=> C = 25,000

Actual circumference: ~24,900 miles


Related Documents