YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Lecture 1-3

PHYSICS OF EXCHANGE INTERACTIONS

Tomasz Dietl

Institute of Physics, Polish Academy of Sciences, Laboratory for Cryogenic and Spintronic ResearchInstitute of Theoretical Physics, Warsaw University

September 2nd, 4th, 2009

http://ifpan.edu.pl/~dietl

support: ERATO – JST; NANOSPIN -- EC project;FunDMS – ERC AdG; SPINTRA – ESF; Humboldt Foundation

Page 2: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

PHYSICS OF EXCHANGE (SPIN DEPENDENT)INTERACTIONS

between:

• band (itinerant) carriers

• band carriers and localised spins

• localised spins

Page 3: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

OUTLINE

0. Preliminaries

1. Why one-electron approximation is often valid

2. Source of electron correlation

-- Coulomb repulsion

-- statistical forces

3. Correlation energy

4. Potential exchange

-- localised states

-- extended states

Bloch vs. Stoner models of itinerant ferromagnetism

Page 4: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

5. Kinetic exchangeKondo hamiltonian

6. Experimental example: DMS

7. Double exchange

8. Indirect exchange between localised spins

-- via carrier spin polarisationZener model, RKKY

-- via valence bands’/d orbitals’ spin polarisationBlombergen-Rowland mechanism, superexchange

Page 5: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

LiteratureLiterature

general• Y. Yoshida, Theory of Magnetism (Springer 1998)• R.M. White, Quantum Theory of Magnetism (McGrown-Hill 1970)• J.B. Goodenough, Magnetism and chemical bond (Wiley 1963)

DMS• TD, in: Handbook on Semiconductors, vol. 3B ed. T.S . Moss

(Elsevier, Amsterdam 1994) p. 1251.• P. Kacman, Semicond.Sci.Technol., 2001, 16, R25-R39 .

ferromagnetic DMS • F. Matsukura, H. Ohno, TD, in: Handbook of Magnetic Materials,

vol. 14, Ed. K.H.J. Buschow, (Elsevier, Amsterdam 200 2) p. 1• „Spintronics” vol. 82 of Semiconductors and Semimetals

eds. T. Dietl, D. D. Awschalom, M. Kaminska, H. Ohno (Elsevier2008)

Page 6: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Preliminaries

Page 7: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Dipole-dipole interactions (classical int. between magnetic moments)

Dipole-dipole interactions (classical int. between magnetic moments)

µ = - geffµBS, Hab = µµµµaµµµµb ////rab3 - 3(µµµµa rab)(µµµµa rab) ////rab

5

for S = 1/2, rab= 0.15 nm =>

Edd = 2µaµb ////rab3 = 0.5 K = 0.4 T

(E = kBT or E = gµBB)

⇒ non-scalar=> long range => remanence, demagnetization, domain structure,

EPR linewidth, fringing fields in hybrid structures, …

⇒ too weak to explain magnitude of spin-spin interacti ons quantum effects: Pauli exclusion principle + Coulomb int.

Page 8: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Exchange interactionExchange interaction

Hab = - SaJ(ra,rb)Sb

potential energy depends on spins’ directions

kinetic energy depends on spins’ directions

kinetic exchange

potential exchange

Page 9: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

One electron approximation

Page 10: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Why one electron approximation is often valid?

Why one electron approximation is often valid?

• Quasi-particle concept: m* m** --- one-electron theory can be used (interaction renormalizes only the parameters of the spectrum)

• Correlation energy of e-e interaction is the same in initial and finite state

-- center mass motion only affected by the probe (Kohn theorem)

-- z-component of total spin affected (Yafet theorem)

• Momentum and (for spherical Fermi surface) velocity isconserved in e-e collisions

• Total Coulomb energy of neutral solid with randomly distributed charges is zero

Page 11: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Electrostatic Coulomb interactions in solidsElectrostatic Coulomb interactions in solids

• Two energies=> positive : repulsion between positive charges=> negative : attraction between negative and positive charges

• Neutrality => number of positive and negative charges equal

• Partial cancellation between the two energies

EC = ½∫ d r1 ρp(r1) ∫ d r2 ρ p(r2) e2/| r1 - r2 | + ½ ∫ d r1 ρn(r1) ∫ d r2 ρ n(r2) e2/| r1 - r2 |

- ∫ d r1 ρp(r1) ∫ d r2 ρ n(r2) e2/| r1 - r2 |

… the number of pairs of the like charges is N(N-1)/2

Page 12: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Pair correlation function g(r)Pair correlation function g(r)

• g(r) probability of finding another particle at distance r

in the volume dr

• normalization: ∫dr ρ g(r) = N – 1

• an example:random (uncorrelated distribution):

pair correlation function

g(r)

r

1

0

Page 13: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Total Coulomb energy for random distribution of charges

Total Coulomb energy for random distribution of charges

• For random distribution of charges, ρ = N p/V = N n/V

EC = ½∫ d r1 ρp(r1) ∫ d r2 ρ p(r2) e2/| r1 - r2 | + ½ ∫ d r1 ρn(r1) ∫ d r2 ρ n(r2) e2/| r1 - r2 | +

- ∫ d r1 ρp(r1) ∫ d r2 ρ n(r2) e2/| r1 - r2 | = 0!

=> Coulomb energy contributes to the total energy of the system and one-electron approximation ceases to be valid if the motion of charges is correlated

g(r)

r

1

0

pair correlation function

Page 14: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Origin of correlations

Page 15: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Sources of correlation(why motion and distribution of charges may not be independent)

Sources of correlation(why motion and distribution of charges may not be independent)

• Coulomb interaction itself:-- H−

-- exciton-- ionic crystals-- Wigner crystals -- Laughlin liquid-- ….

Coulomb gap in g(r)

g(r)

r

1

0

Page 16: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Spin and statistics in quantum mechanicsSpin and statistics in quantum mechanics

The core of quantum mechanics:• principle of linear superposition of wave functions, also of a single

particle => interference(Young experiment works with a single photon, electron, …)

• not all the solutions of a given Schroedinger equation (wave functions) represents states: initial and boundary conditions

• wave function of a system of many identical particle is (must be):-- symmetric against permutation of two particles if their spin

is muliple of h/2π- bosons superconductivity, superfluidity, B-E condensation, ...

-- antisymmetric otherwise- fermions nucleus, chemistry, magnetism, …..

Statistical transmutation, fractional statistics, ...

Page 17: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Many-fermion wave functionMany-fermion wave function

• H = Σl=1 to NHi + V(r(1),.., r(N))

Since ΨA(r(1),.., r1(k),...,r2

(m),..., r(N))= −ΨA(r(1),.., r2(k),...,r1

(m),..., r(N))

=> the probability of finding two fermions in the same place is zero

Correlation:

Fermions (with the same spin) avoid each other

Page 18: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Sources of correlation(why motion and distribution of charges may not be independent)

Sources of correlation(why motion and distribution of charges may not be independent)

• Coulomb interaction itself:-- H−

-- exciton-- ionic crystals-- Wigner crystals -- Laughlin liquid-- ….

Coulomb gap in g(r)

• Pauli exclusion principleExchange gap in g(r)

g↑↑↑↑↑↑↑↑(r)

r

1

0

g(r)

r

1

0

Page 19: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Construction of many body wave functionConstruction of many body wave function

• principle of linear superposition

• not all the solutions of a given Schroedingerequation (wave functions) represent a state: initial and boundary conditions

• wave function of a system of many fermion system is (must be) antisymmetric

Page 20: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

In the spirit of perturbation theory (Hartree-Fock approxi mation):=> energy calculated from wave functions of noniteracting electrons, i.e.:

H = Σi Hi ; Hi = Hi(r(i)) and thus:• one-electron states are identical for all electrons• many-electron wave function: the product of one-electron wave

functions

consider a state A of N electrons distributed over αN states

ΨA(r(1),.., r(k),..., r(m),..., r(N)) = ψa1(r(1))…ψak(r(k))...ψam(r(m))...ψaN(r(N))

also ΨA’ (r(1),.., r(m),..., r(k),..., r(N)) = ψa1(r(1))…ψam(r(k))...ψak(r(m))...ψaN(r(N)),

and all such wave functions and their linear superpositions correspond to the situation A (all electrons are identical!) and fulfilled Schroedinger equation giving the same eigenvalue (total energy)

Page 21: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Which of those wave functions represent a many electron state?

Which of those wave functions represent a many electron state?

The wave function has to be antisymmetric => Slater determinant

ψa1(r(1)) ... ψa1(r(k)) … ψa1(r(m)) ... ψa1(r(N))...

ΨA = 1/√N! ψak(r(1)) ... ψak(r(k)) … ψak(r(m)) ... ψa1(r(N))…

ψam(r(1)) ... ψam(r(k)) … ψam(r(m)) ...ψam(r(N))…

ψaN(r(1)) ... ψaN(r(k)) … ψaN(r(m)) ...ψaN(r(N))

ΨA(.., r1(k),..., r2

(m),... ) = −ΨA(.., r2(k),..., r1

(m),... ) -- OKΨA(.., r(k),..., r(m),... ) = 0 if αi = αj : Pauli exclusion principle

Page 22: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Slater determinant is an approximate wave function… (takes only the presence of exchange gap into account)

improvements:• combination of Slater determinants

(configuration mixing)• variational wave function, e.g., Laughlin wave

function in FQHE• ….

Page 23: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Correlation effects for localised states

Page 24: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Energy of two electrons in quantum dots, atoms,...

Energy of two electrons in quantum dots, atoms,...

Η = Η1 + Η2 + V12

Ψs(r(1),r(2)) = (exp[-ar1-br2] + exp[-br1-ar2]) (1+c|r2-r1|) [ ↓↑ − ↑↓]/ √2

a, b, c – variational parameters

For H- ionisation energy ~0.7 eV

Ground state - singlet 1s 2 (or 1S)

Page 25: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Correlation energy – Hubbard UCorrelation energy – Hubbard U

Η = Η1 + Η2 + V12 for Coulomb interactionV12 = e2/(ε|r1 − r2 |)

E1 = E2 = − 1 Ry

Eb ≈ - 0.05 RyU

hydrogen ion H-

Page 26: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Correlation energy – Hubbard UCorrelation energy – Hubbard U

Η = Η1 + Η2 + V12 for Coulomb interactionV12 = e2/(ε|r1 − r2 |)

E1 = E2 = − 1 Ry

Eb ≈ - 0.05 RyU

3d5

3d6Mn atom

U = 1.2 Ry

hydrogen ion H-

in metalsreduced byscreening

Page 27: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Potential exchange – localised states

Page 28: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Wave function for two electrons in states αααα and ββββWave function for two electrons in states αααα and ββββ

Η = Η1 +Η2 + V12

Perturbation theory – effect of V12 calculated with unperturbed wave functions; antisymmetriccombination is chosen

ΨΑ (r(1),r(2)) = [ψα(r(1)) ψβ(r(2)) − ψβ(r(1)) ψα(r(2)) ]/√2

Entangled wave function for two electrons in orbital states α and βtaking spin into account:

singlet state: Ψs(r(1),r(2)) = [ψα(r(1)) ψβ(r(2) ) + ψβ(r(1)) ψ2(r(2))] [↓↑ − ↑↓]/2

triplet states Ψt (r(1),r(2)) = [ψα(r(1)) ψβ(r(2) ) − ψβ(r(1)) ψ2(r(2))] ↑↑/ √2= [ψα(r(1)) ψβ(r(2) ) − ψβ(r(1)) ψ2(r(2))] ↓↓/ √2= [ψα(r(1)) ψβ(r(2) ) − ψβ(r(1)) ψ2(r(2))] [↓↑ + ↑↓]/2

e.g., 1s12p1 configuration in He

Page 29: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Energy for two electrons in states αααα and ββββEnergy for two electrons in states αααα and ββββ

Η = Η1 +Η2 + V12 Coulomb interaction

Perturbation theory – effect of V12 is calculated withantisymmetricwave functions

singlet state: Es = <Ψs | H|Ψs> = Eα + Eβ + U + J/2

triplet states: Et = <Ψt | H|Ψt> = Eα + Eβ + U − J/2

U = ∫dr(1) dr(2) V12(r(1),r(2) )|ψα(r(1))|2 |ψβ(r(2)) |2 -- Hartree term

J = 2∫dr(1) dr(2) V12(r(1),r(2) ) ψα(r(1))ψβ∗(r(1))ψα

∗(r(2))ψβ(r(2)) > 0 -- Fock term

Heisenberg hamiltonianEs(t) = Eα + Eβ + U − J/4 − Js1s2,

ferromagnetic ground state (potential exchange)

2p

He atom

Page 30: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Properties of exchange interactions Properties of exchange interactions

Hex = - Js1s2

potential exchange

J = 2∫dr(1) dr(2) e2/(|(r(1) - r(2)|ε) ψα (r(1))ψ*β (r(1))ψα

*(r(2))ψβ (r(2))

= 2∑k [4πe2/εk2 ]|∫dr ψα (r)ψ* β (r)eikr|2 > 0

s1

s2

two electronsin a quantum dot

• ferromagnetic

• short range – determined by overlap of wave functions

(contrary to U)

Page 31: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Transition metals – free atomsTransition metals – free atoms

• Electronic configuration of TM atoms : 3dn4s2

1 ≤≤≤≤ n ≤≤≤≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

• Important role of electron correlation for open d s hells- intra site correlation energy U = En+1 – En

for n = 5, U ≈≈≈≈ 15 eV

- intra-site exchange interaction: ferromagneticHund’s rule: S the highest possiblefor n = 5, ES=3/2 −−−− ES=5/2 ≈≈≈≈ 2 eV

- TM atoms, 3d n4s1, e.g., Mn :

ES=2 −−−− ES=3 ≈≈≈≈ 1.2 eV Js-d ≈≈≈≈ 0.4 eV ferromagnetic[H = -JsdsS]

despite of screening and hybridization these effects survive in solids 3d5

4s1

Page 32: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Potential s-d exchange interactionPotential s-d exchange interaction

in metals/semiconductors with delocalised s band and localised d spinsJsd only slightly reduced by screening:

Hsd = − ∑iJsds(r i)Si

exchange splitting of c. b., e.g., Cd1-xMnxTe

∆ = |xαN0 <Si>|; αNo ≡ Jsd; N0 – cation concentration

3d5

4s1

for singly ionised Mn atom

J4s-3d = 0.40 eV, J4p-3d = 0.20 eV

or singly ionised Eu atom

J6s-4f = 0.052 eV, J5d-4f = 0.22 eV

Page 33: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Potential exchange – extended statesFerromagnetism of late TM

Page 34: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Exchange energy of electron gasExchange energy of electron gas

Eex= ∫dr [g↑↑ (r)-1]e2/εr

Probability (triplet):Pkk’(r(1),r(2)) = |ϕk(r(1)) ϕk’(r(2)) − ϕk’(r(1)) ϕk(r(2))|2/2

P(y) = ∫dxP(x)δ(y – y(x))

g↑↑(r) = ∫dr(1)dr(2)δδδδ(r - r (1) - dr(2))××××∑∑∑∑kk’ < kF|ϕk(r(1)) ϕk’(r

(2))|2 − ϕk(r(1))ϕk’*(r(1))ϕk’(r

(2))ϕk*(r(2))

ϕk(r) = exp(ikr)/√√√√ V

• exchange energy of electron gasEex = - 0.916 Ry/(rs /aB)

g↑↑↑↑↑↑↑↑(r)

r

1

0

pair correlation function

Page 35: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Consequences of fermionic correlation -metals

Consequences of fermionic correlation -metals

• Exchange interaction within the electron gas

since the electron with the same spins avoid each otherthe energy of electron-electron repulsion is reduced

⇒ cohesion energy of metals• kinetic energy of electron gas

Ek = (3/5)EF = 2.2 Ry/(rs /aB)2

• exchange energy of electron gasEex = - 0.916 Ry/(rs /aB)

Minimum Etot rs /aB ≈ 1.6; real metals 2< rs /aB < 6

=> band-gap narrowing in doped semiconductors

∆E [eV] ≈ - e2/εrs = - 1.9 10-8 (p[cm-3])1/3

=> enhancement of tendency towards ferromagnetismtendency towards ferromagnetism

Page 36: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Experimental facts on Fe, Co, NiExperimental facts on Fe, Co, Ni

• both s and d electrons contribute to the Fermi sphere

-- no localised spins

itinerant magnetism

• robust ferromagnetism Tc = 1390 K for Co

Two time honoured models:

-- Bloch model

-- Stoner model

Page 37: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Bloch model of ferromagnetismBloch model of ferromagnetism

• kinetic energy of electron gas

Ek = 2.2 Ry/(rs /aB)2[n↑5/3 + n↓

5/3]/[2(n/2)5/3]

• exchange energy of electron gasEex= ∫dr [g↑↑ (r)-1]e2/εr + ∫dr [g↓↓ (r) -1]e2/εr

Eex = - 0.916 Ry/(rs /aB)[n↑4/3 + n↓

4/3]/[2(n/2)4/3]

Minimising in respect to n↑ - n↓ at given n = n↑ + n↓

=> ferromagnetism at rs /aB > 5.4

k

EF

Page 38: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Stoner model of ferromagnetismStoner model of ferromagnetism

• kinetic energy of electron gas

Ek = 2.2 Ry/(rs /aB)2[n↑5/3 + n↓

5/3]/[2(n/2)5/3]

• exchange energy of electron gas

Eex= ∫dr [g↑↑ (r) – 1]e2/εr + ∫dr [g↓↓ (r) – 1]e2/εr

4πe2/[ε|k1 – k2|2] I/N0 [screening]; I - a parameter

Eex = – 0.69 Ry/(rs /aB)2I[n↑2 + n↓

2]/(nN0)

Minimizing in respect to n↑ - n↓ at given n = n↑ + n↓

=> ferromagnetism at AF = ρ(EF)I/N0 > 1

k

EF

Page 39: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Why these models are not correct?Why these models are not correct?

• theory: higher order terms wash out ferromagnetism

• experiment: no ferromagnetism observed

in modulation doped heterostructures

Page 40: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Failure of free electron modelFailure of free electron model

ferromagnetism is not expected in TM metals!

band structure effects crucial:

• orbital character (s, d)

• multi bands’ effects-- narrow plus wide band

• s-d exchange coupling

• spin-orbit interaction (magnetic anisotropy)

• ….

Page 41: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Kinetic exchange

Page 42: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Direct exchange interactionsDirect exchange interactions

H12 = − Js1s2

potential energy depends on spins’ directions

kinetic energy depends on spins’ directions

kinetic exchange

potential exchange

Page 43: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Direct exchange interactionsDirect exchange interactions

Hex = - Js1s2

potential exchange

J = 2∫dr(1) dr(2) V12(r(1),r(2) ) ψa(r(1))ψ*b(r(1))ψa

*(r(2))ψb(r(2)) > 0

s1 s2Kinetic exchange

J =− 2<ψ1|H |ψ2>|2/U < 0

s1

s2

U

also H2 two electrons in two quantum dots

two electrons inone quantum dot

Page 44: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Kinetic exchange in metals – Kondo hamiltonianKinetic exchange in metals – Kondo hamiltonian

Lowering of kinetic energy due to symmetry allowed hybridization

• quantum hopping of electrons to the d level

[eikr contains all point symmetries]

• quantum hopping of electronsfrom the d level to the holestate

Hi = - JsS i (Schriffer-Wolff)kinetic exchange

|Jkin| > Jpotential<ψk|H |ψd>|2Jkin = − [1/Ed + 1/(U - Ed)]

3d5

3d6

UEF

Ed

exchange splitting of the band: ∆ = x| Jkin − Jpotential|<Si>

[in the weak coupling limit – no Kondo screening]

Page 45: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Kinetic exchange in DMSKinetic exchange in DMS

<ψs|H |ψd> = 0

<ψp|H |ψd> ≠ 0

• quantum hopping of electrons from the v.b. to the d level

• quantum hopping of electronsfrom the d level to the empty v.b. states

|<ψp|H |ψd>|2[1/Ed + 1/(U - Ed)]Jkin ≡ βNo = −

v.b. 3d5

3d6

exchange splitting of v.b., e.g., Ga1-xMnxAs: ∆ = x|βN0|<S>[in the weak coupling limit – TM does not bind a hole]

e.g., Mn in CdTeFe in GaN

Page 46: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Exchange energy ββββNo in Mn-based DMSExchange energy ββββNo in Mn-based DMS

• Antiferromagnetic(Kondo-like)

• Magnitude increases with decreasing lattice constant 1

o photoemission (Fujimori et al.)o exciton splitting (Twardowski et al.)

GaAs

ββββNo ~ a

o

-3

CdTeZnTe

CdSe

CdS

ZnSe

ZnS

ZnO

876540.4

4

EX

CH

AN

GE

EN

ER

GY

|ββ ββN

o| [e

V]

LATTICE PARAMETER ao [10-8cm]

Page 47: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Ferromagnetic kinetic exchange in Cr-based DMSFerromagnetic kinetic exchange in Cr-based DMS

|<ψp|H |ψd>|2[1/(U + Ed) − 1/(U + Ed− J) − 1/Ed ] > 0βNo = −

v.b.

3d4

3d5

3d5

Ed

U - J

U

d state in the gap

attention: in thermal equillibrium Cr d electrons neutralize holes but

ferromagnetic βNo was determined by exciton reflectivityMac et al., PRL’93

Page 48: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Double exchange

Page 49: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Zener double exchangeZener double exchange

Mn+3 Mn+4

• two centres with different spin states

• because of intra-centre exchange hopping (lowering of kinetic energy) for the sameorientations of two spins ferro

Page 50: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

c.bc.bc.bc.b. (s . (s . (s . (s orbitalsorbitalsorbitalsorbitals))))

d TM bandd TM bandd TM bandd TM band

v.bv.bv.bv.b. (p . (p . (p . (p orbitalsorbitalsorbitalsorbitals))))

E

DOSDOSDOSDOS

• d -states in the gap

• Sr acceptors take electrons from Mn ions

mixed valence two spin states

• Ferromagnetic arrangement promots hopping

Anderson-Mott insulator-to-metal transition at x ≅ 0.2

• narrow band for AFM, wide band for FM

Doped manganites: (La,Sr)MnO 3Doped manganites: (La,Sr) MnO3

Mn+3 Mn+4

TC ≈ 300 K

Page 51: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Indirect exchange interaction between localised spins

Overlap of wave functions necessary for the exchange interaction weak for

-- diluted spins-- spin separated by, e.g, anions

but … sp-d interaction Jsp-d≡ I can help!

Localised spin polarises band electrons

spin polarised band electrons polarise other localised spins

Page 52: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

s-d Zener model

Page 53: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

• METALS(heavily doped

semiconductors)

k

EF ∆ = x|I|<S>

long range, ferromagnetic

Zener exchange mediated by free carriersredistribution of carriers between spin subbands low ers energy

c.b.c.b.c.b.c.b.

v.b.v.b.v.b.v.b.

d d d d TM TM TM TM bandbandbandband

s-d Zener models-d Zener model

Page 54: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Landau free energy functional of carriersLandau free energy functional of carriers

k

EF

∆∆∆∆

for ∆, kT << EF

0 0

2

2

0

1 1( ) ( ) ( ) ( )

2 2

1 1( ) ( ) ( ) ( )

8 8F FB

dEE E f E dEE E f E

IMdEE E f E E E

g

ρ ρ

ρ ρ ρµ

∞ ∞

↓ ↑

= + −

− = ∆ =

∫ ∫

0 0

21 1( ) ( ) ( ) ( )

8 8F FdEE E f E E Eρ ρ ρ− = ∆ =−2

1 1( ) ( ) ( ) ( )

8 8F FB

IMdEE E f E E E

gρ ρ ρ

µ

− = ∆ =

Ground state always FM if no competing AF interactions

Fcarriers[M]

Page 55: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

MeanMeanMeanMean----field field field field ZenerZenerZenerZener modelmodelmodelmodelMeanMeanMeanMean----field field field field ZenerZenerZenerZener modelmodelmodelmodel

Which form of magnetization minimizes F[M(r)] ?

F = Fcarriers[M(r )] + FSpins[M(r) ]

Fcarriers<= VCA, Mol.F.A, kp, empirical tight-binding

Fspins<= from M(H) for undoped DMS

M(r) ≠ 0 for H= 0 at T < TC

if M(r) uniform => ferromagnetic order

otherwise => modulated magnetic structure

Page 56: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

How to describe valence band structure?How to describe valence band structure?

Cross-section of the Fermi surfaceM || [100]

Essential features:• spin-orbit coupling• anisotropy• multiband character

(Ga,Mn)As

EF

Page 57: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Zener/RKKY MF model of p-type DMSZener/RKKY MF model of p-type DMS

Curie temperature TC = TCW = TF – TAF superexchange

TF = S(S+1)xeffNoAFρ(s)(EF)β2/12Lcd-3

AF > 1 Stoner enhancement factor

(AF= 1 if no carrier-carrier interaction)

ρ(s)(EF) ~ m*kFd-2

(if no spin-orbit coupling, parabolic band)

Lc – quantum well width (d = 2), wire cross section (d = 1)

=> TC ~ 50 times greater for the holeslarge m*large β T.D. et al. PRB’97,’01,‘02, Science ’00

Competition between entropy, AF interactions, and lowering of carrier energy owing to spin-splitting

Page 58: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

-0.03 0.00 0.030

5

10

15

0.00 0.05 0.10 0.15 0.200

2

4

6

8

10

Magnetoresistance hysteresisn-Zn1-xMnxO:Al, x = 0.03

Magnetoresistance hysteresisn-Zn1-xMnxO:Al, x = 0.03

∆Rxx

(Ω)

Magnetic field (T) Temperature (K)

∆(m

T)

50mK

60mK

75mK

100mK

125mK

150mK

200mK

TC = 160 mK

M. Sawicki, ..., M. Kawasaki, T.D., ICPS’00

Page 59: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Curie temperature in p-Ga 1-xMnxAstheory and experiment

Curie temperature in p-Ga 1-xMnxAstheory and experiment

Warsaw + Nottingham’03samples: T. Foxon et al.expl. M. Sawicki i K. Wutheory: Zener model, T.D. et al.

2 4 6 8 1010

T

C(K

)

xSIMS

(%)

---- theory ( x = xSIMS

)

expl. ( d = 50 nm)

100

Ga1-xMnxAs

Page 60: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

F W

( )k T TB AF+ −θ( )k T TB AF+

0 1 2 3 4 50

5

10

15

20

p = 1012 cm-2

QW: LW

= 50 Å

Cd0.9

Mn0.1

Te

p = 1011 cm-2S

plitt

ing

∆ (

meV

)

Temperature T (K)T.D. et al. PRB’97

• TC independent of hole concentration p

• TC inversely proportionalto LW

• spontaneous splitting proportional to p

Effect of dimensionality -- magnetic quantum wells (theory)

Effect of dimensionality -- magnetic quantum wells (theory)

spontaneous splitting of thevalence band subband

+ -

Page 61: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Modulation doped (Cd,Mn)Te QWModulation doped (Cd,Mn)Te QW

(Cd,Mg)Te:N (Cd,Mg)Te:N(Cd,Mn)Te

J. Cibert et al. (Grenoble)

Page 62: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Ferromagnetic temperature in2D p-Cd1-xMnxTe QW and 3D Zn 1-xMnxTe:N

Ferromagnetic temperature in2D p-Cd1-xMnxTe QW and 3D Zn 1-xMnxTe:N

0.01 0.05 0.1

1

10

1

10

2D

3D

Fer

rom

agne

tic T

emp.

T

F / x ef

f (K

)

Fermi wave vector k (A -1)0.2

H. Boukari, ..., T.D., PRL’02 D. Ferrand, ... T.D., ... PRB’01

1020 cm-31018 1019

Page 63: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Ferromagnetic temperature in 2D p-Cd1-xMnxTe QW and 3D Zn 1-xMnxTe:N

Ferromagnetic temperature in 2D p-Cd1-xMnxTe QW and 3D Zn 1-xMnxTe:N

0.01 0.05 0.1

1

10

1

10

2D

3D

Fer

rom

agne

tic T

emp.

T

F / x ef

f (K

)

Fermi wave vector k (A -1)0.2

ρρρρ(k)

ρρρρ(k)

ρρρρ(k)

k

k

k

3D

2D

1D

H. Boukari, ..., T.D., PRL’02 D. Ferrand, ... T.D., ... PRB’01

1020 cm-31018 1019

Page 64: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TF(q

/2k F

)/T

F(0

)

q/2kF

d=1d=2d=31D: TF(q) has

maximum at 2kF

spin-Peierlsinstability SDW

TF(q)/TF (0) for s-electrons neglecting e-e interactions and disorder

Effects of confinement magnetic quantum wires - expectations

Effects of confinement magnetic quantum wires - expectations

Page 65: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

RKKY model

Page 66: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

RKKY – metals/doped semiconductorsRKKY – metals/doped semiconductors

Hij = -J(Ri –Rj)SiSj

How energy of carriers

depends on relative orientation

of two spins Si and Sj in the

presence of Hsp-d = -I(r –Ri)sSi

Page 67: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Spin polarisation of free carriers induced by a loca lised spin :

• long range

• sign oscillateswith kFRij

• FM at smalldistances

0 5 10

0

1

2

1D 2D 3D

( 2

k f Rij )

d-1

Fd (

2 k

f Rij )

2 kf R

ij

Ruderman-Kittel-Kasuya-Yosida interactionRuderman-Kittel-Kasuya-Yosida interaction

Hij = -J(Ri –Rj)SiSj

ferro

Friedel oscillations

Page 68: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Spin density oscillationsSpin density oscillations

SP-STMCo on Cu(111)

R. Wiesendanger et al., PRL’04

Page 69: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Magnetic order induced by RKKYMagnetic order induced by RKKY

• MFA valid when n < xN0 (semiconductors)interaction merely FM

• MFA not valid when n > xN0

both FM and AFM important spin glass

Hij = -J(Ri –Rj)SiSj

in the MFA TC (RKKY) = TC(s-d Zener)

Page 70: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Blomberg-Rowland and superexchange

Page 71: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

RKKY and Blomberg-Rowland mechanismRKKY and Blomberg-Rowland mechanism

spin polarisation ofvalenceelectrons

spin polarisationof carriers

4th order process in hybridisation <ψk|H |ψd>

Page 72: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

Example: hopping to d-orbitalsExample: hopping to d-orbitals

Page 73: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

SuperexchangeSuperexchange

• Derivation of J(Ri –Rj) in spin hamiltonian Hij = - J(Ri –Rj)SiSj

taking systematically into account hybridisation terms

<ψk|H |ψd> up to at least 4th order

• merely AFM, if FM – small value – Goodenogh-Kanamori rules

Page 74: PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl - MAGNETISM…magnetism.eu/esm/2009/slides/dietl-slides-1-3.pdf · Lecture 1-3 PHYSICS OF EXCHANGE INTERACTIONS Tomasz Dietl Institute

END


Related Documents