Top Banner
07-Solar Resource Part 2 ECEGR 452 Renewable Energy Systems
57

Solar Resource Part2

Mar 08, 2016

Download

Documents

Zelalem Girma

solar power
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 1/57

07-Solar Resource Part 2

ECEGR 452

Renewable Energy Systems

Page 2: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 2/57

Overview

• Angle of Incidence Components

• Effect of Declination

• Effect of Latitude

• Effect of Tilt

Effect of Hour Angle• Hours of Day Light

Dr. Louie 2

Page 3: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 3/57

Introduction

• Last lecture we determined that the angle ofincidence affects the irradiance received by asurface

• We now investigate the variables that affect theangle of incidence

Dr. Louie 3

Page 4: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 4/57

Introduction

• Angle of incidence depends on many factors,including:

Tilt of the surface (already discussed)

Latitude (f)

Declination angle (d)

Surface azimuth angle (g)

Hour angle (w)

Dr. Louie 4

Page 5: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 5/57

Introduction

Dr. Louie 5

N

ES

W

Zenith

qz 

g

We will assume that g = 0For horizontal surfaces:

q = qz

Normal totilted surface

Page 6: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 6/57

Effect of Declination Angle

Earth is tilted on an axis, which causes seasons• Axis is tilted at 23.5o

• Declination ( ): angular position of the sun atsolar noon wrt the plane of the equator (degrees)

Dr. Louie 6

JuneDecember

23.5o 

δ  

Page 7: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 7/57

Effect of Declination Angle

Dr. Louie 7

δ  

δ  

summer

δ  

δ  

winter

negative

declination

positive

declination

For Northern Hemisphere

Page 8: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 8/57

Effect of Declination Angle

Declination angle is zero during the equinoxes

Dr. Louie 8

March September

viewed from the sun viewed from the sun

Page 9: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 9/57

Effect of Declination Angle

• Declination is computed as:

• where

d0 = 23.5o 

Dr. Louie 9

0

360 284

365sin d 

d d   

(where does the 284 come from?)

Page 10: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 10/57

Effect of Declination Angle

• Summer solstice:

• Winter solstice:• Spring equinox:

• Autumn equinox:

Dr. Louie 10

0  23 5.   od d 

0   23 5.  o

d d  0d  

0d  

Page 11: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 11/57

Effect of Declination Angle

• Northern Hemisphere: the axial tilt increases thedaylight hours in March-September

• Southern Hemisphere: the axial tilt increases thedaylight hours in the September-March

• More daylight hours means more daily insolation

Dr. Louie 11

Page 12: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 12/57

Effect of Declination Angle

• Daylight on April 9th, 2012 at 13:57:25

Dr. Louie 12

Source: time.gov

Page 13: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 13/57

Effect of Declination Angle

• Declination affects zenith angle

• Assume solar noon (sun directly overhead)

• Assume the surface is at the equator (latitude=0o)

spring and autumn equinox:

summer solstice: winter solstice:

Dr. Louie 13

G0n 

March

June

G0n 

 z q 

0q      o

 z 

23 5

. z q 

 

23 5. z 

q   

Page 14: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 14/57

Effect of Latitude

• Let

f: latitude of the surface (degrees)

• Assume North is positive, South is negative

• -90 f 90

Dr. Louie 14

equatorf 

 

Page 15: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 15/57

Effect of Latitude

• Assume:

declination = 0o (i.e. Spring/Autumn Equinox)

Sun directly overhead (solar noon)

Horizontal surface is at latitude f (degrees) 

• It follows that q qz

 = f and G0

 = G0n

cos(f)

Dr. Louie 15

Gon 

equator

Earth tilted outof the paper

Page 16: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 16/57

Effect of Latitude

• Combining the effects of declination and latitude

Assume solar noon (sun directly overhead) Assume the surface is horizontal (q qz )

• Using trigonometry:

q qz  f d

cos(q) = cos(qz) = sin(d)sin(f ) + cos(d)cos(f ) 

Dr. Louie 16

Gon 

equator

Page 17: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 17/57

Example

• What is the irradiance for a horizontal surface at

the top of the atmosphere (extraterrestrial)above Seattle, Washington (latitude 47.60) onJanuary 23 at solar noon? Account for intra-yearirradiance variation.

Dr. Louie 17

Page 18: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 18/57

Example

• What is the irradiance for a horizontal surface at

the top of the atmosphere (extraterrestrial)above Seattle, Washington (latitude 47.60) onJanuary 23 at solar noon?

Dr. Louie 18

0

23

1 0 034 2 1408 6365

360 284 360 284 2323 5 19 75

365 365

( ) . cos .

( ) ( )sin . sin .

 

d d 

on sc  

d G d G 

Page 19: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 19/57

Example

• What is the irradiance for a horizontal surface at

the top of the atmosphere (extraterrestrial)above Seattle, Washington (latitude 47.60) onJanuary 23 at solar noon?

Dr. Louie 19

20

47 6 19 75 67 4

1408 6 0 385 542

. . .

cos . .

 z 

n z W G G 

m

Page 20: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 20/57

Effect of Declination Angle

• At large values of (f – d , the angle of incidence

is large (cosine effect is significant)

• How can we compensate for this?

Dr. Louie 20

q (f  – d

Page 21: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 21/57

Surface Orientation

• Tilt the surface

• Want the surface to be normal to the irradiance

b = (f-d) (Northern Hemisphere)

Want angle of incidence to be zero

Dr. Louie 21

b

Page 22: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 22/57

Surface Orientation

• Tilt should equal latitude during equinox

• As increases, less tilt needed

At solar noon: cos(q) = cos(f-d-b)

• In the southern hemisphere:

cos(q) = cos(-f+d-b)

Dr. Louie 22

March

latitude

δ  

Page 23: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 23/57

Surface Orientation

Dr. Louie 23

b

f d 

Surface is normal to Gwhen b = f - d

Page 24: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 24/57

Surface Orientation

• General rule of thumb: tilt a PV panel at the

latitude

Normal to irradiance on equinoxes

Too much tilt in summer

Too little tilt in winter

Dr. Louie 24

Page 25: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 25/57

Where in the world are these PV panels?

Dr. Louie 25

Singapore

Snohomish

Ellensburg

Page 26: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 26/57

Surface Orientation

• cos(q) = cos(f-d-b)

Note: cos(w+z) = cos(w)cos(z) – sin(w)sin(z)

Note: sin(w+z) = sin(w)cos(z)+cos(w)sin(z)

• cos(f-d-b)= cos(q + x) [set x =-d-b]

• cos(f + x)= cos(f)cos(x) – sin(f)sin(x)

Dr. Louie 26

Page 27: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 27/57

Page 28: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 28/57

Surface Orientation

= cos(f)[cos(d)cos(b) – sin(d)sin(b)] – sin(f)sin(x)

[back substituting for the remaining x =-d-b]

=cos(f)[cos(d)cos(b) – sin(d)sin(b)] – sin(f)sin(-d -b)

[Using sin(w+z) = sin(w)cos(z)+cos(w)sin(z)]=cos(f)[cos(d)cos(b) – sin(d)sin(b)]

– sin(f)[sin(-b)cos(-d)+cos(-b)sin(-d )]

Dr. Louie 28

Page 29: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 29/57

Surface Orientation

=cos(f)[cos(d)cos(b) – sin(d)sin(b)]

– sin(f)[sin(-b)cos(-d)+cos(-b)sin(-d )]

[multiplying out]

=cos(f)cos(d)cos(b) – cos(f)sin(d)sin(b)

– sin(f)sin(-b )cos(-d) - sin(f)cos(-b)sin(-d )

[using cos(-u) =cos(u) and sin(-u) = -sin(u)]

cos(q)=cos(f)cos(d)cos(b) – cos(f)sin(d)sin(b)

+ sin(f)sin(b)cos(d ) + sin(f)cos(b)sin(d )

Dr. Louie 29

Page 30: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 30/57

Surface Orientation

• Extraterrestrial irradiance accounting for the tilt,

latitude and declination of a surface at solarnoon:

G0T = G0ncos(q) = G0ncos(f-d-b)

= G0n[cos(f)cos(d)cos(b)

– cos(f)sin(d)sin(b)

+ sin(f)sin(b)cos(d)

+ sin(f)cos(b)sin(d )]

Dr. Louie 30

Important result

Page 31: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 31/57

Surface Orientation

• Compute the extraterrestrial irradiance on a

vertical surface above 30o N on April 15 at solarnoon.

Hint: April 15 is the 105th day of the year

Dr. Louie 31

Page 32: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 32/57

Surface Orientation

• Compute the extraterrestrial irradiance on a

vertical surface above 30o N on April 15 at solarnoon.

Hint: April 15 is the 105th day of the year

Dr. Louie 32

30

90

 b 

Page 33: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 33/57

Surface Orientation

• Compute the extraterrestrial irradiance on a

vertical surface above 30o N on April 15 at solarnoon.

Hint: April 15 is the 105th day of the year

Dr. Louie 33

2

0

1051 0 033 2 1356 4

365

360 284 360 284 10523 5 9 4

365 365

. cos . W/m

sin . sin .

 

d d 

on sc  G d G 

30

90

 b 

Page 34: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 34/57

Surface Orientation 

G0T = G0n[cos(f)cos(d)cos(b)

– cos(f)sin(d)sin(b)

+ sin(f)sin(b)cos(d)

+ sin(f)cos(b)sin(d )] = 476 W/m2 

or G0T = G0ncos(f-d-b) = 476 W/m2 

Dr. Louie 34

Page 35: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 35/57

Effect of Hour Angle

We want to relate this angle to time• How many degrees does the Earth rotate each

hour?

Dr. Louie 35

36015

24

Page 36: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 36/57

Dr. Louie 36

N

ES

W

Zenith

qz 

g

We will assume that g = 0For horizontal surfaces:

q = qz

Normal totilted surface

Page 37: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 37/57

Effect of Hour Angle

We define the hour angle,ω

, as:

h local civil time (hours)

  λ longitude (degrees)

  λ zone longitude of the meridian defining the localtime (degrees)

• w: angle that the Earth has rotated since solarnoon

Dr. Louie 37

15 12w     zone

h

Page 38: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 38/57

Effect of Hour Angle

• UTC (Coordinated Universal Time) is defined at 0o 

longitude

• Seattle is 8 hours behind UTC during standardtime

zone is then 8 x 15o = 120o W

• During Day Light Savings Time (roughly March – Nov) we are 7 hours behind UTC

zone is then 7 x 15o = 105o W

• For a more accurate calculation use the Equation

of Time

• We will assume that solar time = civil time

( zone = 0)

Dr. Louie 38

Page 39: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 39/57

Effect of Hour Angle

• Hour Angle is:

negative in the morning (before solar noon)

positive in the evening (after solar noon)

Dr. Louie 39

w

Page 40: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 40/57

Effect of Hour Angle

• If f = d = 0 and b = 0, then

cos(q) =cos(w)

Dr. Louie 40

w

Page 41: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 41/57

Angle of Incidence

• Derivation of the angle of incidence is more

difficult, so the result is provided cos(q) =sin(d)sin(f)cos(b)

-sin(d)cos(f)sin(b)

+cos(d)cos(f)cos(b)cos(w)

+cos(d)sin(f)sin(b)cos(w)

Dr. Louie 41

Important result

Page 42: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 42/57

Simplifications

• If b = 0 (no tilt), then qz = q and 

cos(q) =sin(d)sin(f)+cos(d)cos(f)cos(w)

• For surfaces tilted at their latitude

• cos(q) =cos(d)cos(w)

For surfaces at solar noon

• cos(q) = cos(f-d-b)

Dr. Louie 42

Page 43: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 43/57

Angle of Incidence

• Note: cos(q) must be greater than or equal to 0,

otherwise the sun is shining on the rear of thesurface (set the value to 0)

• Note: angle of incidence equations do notaccount for the Earth blocking the sun’s

irradiance Try: w =180, b = 90, f =0 and d=1 (sunny at

midnight!)

• Only use the angle of incidence for daylight hours

Dr. Louie 43

Page 44: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 44/57

Astronomy Trivia

How many hours of daylight are there in Seattleduring the spring equinox?

A. 6

B. 10

C. 12

D. 14

E. 16

F. 18

Dr. Louie 44

Page 45: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 45/57

Astronomy Trivia

How many hours of daylight are there in Seattleduring the spring equinox?

A. 6

B. 10

C. 12

D. 14

E. 16

F. 18

Dr. Louie 45

Page 46: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 46/57

Hours of Day Light

• Daylight hours vary depending on latitude and

declination• For a horizontal surface the sun sets (G = 0)

when q = 90o

• Find w such that:

cos(q) =sin(d)sin(f)+cos(d)cos(f)cos(w) = 0

• Solving yields:

cos(ws) = -tan(d)tan(f)

ws: sunset angle

Dr. Louie 46

Page 47: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 47/57

Hours of Day Light

• Since every 150 is one hour:

Hours of daylight is:

Dr. Louie 47

12

15cos tan tan N    d f 

Page 48: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 48/57

Effect of Hour Angle

• Visualization

Dr. Louie 48

During Equinox,Sunrise at -90o Sunset 90o 

w w

Looking downon the North pole

In Summer:Sunrise <-90o 

Sunset >90o

 

Page 49: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 49/57

Side Note

How did Eratosthenes estimate the circumference in

the third century BCE?

Dr. Louie 49

Page 50: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 50/57

Dr. Louie 50

Welcome to

Syene

Page 51: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 51/57

Dr. Louie 51

June 21

Page 52: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 52/57

Dr. Louie 52

Page 53: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 53/57

Dr. Louie 53

Page 54: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 54/57

Dr. Louie 54

Syene f = 23o 

d = -23.5o 

June 21

Page 55: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 55/57

Dr. Louie 55

Welcome to

Alexandria

Syene

500 miles South

North

7.2o From another angle

Page 56: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 56/57

Dr. Louie 56

Syene

angles exaggerated

x

x

Alexandria

x

Page 57: Solar Resource Part2

7/21/2019 Solar Resource Part2

http://slidepdf.com/reader/full/solar-resource-part2 57/57

• Therefore, Syene and Alexandria are 7.2o of

latitude apart Syene: 24o N, 33o E

Alexandria: 31o N, 30o E 

• Distance between Syene and Alexandria: 500

miles• (7.2/360)C = 500 miles

=> C = 25,000

Actual circumference: ~24,900 miles