Top Banner
Spintronics – material aspects Why to do not combine complementary properties and functionalities of semiconductor and magnetic material systems? hybrid structures -- overlayers or inclusions of ferromagnetic metals => source of stray fields and spin-polarized carriers -- soft ferromagnets => local field amplifiers -- hard ferromagnets => local field generators ferromagnetic semiconductors
57

Prezentacja programu PowerPoint - Magnetismmagnetism.eu/esm/2003-brasov/slides/dietl-slides-1.pdf · MAGNETIC SEMICONDUCTORSMAGNETIC SEMICONDUCTORS. Tomasz DIETL. Institute of Physics,

May 31, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Spintronics – material aspectsSpintronics – material aspectsWhy to do not combine complementary properties and functionalities of semiconductor and magnetic material systems?

    • hybrid structures-- overlayers or inclusions of ferromagnetic metals =>source of stray fields and spin-polarized carriers

    -- soft ferromagnets => local field amplifiers-- hard ferromagnets => local field generators

    • ferromagnetic semiconductors

  • MAGNETIC SEMICONDUCTORSMAGNETIC SEMICONDUCTORS

    Tomasz DIETLInstitute of Physics, Polish Academy of Sciences, Warsaw

    Collaboration: Grenoble (J. Cibert et al.), Sendai (H. Ohno et al.),Austin (a. MacDonald et al.), Regensburg (D. Weiss et al.), …

    1. Families of magnetic semiconductors2. Spin manipulations in ferromagnetic semiconductors3. Magnetic impurities in semiconductors4. sp-d exchange interactions5. d-d exchange interactions6. Outlook7. SummarySupport: EC: AMORE, FENIKS, ERATO (JST), A.V. Humboldt Foundation

  • Families of magnetic semiconductors

  • • magnetic semiconductorsshort-range ferromagnetic super- or double exchangeEuS, ZnCr2Se4, La1-xSrxMnO3, ...

    short-range antiferromagnetic superexchangeEuTe, ...

    Magnetic semiconductorsMagnetic semiconductors

  • now: Diluted Magnetic Semiconductors (DMS)

  • DMS: standard semiconductor + magnetic ions

    DMS: standard semiconductor + magnetic ions

    • Various magnetic ions:- mostly 3d transition metals: Sc, ..., Cu- rare earth (4f): Ce, ..., Tm- also actinides (5f), 4d TM, ...

    • Various hosts:- II-VI: Cd1-xMnxTe, Hg1-xFexSe,...- IV-VI: Sn1-xMnxTe, Pb1-xEuxS- III-V: In1-xMnxSb, Ga1-xErxN, ...- IV: Ge1-xMnx, Si1-xCex- ....

  • Most of DMS: random antiferromagnetMost of DMS: random antiferromagnet

    short range antiferromagnetic superexchange

  • Evidences for antiferromagnetic pairsH12 = -2JS1S2

    Evidences for antiferromagnetic pairsH12 = -2JS1S2

    inelastic neutron scattering

    Zn0.95Mn0.05Te

    T. Giebultowicz et al.H. Kepa, …, T.D., PRL’03

  • Evidences for antiferromagneticinteractions: magnetic susceptibility

    Evidences for antiferromagneticinteractions: magnetic susceptibility

    A. Lewicki et al.

    Curie-Weiss law

    χ = C/(T − Θ)

    C = gµBS(S+1)xNo/3kBΘ < 0 antiferro

  • Magnetization of localized spinsMagnetization of localized spins

    M(T,H) = gµBSxeffNoBS[gµBH/kB(T + TAF)

    antiferromagnetic interactions

    xeff < x

    TAF > 0

    Modified Brillouin function

    Y. Shapira et al.

  • long-range hole-mediated ferromagnetic exchange

    IV-VI: p-Pb1-x-yMnxSnyTe (Story et al.’86)III-V: In1-x-MnxAs (Ohno et al.’92)

    Ga1-x-MnxAs (Ohno et al.’96) TC ≈ 100 K for x = 0.05II-VI: p-Cd1-xMnxTe/Cd1-x-yZnxMgyTe:N QW

    (Haury et al.’97, Kossacki et al.’99)p-Zn1-xMnxTe:N (Ferrand et al.’99)p-Be1-xMnxTe:N (Hansen et al.’01)

    Ferromagnetic DMSFerromagnetic DMS

    III-V and II-VI DMS:quantum nanostructures and ferromagnetism combine

  • Spin manipulations in ferromagnetic DMS

  • Tuning magnetic ordering by electric field (ferro-FET) (In,Mn)As

    Tuning magnetic ordering by electric field (ferro-FET) (In,Mn)As

    H. Ohno, .., T.D., ...Nature ’00

    M

    IVH

  • Modulation-doped p-type magnetic QWsModulation-doped p-type magnetic QWs

    (Cd,Mg)Te:N (Cd,Mg)Te:N(Cd,Mn)Te

    J. Cibert et al. (Grenoble)

    σ-σ-σ+

    σ+

    ENER

    GY

    ∆E ~ M

  • Control offerromagnetism

    by electric field in a pin

    diode – ferro-LED

    1700 1710

    1.49 K1.651.872.052.19

    2.80

    3.03

    4.2 K0V

    PL In

    tens

    ity (a

    .u.)

    Energy (meV)

    a

    1700 1710

    1.49 K1.651.88

    2.05

    2.19

    2.822.97

    b4.2 K

    -1V

    Hole liquid Depleted

    V

    QWp doped

    n doped

    undopedbarriers

    Control offerromagnetism

    by electric field in a pin

    diode – ferro-LEDPhotoluminescence

    Ec

    EF

    VEv

    H. Boukari, …, T.D., PRL’02

  • V

    QW

    1700 1710

    0 V1.5 K

    Ev

    Ec

    EFill

    umi n

    ati o

    n

    Combined: electrostatic gate + illumination

    in p-i-n diode (ferro-LED)

    Combined: electrostatic gate + illumination

    in p-i-n diode (ferro-LED)

    1700 1710

    1.49 K1.651.872.052.19

    2.80

    3.03

    4.2 K0V

    PL In

    tens

    ity (a

    .u.)

    Energy (meV)

    a

    1700 1710

    1.49 K1.651.88

    2.05

    2.19

    2.822.97

    b4.2 K

    -1V

    Hole liquid Depleted

    V

    Ferro- diode: electric field and light tuned ferromagnetism

  • Optical tuning of magnetization – p-i-p diodeOptical tuning of magnetization – p-i-p diode

    paramagnetic

    1680 1690 1700 1710

    Tp=16×1010 cm-2

    (a)

    4.2 K

    2.7 K

    2.4 K

    2.1 K

    1.8 K

    1.2 K

    Energy [ meV ]1680 1690 1700 1710

    (b)

    p×1010

    cm-2

    2.7

    5.2

    7.1

    10

    12

    16

    T = 1.34 K

    Energy [ meV ]

    ferromagnetic

    Tem

    pera

    ture

    Hol

    e co

    ncen

    tratio

    n

    p = const T = const

    Illum

    inat

    ion

    CdMnTe QW8 nm

    0 to 4% Mn

    EFEv

    Ec

    pip diode: light destroys ferromagnetism

  • Magnetic ions in semiconductors

    • position of d levels, U

    • charge and spin states

    • intra ion excitation energies d d*

    • coupling to band states:

    -- spin dependent: sp-d exchange interactions

    -- spin independent: band offsets

    -- crystal-field effects

  • Transition metals – free atomsTransition metals – free atoms

    • Electronic configuration of TM atoms: 3dn4s2

    1 ≤ n ≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

    • Important role of electron correlation for open d shells- intra site correlation energy U = En+1 – En

    for n =5, U ≈ 15 eV

    3d5

    3d6 UHB

    LHB

    U

  • Transition metals – free atomsTransition metals – free atoms

    • Electronic configuration of TM atoms: 3dn4s2

    1 ≤ n ≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

    • Important role of electron correlation for open d shells- intra site correlation energy U = En+1 – En

    for n =5, U ≈ 15 eV- intra-site exchange interaction: ferromagnetic

    Hund’s rule: S the highest possiblefor n = 5, ES=3/2 − ES=5/2 ≈ 2 eV

    3d5

    3d*5

  • Transition metals – free atomsTransition metals – free atoms

    • Electronic configuration of TM atoms: 3dn4s2

    1 ≤ n ≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

    • Important role of electron correlation for open d shells- intra site correlation energy U = En+1 – En

    for n =5, U ≈ 15 eV- intra-site exchange interaction: ferromagnetic

    Hund’s rule: S the highest possiblefor n = 5, ES=3/2 − ES=5/2 ≈ 2 eV

    - TM atoms, 3dn4s1, e.g., Mn:ES=2 − ES=3 ≈ 1.2 eV Js-d ≈0.4 eV ferromagnetic

    despite of screening and hybridization these effects survive in solids 3d5

    4s1

  • Where d levels and carriers reside in DMS?Where d levels and carriers reside in DMS?

    Possibilities:

    -- manganides La1-xSrxMnO3 -- cuprates La2-xSrxCuO4Mott-Hubbard AF insulator for x 0 charge transfer AF insulator for x 0

    c.b. (cation s orbitals)

    d TM band

    v.b. (anion p orbitals)

    c.b.

    v.b.

    d TM band

    E

    DOSExperimental guide: impurity limit (EPR, d –> d*, … )

  • TM impurities in II-VI compoundsTM impurities in II-VI compounds

    dn/dn+1

    dn/dn-1

    • TM atoms: 3dn4s2

    • TM impurity (dn) neutral since:-- donor level dn/dn-1

    resides below c.b.-- acceptor level dn/dn+1

    resides above v.b.• Exceptions (charged TM)

    -- Sc in CdSe

  • d-levels of TM (3dn4s2 ) impurities in II-VI’sd-levels of TM (3dn4s2 ) impurities in II-VI’s

    dn/dn+1 acceptor

    HHB

    dn/dn-1donorLHB

    A.Zunger, J.Baranowski, P.Vogl, J.Langer, A.Fujimori, ...

    • Mn2+ (d5, S = 5/2)• AF superexchannge(random AF)

    • no d levels at EF• independent control of Mn andcarrier densities (doping, light)

    • strong sp-d exchange H = -IsS

  • TM impurities in III-V compoundsTM impurities in III-V compounds

    •TM atoms: 3dn4s2

    •TM impurity (dn-1) neutral if-- donor level dn-1/dn-2

    resides below c.b.-- acceptor level dn-1/dn

    resides above v.b.

    • Mn in III-V:resonant + hydrogenic

    acceptor

    dn-1/dn

  • sp-d exchange interactions in DMS

  • Potential s-d exchange interaction

    Spin part of Coulomb energy for s and d electrons

    Esd = -Jsd(S + s)2 = -JsdS2 - Jsds2 -2JsdSs = C-2JsdSs = C- αNoSs

    for Mn atom αNo = 0.4 eVinteraction of magnetic moments: Edipole-dipole ≈ 0.004 eV

    in semiconductor compounds αNo reduced by • screening• admixture of s-type anion wave function

  • Spin dependent interaction between valence band holes and Mn spins

    Spin dependent interaction between valence band holes and Mn spins

    Gain of energy due tosymmetry allowed hybridization

    • quantum hopping of electrons from the v.b. to the d level

    • quantum hopping of electronsfrom the d level to the empty v.b states

    • Hi = - βNosSi (Schriffer-Wolff)kinetic pd exchange

    3d6

    v.b. 3d5

  • Contribution to the kp hamiltonian due to the presence of a magnetic ion

    Contribution to the kp hamiltonian due to the presence of a magnetic ion

    • Hj = Uo (r- Rj) - sites with no magnetic ion• Hi = U(r- Ri) - J(r-Ri)sSi - sites with the magnetic ion• kp model: non-vanishing matrix elements:

    V = , W = - conduction and valenceband offset integrals

    α = , β = - s-d and p-d exchange integralsS>, X> - Bloch wave functions Energies: VNo etc.

  • Virtual crystal and molecular-field approximationsVirtual crystal and molecular-field approximations

    • The translation symmetry restored by introducing anaverage potential, the same for each site:Hn = (1 - x) Uo (r - Rn) + xU(r - Rn) - xJ(r - Rn)sSn

    Eg = x(VNo - WNo )

    • replacing spin-operators in a volume v by a classical field:

    x ΣnSn _--> M(r)/gµBHspin = Js M(r)/g µ B new contribution to spin splitting

    • Difference between real and VCA/MFA hamiltoniansscattering (alloy and spin-disorder scattering)

  • Effects of exchange interaction and determination of exchange integralsEffects of exchange interaction and determination of exchange integrals

    αNo = 0.25 eV

    T. D. et al.

  • Determination of sp-d exchange integrals I- giant splitting of exciton states

    Determination of sp-d exchange integrals I- giant splitting of exciton states

    geff > 102

    σ-σ-σ+

    σ+

    ENER

    GY

    v.b.

    c.b.

    ∆E ~ M ~ BS(H)

    J. Gaj et al.A. Twardowski et al.

    -- p-d: Ipd ≡ βNo ≈ - 1.0 eVlarge p-d hybridization and large intra-site Hubbard U => kinetic p-d exchange (T.D. ’80, …, P. Kacman, SST’01)

    -- s-d: Isd ≡ αNo ≈ 0.2 eV no s-d hybridization => potential s-d exchange

  • Magnetoabsorption --determination of exchange integrals

    Magnetoabsorption --determination of exchange integrals

    Szczytko et al.

    σ−

    σ+

    Haury et al., Kossacki et al.Szczytko et al..

    Moss-Burstein shift => positive sign of MCDFermi liquid also in insulator => positive sign of MCD

  • Exchange energy βNoExchange energy βNo

    1

    o photoemission (Fujimori et al.)o exciton splitting (Twardowski et al.)

    GaAs

    βNo ~ ao-3

    CdTeZnTe

    CdSeCdS

    ZnSe

    ZnS

    ZnO

    876540.4

    4

    EXC

    HA

    NG

    E EN

    ERG

    Y |β

    No|

    [eV]

    LATTICE PARAMETER ao [10-8cm]

    • Antiferromagnetic(Kondo-like)

    • Magnitude increases with decreasing lattice constant

  • Origin of d-d exchange interactions in DMS

  • Mechanisms of couplings between localized spins

    Mechanisms of couplings between localized spins

    Origin of the coupling: exchange interaction between the localized spins and band electrons, -βNoSs

    • INSULATORSspin polarization of orbitals

    magnetic orbitals involved:Kramers and Anderson superexchange Mn As Mn

    non-magnetic orbitals involved:Bloembergen-Rowland mechanism

    short-range, accounts for antiferromagneticinteractions in DMS … exceptions found

  • Ferromagnetic superexchange (?)Ferromagnetic superexchange (?)

    Theoretical prediction: (II,Cr,V)VI J. Blinowski et al., PRB’96

    K. Ando et al., PRL’03

  • Doped materialsDoped materials

    • MIXED VALENCE MATERIALS

    • Zener double exchangepossibility of hopping lowers energy

    c.b. (s orbitals)

    d TM band

    v.b. (p orbitals)

    E

    DOS

    Mnn Mnn+1

    short range, ferromagnetic, e.g. (La,Sr)MnO3

  • • METALS(heavily doped

    semiconductors)

    c.b.

    v.b.

    d TM band

    Zener exchange mediated by free carriersredistribution of carriers between spin subbands lowers energy

    k

    EFħωs = βNo

    long range, ferromagnetic

  • • METALSRuderman-Kittel-Kasuya-Yosida interactionSpin polarization of free carriers induced by a single spin:

    long range, sign of the interaction depends on kFRij

    0 5 10

    0

    1

    2

    1D 2D 3D

    ( 2 k

    f Rij )

    d-1

    Fd

    ( 2 k

    f Rij )

    2 kf R

    ij

    − J R S Sij i j( ) .

  • Making (II,Mn)VI DMSs ferromagnetic:Zener/RKKY MF model of doped DMS

    Making (II,Mn)VI DMSs ferromagnetic:Zener/RKKY MF model of doped DMS

    TC = TCW = TF – TAF superexchange

    TF = S(S+1)xeffNoAFρ(s)(EF) β2/12Lcd-3

    AF > 1 Stoner enhancement factor (AF= 1 if no carrier-carrier interaction)

    ρ(s)(EF) = m*kFd-2 (if no spin-orbit coupling)

    => TC ~ 50 times greater for the holeslarge m*large β

    T.D. et al. PRB’97,’01,‘02, Science ’00

  • 0 5 10 15

    0

    1

    2

    3

    4

    5

    p ≈ 5×1018 cm-3

    p ≈ 1017 cm-3

    px = 0.023p

    -Zn

    1-xMn

    xTe

    χ-1

    [ a

    .u. ]

    Temperature [ K ]

    TCW

    Effect of dopingEffect of doping

    T.D. et al. PRB’97 D.Ferrand,…,T.D. PRB’01M.Sawicki,…,T.D., pss’02

    χ-1 vs. T

    MIT at p ≈ 1019 cm-3

  • Ferromagnetic temperature in 2D p-Cd1-xMnxTe QW and 3D Zn1-xMnxTe:N

    Ferromagnetic temperature in 2D p-Cd1-xMnxTe QW and 3D Zn1-xMnxTe:N

    ρ(k)

    3D

    0.01 0.05 0.1

    1

    10

    1

    10

    2D

    3D

    Ferr

    omag

    netic

    Tem

    p. T

    F / x

    eff (

    K)

    Fermi wave vector k (A-1)0.2

    1020 cm-31018 1019

    kρ(k)

    ρ(k) k

    k

    2D

    1D

    H. Boukari, ..., T.D., PRL’02 D. Ferrand, ... T.D., ... PRB’01

  • 0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    TF

    (q/2

    k F)/

    TF

    (0)

    q/2kF

    d=1d=2d=3

    Effects of confinement magnetic quantum wires - expectations

    Effects of confinement magnetic quantum wires - expectations

    1D: TF(q) has maximum at 2kF

    spin-Peierls instability SDW

    TF(q)/TF (0) for s-electrons neglecting e-e interactions and disorder

  • -0.03 0.00 0.030

    5

    10

    15

    0.00 0.05 0.10 0.15 0.200

    2

    4

    6

    8

    10

    ∆Rxx

    (Ω)

    Magnetic field (T) Temperature (K)

    ∆(m

    T)

    50mK60mK75mK100mK125mK150mK200mK

    TC = 160 mK

    M. Sawicki, ..., M. Kawasaki, T.D., ICPS’00

    Magnetoresistance hysteresisn-Zn1-xMnxO:Al, x = 0.03

    Magnetoresistance hysteresisn-Zn1-xMnxO:Al, x = 0.03

  • Curie temperature in p-Ga1-xMnxAstheory vs. experiment

    Curie temperature in p-Ga1-xMnxAstheory vs. experiment

    • Anomalous Hall effect p uncertain

    • Omiya et al.:27 T, 50 mK

    • Theory: TC > 300 Kfor x > 0.1and large p

    • 2003: TC up to 170 K (Sendai, Notre Dame, Pen State, Nottingham, Tokyo…)

    0 1 2 3 4 50

    50

    100

    150

    200

    THEORY, x = 0.05

    Oiwa et al.Van Esch et al.Matsukura et al.Shimizu et al.

    Omiya et al.

    Ga1-xMnxAs

    CU

    RIE

    TEM

    PER

    ATU

    RE

    [K]

    HOLE CONCENTRATION [1020 cm-3]

    T.D. et al., PRB’01

    cf. first principles studies: Shirai, Katayama-Yosida, Sanvito, Dederichs, ....

  • Strain engineering

    Tensile straine.g (Ga,Mn)As/InAs

    Compressive straine.g (Ga,Mn)As/GaAs

  • Effect of strain on easy axis and anisotropy field (Ga,Mn)As

    Effect of strain on easy axis and anisotropy field (Ga,Mn)As

    -1.0 -0.5 0.0 0.5 1.00.0

    0.2

    0.4

    0.6

    0.8

    1.0tensilecompressive

    B

    BMs

    Ms

    1.5x1020 cm-3

    3.5x1020 cm-3

    [100] -> [001][001] -> [100]

    AN

    ISO

    TRO

    PY F

    IELD

    [T]

    BIAXIAL STRAIN εxx [%]

    (Ga,Mn)As/GaAscompressive –0.2%

    B

    F. Matsukura et al. film substrate

    T.D. et al., PRB ‘01

    T = 4.2 K

    • (Ga,Mn)As/GaAs compressive strain => easy axis in plane• (Ga,Mn)As/(Ga,In)As tensile strain => easy axis out of plane

  • Temperature dependent anisotropy(Ga,Mn)As

    Temperature dependent anisotropy(Ga,Mn)As

    compressive straineasy axis flips from [001] [100]

    T.D. et al., Science ’00, PRB’01

    M/Ms

    M. Sawicki et al., cond-mat/0212511

  • Controlling quantum magnetic dotsControlling quantum magnetic dots

    GATE VOLTAGE

    Ferromagnetic quantum dotarray

    to be demonstrated

  • Stripe domains in (Ga,Mn)As perpendicular films

    Stripe domains in (Ga,Mn)As perpendicular films

    domain walls[110] [100]

    9 K

    65 K

    T.D. et al., PRB’01

    theory

    Shono et al.

  • Transport properties: AMRTransport properties: AMR

    x = 0.05compressiveε ≈ −0.002

    x = 0.043tensileε ≈ 0.002

    F.Matsukura, …, T.D., Physica E’03T. Jungwirth et al., APL’02

    I

    H strainspin-orbit

    AMR = (ρ// - ρ⊥)/ρ//

  • Chemical trends – hole driven ferromagnetism xMn = 0.05, p = 3.5x1020 cm-3

    Chemical trends – hole driven ferromagnetism xMn = 0.05, p = 3.5x1020 cm-3

    Materials of light elements:

    • large p-d hybridization

    • small spin-orbit interaction

    10 100 1000

    C

    ZnO

    ZnTeZnSe

    InAsInP

    GaSb

    GaPGaAs

    GaNAlAs

    AlPGe

    Si

    Curie temperature (K)

    T.D. et al., Science ‘00

  • Chasing for functional ferromagnetic semiconductors

    Chasing for functional ferromagnetic semiconductors

    Ge1-xMnx Ga1-xMnxN

    TC ≈ 940 KTC ≈ 940 K

    Sonoda et al., J. Cryst. Growth’02Expl., LSDA, Park et al, Science ‘02

    Warning: precipitates and inclusions possible

  • Summary III-V and II-VI ferromagnetic DMS

    Summary III-V and II-VI ferromagnetic DMS

    • Spin manipulations -- spin injection (cf. H. Jaffres)-- GMR, TMR-- ferro-FET, ferro-LED (electric field and light) -- dimensionality-- strain engineering

    at low temperatures quantum information devices

    • Theory -- Tc, M(T,H), magnetic anisotropy, domains, MCD, AHE, AMR…

    • Open issue: -- interplay between Stoner and Zener magnetism near MIT

    • Prospects for high TC: more materials science

  • Summary, spin-spin interactions in DMSSummary, spin-spin interactions in DMS

    DMS with no carriers: merely antiferro superexchange

    DMS with carriers: ferro Zener/RKKY• strong for holes • weak for electrons

  • LiteratureLiterature

    DMSTD, in: Handbook on Semiconductors, vol. 3B ed. T.S. Moss (Elsevier, Amsterdam 1994) p. 1251.

    ferromagnetic DMS • F. Matsukura, H. Ohno, TD, in: Handbook of

    Magnetic Materials, vol. 14, Ed. K.H.J. Buschow, (Elsevier, Amsterdam 2002) p. 1

    • TD, Semicond. Sci. Technol. 17, 377 (2002)

    MAGNETIC SEMICONDUCTORSDMS: standard semiconductor + magnetic ionsMost of DMS: random antiferromagnetEvidences for antiferromagnetic pairs H12 = -2JS1S2Evidences for antiferromagnetic interactions: magnetic susceptibilityMagnetization of localized spinsTuning magnetic ordering by electric field (ferro-FET) (In,Mn)AsTransition metals – free atomsTransition metals – free atomsTransition metals – free atomsWhere d levels and carriers reside in DMS?TM impurities in II-VI compoundsd-levels of TM (3dn4s2 ) impurities in II-VI’sTM impurities in III-V compoundsPotential s-d exchange interactionSpin dependent interaction between valence band holes and Mn spinsContribution to the kp hamiltonian due to the presence of a magnetic ionVirtual crystal and molecular-field approximationsEffects of exchange interaction and determination of exchange integralsDetermination of sp-d exchange integrals I - giant splitting of exciton statesMagnetoabsorption --determination of exchange integralsExchange energy ?NoMechanisms of couplings between localized spinsMechanisms of couplings between localized spinsFerromagnetic superexchange (?)Making (II,Mn)VI DMSs ferromagnetic:Zener/RKKY MF model of doped DMSFerromagnetic temperature in 2D p-Cd1-xMnxTe QW and 3D Zn1-xMnxTe:NCurie temperature in p-Ga1-xMnxAstheory vs. experimentEffect of strain on easy axis and anisotropy field (Ga,Mn)AsTemperature dependent anisotropy(Ga,Mn)AsControlling quantum magnetic dotsStripe domains in (Ga,Mn)As perpendicular filmsTransport properties: AMRChemical trends – hole driven ferromagnetism xMn = 0.05, p = 3.5x1020 cm-3Chasing for functional ferromagnetic semiconductorsSummary III-V and II-VI ferromagnetic DMSSummary, spin-spin interactions in DMSLiterature