Top Banner

of 7

Cap 2 the Solar Resource

Jul 06, 2018

Download

Documents

marian77us
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/17/2019 Cap 2 the Solar Resource

    1/7

    The

    solar

    resource

    11,1)ll nn

    Sf

    ,itln

    Thc

    Sun

    is tl-rc'

    cerrtlal

    energl' producel of our solal

    s-vstcm.

    lt is

    l

    1,390.000 km

    diamctcr- sphere

    rvith

    nuclel

    fusion

    taking

    place

    contiruously

    in

    its

    centr-e.

    A

    snrall

    fl'actior.r

    of tlrc

    encrgl' produced in the Sun hits the Earth

    ancl urakes

    life

    posible

    on our

    pllrct.

    Solal

    radiation dlives

    lll

    narulaL c,vcles and processes sucli as raili,

    g,ind,

    photosynthesis, ocean

    currents

    and

    sever: othe$ rvlich lr-e inlpoltait for

    lifc. The rvorlcl's enelgl' need

    has

    been

    based

    fionr dre ver')'

    beqinning on

    solar

    ener-gy. All

    lossil iuels

    (oil,

    gas, coal) ar',: converted

    solar enerst'.

    The

    solar radiation

    is cmittcd

    b,v

    the

    Sunls col-ona

    at ur

    ellLctive blackbocl,v

    tcrrlpcr-atrlr-c ofapproxirratell.5ll(X)

    K..virh

    an

    irradiance

    (tt'r-nrs

    ar-e delired

    in

    tlre

    Appcndix) of 70,(X)0 8(l,0il0 kW/nrr.

    Or-rr-planet

    receives

    only a

    ver,v

    smdl

    por-tion

    ofthis

    er-rergy

    Il

    spite

    ofdris, thc incoruing

    soJar-radiation

    energt'in

    a

    1c-rl

    rs

    sonre

    1

    5r

    10r"

    kWh: this

    is

    abour

    15,000 timcs

    thc

    1-carly

    cncrgJ.

    nccd

    of tl.rc rvholc

    rvorld rn

    2000

    (10

    r

    kWh/a;

    BPAnroco, 2002).

    The

    dur-atiou

    ofthc sunshinc:s s.ell as

    the solar

    ilradi:rnce

    is

    cleperldent

    on

    the

    tir11e

    of

    the

    ,vear,

    wcithcr

    .onditions and nattudly

    also

    on

    thc

    gcogirphical

    location.

    Thc

    amourt ofycady

    global

    mdietion

    (on

    l

    horizonul

    surfaccJ

    rn

    the sunbclr

    rcgronr rnrl-

    cxceccl

    2200

    kWl-r/lnr.

    In

    trortheln

    Eu]opc-,

    the

    rnarinrunr value

    is

    rbout

    1100

    kWh/mr.

    2.1 SOLAR RADIATION

    AND AMBIENT

    TEMPERATURE

    Thc'

    climate

    is

    one

    of

    the

    key

    lactors influc'ricing the erlerll)-

    yield

    of

    :r

    solar

    conrbisystenr.

    This inter-action t:rkes pl:1cc on scvcral lcvcls:

    .

    Sol:rr collector:

    The

    absolbcl

    tcmpclatllrc is

    dcpendcnt

    on

    the

    solar Lldietion

    on

    thc solar

    collector.

    Losscs

    to

    tl-re ambient

    are

    driven b,v the

    tempc'1atulc

    difli:rclcc bc' vcen the

    ,t,llccror

    rbrorb.t'

    .rnd

    rlr.

    .rrttbicrtr.

    .

    Heat

    demand ofthe

    building:

    -

    Heat

    losses

    to the :rnrbient

    are

    driven by the telrlpelatrile dilltrcncc

    bcnvcc,n

    the

    house

    and the ambielit

    (air:rnd

    ground).

    -

    Solar

    ladiltion

    th-ough

    the

    rvindorvs

    can be seen as

    inner-heat gains

    in

    thc

    pcriod

    ofthe

    year.rvhen

    sp:rce

    hearing

    is

    effectively needed

    (heating

    scason).

    .

    Domcsric hot

    rv:rtcr

    (DHW)

    demalid

    -

    The

    cold

    water-

    terlperatule

    fiom

    the

    ntrins

    varies

    over thc

    ycar.This

    variation

    is

    ruainly

    dependerrr

    on

    the aver-agc- rlolrthly :11-ub1e11t telllpeliltures.

  • 8/17/2019 Cap 2 the Solar Resource

    2/7

    THE SOLAR RESOURCE

    11

    Clinrate

    varies

    fiom

    location to locatiorr

    and

    fiorn

    year

    to

    year.

    Figures

    2.1 arLd

    2.2

    shorv

    dre

    rvodd's

    yeally average

    global irradiation

    arid the Earth'.s surface

    tenlperature.

    In

    Figure

    2.3

    thc

    average

    values

    of

    solar

    irradiation

    arrd outdoor

    lemperatura:

    y6ar

    loCl

    Figure

    2.2.

    Warld

    map al

    ),early

    avelage

    amblent

    temperaturc in

    "C.

    (Saurce.

    METEOTESI

    Bene,

    Switzerland, http.

    //wwwmeteanom.com).

    See also calaur

    plate

    2

    l3

    6..0.

    soo

     :

    ao.

    loao

    :

    1050.. 1200

    .

    [email protected]

    ;

    ?1oo

    .

    23@

    B&

    >

    ?3oo

    Glob6l lrradiation:

    yoar

    lkWhi

    m7l

    Fryure

    2.7

    .

    Wold

    map

    of

    yearly

    average

    global

    irradlatian

    (an

    a horizantal surface) in

    kwh/mta

    lsource

    METEOTESI Bernc, Swiae and, http

    //www.meteanarm.cam).

    See alsa calaut

    plate

    1

    T

    r

    F

    o

    CO

    il <

    'r'

    ,l

    in

    ''l

    r-lI

    nl,|LJ

    )-,1

    lo

    .T

    =

    z

    *

    ..ro

    i:,

    -2o..

    ro

    I

    -ro.

    "s

    5.

    O

    . lo.

    16

    L:15.ro

    [:

    ?0.

    2.

    I

    ts

    -

    rr.s

    &

    >

    17.6

  • 8/17/2019 Cap 2 the Solar Resource

    3/7

    12

    SOIAR

    HEAT

    NG

    SYSTEIVS

    FOR

    HOUSES:

    A DESIGN

    HANDBOOK

    tOR

    SOLAR

    COMBISYSTEMS

    Monthly

    values

    of ambient

    temperature'199'l

    _

    2000

    -1991

    1992

    -

    1993

    1994

    -

    1995

    -

    1996

    1997

    *

    't

    998

    '1999

    2000

    *Average

    Monthly

    values

    ot

    globalirradiation

    1991

    -

    2000

    ,ru.trsf

    ,f+d

    p*

    9r$ro odsdo-i

    0-

    su .e

    sf

    "f

    "d

    s

    ,v

    "9

    ,o

    od

    r.d

    o(9

    Fiqure

    2.3.

    fen

    tear

    manthtv

    average

    ambient

    temperature

    and

    (harizantal) glabal

    iradiation

    far

    .;-ontr"l

    LLtaaearto.

    dttan

    /4\,4G.

    ./041)

    temperAture

    for

    one

    locirtlon

    over

    10 ye;rrs

    are shorvD'

    Despite

    the

    obvious

    seasonal

    t..rri,

    "

    wid.

    range of

    flucluations

    be

    veen

    the

    nlonths

    can be

    seen

    ln

    ordel

    to

    compare

    the

    p"r:forrrr"rtaa

    of

    different

    con'tbisystems

    under

    ditTelcnt

    climate

    ao,rii,io,r,

    on

    tira

    ,"rrr"

    basis,

    average

    data

    for

    each

    location

    alc

    necded'

    The orientation

    ofthe

    absorbers

    (rvindorv,

    collector)

    is

    also

    signifrcant

    Figrre

    2'tr

    shows

    the

    monthly

    hemispherical

    irradiation

    on

    difiercntly

    orienteted

    surfaces

    fol

    x

    centnl

    E.,rop."n

    climate

    lt

    can

    be

    seen

    that horizont:rl

    surdtces

    end surfaces

    lrcing

    south

    rvirh

    I

    tilt

    angle of'tSo

    have

    much

    higher

    sumluer

    than r'r'inter

    lTl

    1S93

    Ln.o

    I

    -

    1995

    1997

    -

    1998

    I

    1999

    2ooo

    5.0

    0.0

    -5.0

    '150

    E

    =

     

    loo

    sofr

  • 8/17/2019 Cap 2 the Solar Resource

    4/7

    THE

    SOLAR RESOURCE

    13

    t

    2oo

    E^

    :

    150

    =

    3

    roo

    .g

    .>50

    z

    E

    0

    JAN

    FEB

    I]/IAR

    APR

    MAY

    JUN JUL

    AUG SEP OCT NOV DEC

    Figurc

    2 4.

    Hemisphe

    cal

    tradiatian

    an surfaces af different arientatians

    fot a central Eurapean

    climate

    (Streiche,

    2002)

    irradiation. The

    r.ilrtc'r iucidcnt radiation ou thc south-facrng 45' tilted

    suface

    is

    much

    highel

    than that

    lbr

    the horizonral suface.Vcrtical sulfices llcing south do

    h:rve

    l

    ncarly

    constant

    irradiation

    from

    Marrh

    to

    Scptcmbcr, and

    ncarlv

    as mucl-r

    irladiatron

    in

    rvinter-ls

    surdrces

    facing

    south

    rvith

    a

    45'tilt angle.Tivo-axis trackine

    nrainly

    increases

    the

    solar

    yield in

    sunrrrrer,

    rvhile in whter

    the

    irr:rdiancc

    is

    sitnilar

    to

    a

    45o slopc

    flrcilg

    south.

    In

    order

    to

    cover

    the geographical

    range

    lor the

    nuin

    rnatkets

    of solar-

    conrbisystenrs,

    it

    rves decided

    to

    choose x

    northern,

    x

    centr-:rl and

    a southern

    European

    climatc for all iurther

    investigations and simularions.

    llcspectivel),,

    thesc rverc:

    .

    Stockhohn.

    Swcden

    .

    Zurich.

    Sr,vitzerland

    .

    Carpcntras.

    Fmncc.

    Table 2.1

    shorvs

    the ch:rr acter istics of thc locations with respect

    to

    geographical

    data,

    design temperatures

    (for

    space

    heating)

    and

    yearly

    global

    irradiation

    (or.r

    a

    hor-izontal surlace).

    Table

    2 1.

    Characteristics

    of

    the

    lacatians

    (Strcichet

    et al.,

    2A01)

    Lonsitude

    Helght

    above

    'ENt

    ser level

    Zurich

    (CH)

    Stockholm

    (S)

    5115

    tl)5

    8.5.13

    -+

    13

    I 1

    93lJ

    .+1

    1t)

    t7

    t+

    r)5

    11 31

    59.3l

    1a02

    1088

    981

    Figure 2.5

    shorvs the

    global

    solar irradiation and

    arrbient

    teulpemture o11 :r

    long-

    tetnl

    a\rerage

    nronlhly

    basrs

    lor the chosen

    clinrates.

    The

    ditTcrences

    bctrveen the

  • 8/17/2019 Cap 2 the Solar Resource

    5/7

    14

    SOLAR

    HEATING

    SYSTEIVS FOR HOUSES:

    A DESTGN

    HANDBOOK

    FOR

    SOrAR

    COMB

    SYSTEMS

    9o

  • 8/17/2019 Cap 2 the Solar Resource

    6/7

    THF SOIAR RFSOI]R'F 15

    :

    Globalsolarirradiance

    _--''-

    Ambient

    lemperature

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

    0

    4441

    4465 4489

    4513

    4537

    4561

    4585

    Hour of the

    year

    FigLlre 2.6. Haurly average values

    at

    glabal

    trradtance and ambtent tempetature

    far a summer

    week in

    Zurich,

    generated

    with

    It4ETEONORM

    (1999)

    2.2 AVAILABILITY

    OF CLIMATIC

    DATA

    Clinatic

    data

    lbr

    anbient temperature and

    global

    solar uradiancc

    (on

    a

    l-rotizontal

    sut1ace)

    is

    ar-ailable

    lor

    a

    rvide

    range oflocrtions.

    ln

    Figur-e

    2.3

    it

    nas shos,n that

    both irradiation and tcnipcraturc

    ditl,'r

    Ii-om

    placc

    to

    place

    or,'er a rvide rarlge

    o11

    :r

    lnonthly

    basis

    rnd

    less o1r

    a

    ,velrly

    basis.

    If

    clillerent locations art

    to

    bc compaled,

    it

    is thcrefor-e necessxr-y

    to

    use

    average

    clinrate

    d:rt:r.

    For

    simulating

    solar combisysteurs

    rvith onc to thrcc

    days

    ofrvatcr

    storage, at least

    hourl,v clini:rtic

    dlta

    is necessary

    to

    calculate

    correctly thc behavioru ofthc storagc.

    The

    same

    t),pe

    of

    data

    is

    needed

    if the ctlect

    of

    the

    ther-nul

    lctive

    m:rss of rhc

    building

    (the

    storage ofexcc'ss er.rc'rgy during

    the

    day

    fol

    use at

    night

    to

    reduce

    rhe

    heat

    demand)

    is

    taken

    into

    considcration. One

    ofthe

    ploblerus

    is

    to find hourly

    dara

    that match lor-rg-term avcrages as rvell as

    srandard

    fluctuations (sunny

    and

    cloudy

    wcather

    situirtiolls

    in

    a

    realistic statistical

    disu ibutron, rvher-e irr-adiance.

    lcnrpet:rtute. humidiq,,

    u,ind spccd etc.

    correspond rvith

    each other).Tivo

    mcthods

    are

    dcscribed in the literaturc.

    2.2.1 fest Reference

    Years

    Tbst Rc-ll-lenceYears

    iire

    generated

    by selecting tinlc

    spans

    (typically

    one lllontl.r)

    of

    nleasrircd

    climatic

    data

    liom

    a

    number

    of

    r-neasuled

    yetrs

    for

    one

    location

    in

    such

    a rvay that

    the

    long

    term

    l]]oltthly

    averages ofall

    climatic data

    for

    tl-ris

    location ate

    matched.

    Using

    111easLrled

    data

    ensures that the

    rveather

    fluctuations

    of

    thc

    regron

    are

    correctly rcplesented-

    Of

    course,

    thc lirrks between

    the

    time

    spans have

    to

    be

    suroothed.

    Llowever,

    generating

    TEst Rclelence Years

    (TRY)

    is

    vcr-)

    rinre

    consl1rnillg.

    Consequentll. rhey ate

    olien

    vely

    expensive

    (as

    for.example

    thc 12

    available

    Test RcGrenceYear-s for'()ermany).

    Horvever, they

    a,:e somctimes :rvailable

    ficc

    of charsc, :rs

    lor

    esarnple

    the Typic:r1

    MeteorologicalYears (TMY)

    fot the

    USA

    E

    =

    o

    2sE

    209

    t-

    10

    .lR

    'i'r

    +

    'l

    I * r ir i i i

  • 8/17/2019 Cap 2 the Solar Resource

    7/7

    '16

    SOIAR

    HEAT

    NG

    SYSTElvlS

    FOR HOUSES:

    A DES GN HANDBOOK

    FOR SOTAR

    COMB

    SYSTEMS

    lor

    23.1

    sites

    (scc

    l.rttp: / /rrcdc. nr e1.gov/sohr'/o1d

    data/r'rsrdb/tmy2/).

    In order to

    have data available

    for':r

    rvhole countr-y,

    it

    has

    to

    be divrded

    into

    typical

    rveather

    zones,

    fol rvhich

    Test

    RefelenccYeals

    have

    to be

    developed.

    2.2.2

    Wealher data

    generators

    T}re second option is the use

    ofrveather data

    gencrator s. These

    plogram

    use lotrg-

    terul

    average

    lnonthly data of

    some kcy values

    (norurally

    l.llonthly aveuge

    daily

    global irradiation

    and

    ambienr

    teDrperature)

    and

    gencrrte

    hour-ly data,

    using phvsical

    and

    statistical

    approaches.

    Well

    knorvn

    are

    the

    weathel

    dat:r

    geuerators

    of

    rhe

    simulation

    toolTRNSYS

    (K1eir.r

    ct a/., 1998) and

    of

    the Srviss

    tool

    METEONOM

    (1999).The lancr

    rvas

    used

    inTask

    26.

    Long-term monthly

    averAge

    rcnlpemtrues

    can

    be found at http://wwwtop-wetter.de/klinmdiagramme/rvelt.htt'u.

    Worldrvide

    irradiation

    data can

    be

    found at http://rvrdc

    mgo.nrel.gov/htln1/get-data-ap.html.

    All

    of

    the

    conlbisystenl sit'uulations

    per-lbrmed

    within

    Task

    26

    needed

    cr,'en

    smaller

    tirle steps

    (dor,vn

    to

    one

    ninulc) to

    model the behaviottr

    of

    the

    systerlls

    correctl)'-

    Thercfor ' the

    hourly

    values

    rvere lineatly

    interpo].ated, cnsuring

    thar no

    irradiance occurs

    before or after sunset.

    The

    simulatior-rs

    were set

    up

    in such a way that

    othel

    locatrons c:rn

    be

    easily

    includcd

    ifhourly

    weather

    data are available

    in

    the proper forrnar.

    REFERENCES

    BPAnroco.2002,

    BPl,ro.d

    .Sid/aJiir.rl R(rilrr ofiMvLl

    Entrgy 20A1,BPAnoco.

    London

    METEONORM, 1999, Weathcr

    I)ata

    Generator.

    METEOTEST,

    Fabrikstr.rse

    1'+,

    CLI-3012

    Bcrn, Srvitzerland;

    n rv\r.meteonorrr1.cor11.

    Streicher

    W

    2002, Lecture

    book Sortacarrrrr;qicrrrt.-rr,r,g,

    lnstitutc ofTherrml

    Engineerin 1, Grlz

    Univenity of

    Teclmology.

    Xlein,

    SA,

    Ilcckm:url

    WA,

    Mitchcll JW

    Dufie

    JA,

    Duflie

    NA,

    Freeulan

    TL, Mitchell

    JC,

    Braun

    JE,

    El.:rns BL, Kumner

    JII

    Urban

    RE, Fiksel

    A, Thornton

    JWI

    Ilhir

    NJ, 1998,

    7RAISYS,,4

    Tintjicnt

    Syltetn Sil

    idtialr Prolra t

    -

    I:crsr,rrr

    14.2

    (as

    used

    in

    prqect),

    Soler

    Energy Lrboretory,

    University

    of Wisconsin,

    Mrdison,

    USA.

    ZAMG,

    Zentrdirostalt

    fiir Meteorologie ;rnd Geoclynarnik,Viennl,

    Austrix, 2002.

    INTERNET

    SITES

    FOR CLIMATE DATA

    http://rredc.nrcl.gov/solar/o1d

    data/nsrdb/nrU,2/:

    flee TMY datr

    sets

    lor the USA.

    http://1\,u,-$:rop-wetter.de/kliuracliaglramrre/telt.htrt: long

    terrl

    worid{,ide

    uronthly

    rve,-'rge

    http:/,zrvrdc-ngo.nrel.gov/lrtrrrl/get

    dara-ap.htni: rlorldu'ide irradirrion

    data.