-
Spintronics – material aspectsSpintronics – material aspectsWhy
to do not combine complementary properties and functionalities of
semiconductor and magnetic material systems?
• hybrid structures-- overlayers or inclusions of ferromagnetic
metals =>source of stray fields and spin-polarized carriers
-- soft ferromagnets => local field amplifiers-- hard
ferromagnets => local field generators
• ferromagnetic semiconductors
-
MAGNETIC SEMICONDUCTORSMAGNETIC SEMICONDUCTORS
Tomasz DIETLInstitute of Physics, Polish Academy of Sciences,
Warsaw
Collaboration: Grenoble (J. Cibert et al.), Sendai (H. Ohno et
al.),Austin (a. MacDonald et al.), Regensburg (D. Weiss et al.),
…
1. Families of magnetic semiconductors2. Spin manipulations in
ferromagnetic semiconductors3. Magnetic impurities in
semiconductors4. sp-d exchange interactions5. d-d exchange
interactions6. Outlook7. SummarySupport: EC: AMORE, FENIKS, ERATO
(JST), A.V. Humboldt Foundation
-
Families of magnetic semiconductors
-
• magnetic semiconductorsshort-range ferromagnetic super- or
double exchangeEuS, ZnCr2Se4, La1-xSrxMnO3, ...
short-range antiferromagnetic superexchangeEuTe, ...
Magnetic semiconductorsMagnetic semiconductors
-
now: Diluted Magnetic Semiconductors (DMS)
-
DMS: standard semiconductor + magnetic ions
DMS: standard semiconductor + magnetic ions
• Various magnetic ions:- mostly 3d transition metals: Sc, ...,
Cu- rare earth (4f): Ce, ..., Tm- also actinides (5f), 4d TM,
...
• Various hosts:- II-VI: Cd1-xMnxTe, Hg1-xFexSe,...- IV-VI:
Sn1-xMnxTe, Pb1-xEuxS- III-V: In1-xMnxSb, Ga1-xErxN, ...- IV:
Ge1-xMnx, Si1-xCex- ....
-
Most of DMS: random antiferromagnetMost of DMS: random
antiferromagnet
short range antiferromagnetic superexchange
-
Evidences for antiferromagnetic pairsH12 = -2JS1S2
Evidences for antiferromagnetic pairsH12 = -2JS1S2
inelastic neutron scattering
Zn0.95Mn0.05Te
T. Giebultowicz et al.H. Kepa, …, T.D., PRL’03
-
Evidences for antiferromagneticinteractions: magnetic
susceptibility
Evidences for antiferromagneticinteractions: magnetic
susceptibility
A. Lewicki et al.
Curie-Weiss law
χ = C/(T − Θ)
C = gµBS(S+1)xNo/3kBΘ < 0 antiferro
-
Magnetization of localized spinsMagnetization of localized
spins
M(T,H) = gµBSxeffNoBS[gµBH/kB(T + TAF)
antiferromagnetic interactions
xeff < x
TAF > 0
Modified Brillouin function
Y. Shapira et al.
-
long-range hole-mediated ferromagnetic exchange
IV-VI: p-Pb1-x-yMnxSnyTe (Story et al.’86)III-V: In1-x-MnxAs
(Ohno et al.’92)
Ga1-x-MnxAs (Ohno et al.’96) TC ≈ 100 K for x = 0.05II-VI:
p-Cd1-xMnxTe/Cd1-x-yZnxMgyTe:N QW
(Haury et al.’97, Kossacki et al.’99)p-Zn1-xMnxTe:N (Ferrand et
al.’99)p-Be1-xMnxTe:N (Hansen et al.’01)
Ferromagnetic DMSFerromagnetic DMS
III-V and II-VI DMS:quantum nanostructures and ferromagnetism
combine
-
Spin manipulations in ferromagnetic DMS
-
Tuning magnetic ordering by electric field (ferro-FET)
(In,Mn)As
Tuning magnetic ordering by electric field (ferro-FET)
(In,Mn)As
H. Ohno, .., T.D., ...Nature ’00
M
IVH
-
Modulation-doped p-type magnetic QWsModulation-doped p-type
magnetic QWs
(Cd,Mg)Te:N (Cd,Mg)Te:N(Cd,Mn)Te
J. Cibert et al. (Grenoble)
σ-σ-σ+
σ+
ENER
GY
∆E ~ M
-
Control offerromagnetism
by electric field in a pin
diode – ferro-LED
1700 1710
1.49 K1.651.872.052.19
2.80
3.03
4.2 K0V
PL In
tens
ity (a
.u.)
Energy (meV)
a
1700 1710
1.49 K1.651.88
2.05
2.19
2.822.97
b4.2 K
-1V
Hole liquid Depleted
V
QWp doped
n doped
undopedbarriers
Control offerromagnetism
by electric field in a pin
diode – ferro-LEDPhotoluminescence
Ec
EF
VEv
H. Boukari, …, T.D., PRL’02
-
V
QW
1700 1710
0 V1.5 K
Ev
Ec
EFill
umi n
ati o
n
Combined: electrostatic gate + illumination
in p-i-n diode (ferro-LED)
Combined: electrostatic gate + illumination
in p-i-n diode (ferro-LED)
1700 1710
1.49 K1.651.872.052.19
2.80
3.03
4.2 K0V
PL In
tens
ity (a
.u.)
Energy (meV)
a
1700 1710
1.49 K1.651.88
2.05
2.19
2.822.97
b4.2 K
-1V
Hole liquid Depleted
V
Ferro- diode: electric field and light tuned ferromagnetism
-
Optical tuning of magnetization – p-i-p diodeOptical tuning of
magnetization – p-i-p diode
paramagnetic
1680 1690 1700 1710
Tp=16×1010 cm-2
(a)
4.2 K
2.7 K
2.4 K
2.1 K
1.8 K
1.2 K
Energy [ meV ]1680 1690 1700 1710
(b)
p×1010
cm-2
2.7
5.2
7.1
10
12
16
T = 1.34 K
Energy [ meV ]
ferromagnetic
Tem
pera
ture
Hol
e co
ncen
tratio
n
p = const T = const
Illum
inat
ion
CdMnTe QW8 nm
0 to 4% Mn
EFEv
Ec
pip diode: light destroys ferromagnetism
-
Magnetic ions in semiconductors
• position of d levels, U
• charge and spin states
• intra ion excitation energies d d*
• coupling to band states:
-- spin dependent: sp-d exchange interactions
-- spin independent: band offsets
-- crystal-field effects
-
Transition metals – free atomsTransition metals – free atoms
• Electronic configuration of TM atoms: 3dn4s2
1 ≤ n ≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
• Important role of electron correlation for open d shells-
intra site correlation energy U = En+1 – En
for n =5, U ≈ 15 eV
3d5
3d6 UHB
LHB
U
-
Transition metals – free atomsTransition metals – free atoms
• Electronic configuration of TM atoms: 3dn4s2
1 ≤ n ≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
• Important role of electron correlation for open d shells-
intra site correlation energy U = En+1 – En
for n =5, U ≈ 15 eV- intra-site exchange interaction:
ferromagnetic
Hund’s rule: S the highest possiblefor n = 5, ES=3/2 − ES=5/2 ≈
2 eV
3d5
3d*5
-
Transition metals – free atomsTransition metals – free atoms
• Electronic configuration of TM atoms: 3dn4s2
1 ≤ n ≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
• Important role of electron correlation for open d shells-
intra site correlation energy U = En+1 – En
for n =5, U ≈ 15 eV- intra-site exchange interaction:
ferromagnetic
Hund’s rule: S the highest possiblefor n = 5, ES=3/2 − ES=5/2 ≈
2 eV
- TM atoms, 3dn4s1, e.g., Mn:ES=2 − ES=3 ≈ 1.2 eV Js-d ≈0.4 eV
ferromagnetic
despite of screening and hybridization these effects survive in
solids 3d5
4s1
-
Where d levels and carriers reside in DMS?Where d levels and
carriers reside in DMS?
Possibilities:
-- manganides La1-xSrxMnO3 -- cuprates La2-xSrxCuO4Mott-Hubbard
AF insulator for x 0 charge transfer AF insulator for x 0
c.b. (cation s orbitals)
d TM band
v.b. (anion p orbitals)
c.b.
v.b.
d TM band
E
DOSExperimental guide: impurity limit (EPR, d –> d*, … )
-
TM impurities in II-VI compoundsTM impurities in II-VI
compounds
dn/dn+1
dn/dn-1
• TM atoms: 3dn4s2
• TM impurity (dn) neutral since:-- donor level dn/dn-1
resides below c.b.-- acceptor level dn/dn+1
resides above v.b.• Exceptions (charged TM)
-- Sc in CdSe
-
d-levels of TM (3dn4s2 ) impurities in II-VI’sd-levels of TM
(3dn4s2 ) impurities in II-VI’s
dn/dn+1 acceptor
HHB
dn/dn-1donorLHB
A.Zunger, J.Baranowski, P.Vogl, J.Langer, A.Fujimori, ...
• Mn2+ (d5, S = 5/2)• AF superexchannge(random AF)
• no d levels at EF• independent control of Mn andcarrier
densities (doping, light)
• strong sp-d exchange H = -IsS
-
TM impurities in III-V compoundsTM impurities in III-V
compounds
•TM atoms: 3dn4s2
•TM impurity (dn-1) neutral if-- donor level dn-1/dn-2
resides below c.b.-- acceptor level dn-1/dn
resides above v.b.
• Mn in III-V:resonant + hydrogenic
acceptor
dn-1/dn
-
sp-d exchange interactions in DMS
-
Potential s-d exchange interaction
Spin part of Coulomb energy for s and d electrons
Esd = -Jsd(S + s)2 = -JsdS2 - Jsds2 -2JsdSs = C-2JsdSs = C-
αNoSs
for Mn atom αNo = 0.4 eVinteraction of magnetic moments:
Edipole-dipole ≈ 0.004 eV
in semiconductor compounds αNo reduced by • screening• admixture
of s-type anion wave function
-
Spin dependent interaction between valence band holes and Mn
spins
Spin dependent interaction between valence band holes and Mn
spins
Gain of energy due tosymmetry allowed hybridization
• quantum hopping of electrons from the v.b. to the d level
• quantum hopping of electronsfrom the d level to the empty v.b
states
• Hi = - βNosSi (Schriffer-Wolff)kinetic pd exchange
3d6
v.b. 3d5
-
Contribution to the kp hamiltonian due to the presence of a
magnetic ion
Contribution to the kp hamiltonian due to the presence of a
magnetic ion
• Hj = Uo (r- Rj) - sites with no magnetic ion• Hi = U(r- Ri) -
J(r-Ri)sSi - sites with the magnetic ion• kp model: non-vanishing
matrix elements:
V = , W = - conduction and valenceband offset integrals
α = , β = - s-d and p-d exchange integralsS>, X> - Bloch
wave functions Energies: VNo etc.
-
Virtual crystal and molecular-field approximationsVirtual
crystal and molecular-field approximations
• The translation symmetry restored by introducing anaverage
potential, the same for each site:Hn = (1 - x) Uo (r - Rn) + xU(r -
Rn) - xJ(r - Rn)sSn
Eg = x(VNo - WNo )
• replacing spin-operators in a volume v by a classical
field:
x ΣnSn _--> M(r)/gµBHspin = Js M(r)/g µ B new contribution to
spin splitting
• Difference between real and VCA/MFA hamiltoniansscattering
(alloy and spin-disorder scattering)
-
Effects of exchange interaction and determination of exchange
integralsEffects of exchange interaction and determination of
exchange integrals
αNo = 0.25 eV
T. D. et al.
-
Determination of sp-d exchange integrals I- giant splitting of
exciton states
Determination of sp-d exchange integrals I- giant splitting of
exciton states
geff > 102
σ-σ-σ+
σ+
ENER
GY
v.b.
c.b.
∆E ~ M ~ BS(H)
J. Gaj et al.A. Twardowski et al.
-- p-d: Ipd ≡ βNo ≈ - 1.0 eVlarge p-d hybridization and large
intra-site Hubbard U => kinetic p-d exchange (T.D. ’80, …, P.
Kacman, SST’01)
-- s-d: Isd ≡ αNo ≈ 0.2 eV no s-d hybridization => potential
s-d exchange
-
Magnetoabsorption --determination of exchange integrals
Magnetoabsorption --determination of exchange integrals
Szczytko et al.
σ−
σ+
Haury et al., Kossacki et al.Szczytko et al..
Moss-Burstein shift => positive sign of MCDFermi liquid also
in insulator => positive sign of MCD
-
Exchange energy βNoExchange energy βNo
1
o photoemission (Fujimori et al.)o exciton splitting (Twardowski
et al.)
GaAs
βNo ~ ao-3
CdTeZnTe
CdSeCdS
ZnSe
ZnS
ZnO
876540.4
4
EXC
HA
NG
E EN
ERG
Y |β
No|
[eV]
LATTICE PARAMETER ao [10-8cm]
• Antiferromagnetic(Kondo-like)
• Magnitude increases with decreasing lattice constant
-
Origin of d-d exchange interactions in DMS
-
Mechanisms of couplings between localized spins
Mechanisms of couplings between localized spins
Origin of the coupling: exchange interaction between the
localized spins and band electrons, -βNoSs
• INSULATORSspin polarization of orbitals
magnetic orbitals involved:Kramers and Anderson superexchange Mn
As Mn
non-magnetic orbitals involved:Bloembergen-Rowland mechanism
short-range, accounts for antiferromagneticinteractions in DMS …
exceptions found
-
Ferromagnetic superexchange (?)Ferromagnetic superexchange
(?)
Theoretical prediction: (II,Cr,V)VI J. Blinowski et al.,
PRB’96
K. Ando et al., PRL’03
-
Doped materialsDoped materials
• MIXED VALENCE MATERIALS
• Zener double exchangepossibility of hopping lowers energy
c.b. (s orbitals)
d TM band
v.b. (p orbitals)
E
DOS
Mnn Mnn+1
short range, ferromagnetic, e.g. (La,Sr)MnO3
-
• METALS(heavily doped
semiconductors)
c.b.
v.b.
d TM band
Zener exchange mediated by free carriersredistribution of
carriers between spin subbands lowers energy
k
EFħωs = βNo
long range, ferromagnetic
-
• METALSRuderman-Kittel-Kasuya-Yosida interactionSpin
polarization of free carriers induced by a single spin:
long range, sign of the interaction depends on kFRij
0 5 10
0
1
2
1D 2D 3D
( 2 k
f Rij )
d-1
Fd
( 2 k
f Rij )
2 kf R
ij
− J R S Sij i j( ) .
-
Making (II,Mn)VI DMSs ferromagnetic:Zener/RKKY MF model of doped
DMS
Making (II,Mn)VI DMSs ferromagnetic:Zener/RKKY MF model of doped
DMS
TC = TCW = TF – TAF superexchange
TF = S(S+1)xeffNoAFρ(s)(EF) β2/12Lcd-3
AF > 1 Stoner enhancement factor (AF= 1 if no carrier-carrier
interaction)
ρ(s)(EF) = m*kFd-2 (if no spin-orbit coupling)
=> TC ~ 50 times greater for the holeslarge m*large β
T.D. et al. PRB’97,’01,‘02, Science ’00
-
0 5 10 15
0
1
2
3
4
5
p ≈ 5×1018 cm-3
p ≈ 1017 cm-3
px = 0.023p
-Zn
1-xMn
xTe
χ-1
[ a
.u. ]
Temperature [ K ]
TCW
Effect of dopingEffect of doping
T.D. et al. PRB’97 D.Ferrand,…,T.D. PRB’01M.Sawicki,…,T.D.,
pss’02
χ-1 vs. T
MIT at p ≈ 1019 cm-3
-
Ferromagnetic temperature in 2D p-Cd1-xMnxTe QW and 3D
Zn1-xMnxTe:N
Ferromagnetic temperature in 2D p-Cd1-xMnxTe QW and 3D
Zn1-xMnxTe:N
ρ(k)
3D
0.01 0.05 0.1
1
10
1
10
2D
3D
Ferr
omag
netic
Tem
p. T
F / x
eff (
K)
Fermi wave vector k (A-1)0.2
1020 cm-31018 1019
kρ(k)
ρ(k) k
k
2D
1D
H. Boukari, ..., T.D., PRL’02 D. Ferrand, ... T.D., ...
PRB’01
-
0 0.5 1 1.5 20
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
TF
(q/2
k F)/
TF
(0)
q/2kF
d=1d=2d=3
Effects of confinement magnetic quantum wires - expectations
Effects of confinement magnetic quantum wires - expectations
1D: TF(q) has maximum at 2kF
spin-Peierls instability SDW
TF(q)/TF (0) for s-electrons neglecting e-e interactions and
disorder
-
-0.03 0.00 0.030
5
10
15
0.00 0.05 0.10 0.15 0.200
2
4
6
8
10
∆Rxx
(Ω)
Magnetic field (T) Temperature (K)
∆(m
T)
50mK60mK75mK100mK125mK150mK200mK
TC = 160 mK
∆
M. Sawicki, ..., M. Kawasaki, T.D., ICPS’00
Magnetoresistance hysteresisn-Zn1-xMnxO:Al, x = 0.03
Magnetoresistance hysteresisn-Zn1-xMnxO:Al, x = 0.03
-
Curie temperature in p-Ga1-xMnxAstheory vs. experiment
Curie temperature in p-Ga1-xMnxAstheory vs. experiment
• Anomalous Hall effect p uncertain
• Omiya et al.:27 T, 50 mK
• Theory: TC > 300 Kfor x > 0.1and large p
• 2003: TC up to 170 K (Sendai, Notre Dame, Pen State,
Nottingham, Tokyo…)
0 1 2 3 4 50
50
100
150
200
THEORY, x = 0.05
Oiwa et al.Van Esch et al.Matsukura et al.Shimizu et al.
Omiya et al.
Ga1-xMnxAs
CU
RIE
TEM
PER
ATU
RE
[K]
HOLE CONCENTRATION [1020 cm-3]
T.D. et al., PRB’01
cf. first principles studies: Shirai, Katayama-Yosida, Sanvito,
Dederichs, ....
-
Strain engineering
Tensile straine.g (Ga,Mn)As/InAs
Compressive straine.g (Ga,Mn)As/GaAs
-
Effect of strain on easy axis and anisotropy field (Ga,Mn)As
Effect of strain on easy axis and anisotropy field (Ga,Mn)As
-1.0 -0.5 0.0 0.5 1.00.0
0.2
0.4
0.6
0.8
1.0tensilecompressive
B
BMs
Ms
1.5x1020 cm-3
3.5x1020 cm-3
[100] -> [001][001] -> [100]
AN
ISO
TRO
PY F
IELD
[T]
BIAXIAL STRAIN εxx [%]
(Ga,Mn)As/GaAscompressive –0.2%
B
F. Matsukura et al. film substrate
T.D. et al., PRB ‘01
T = 4.2 K
• (Ga,Mn)As/GaAs compressive strain => easy axis in plane•
(Ga,Mn)As/(Ga,In)As tensile strain => easy axis out of plane
-
Temperature dependent anisotropy(Ga,Mn)As
Temperature dependent anisotropy(Ga,Mn)As
compressive straineasy axis flips from [001] [100]
T.D. et al., Science ’00, PRB’01
M/Ms
M. Sawicki et al., cond-mat/0212511
-
Controlling quantum magnetic dotsControlling quantum magnetic
dots
GATE VOLTAGE
Ferromagnetic quantum dotarray
to be demonstrated
-
Stripe domains in (Ga,Mn)As perpendicular films
Stripe domains in (Ga,Mn)As perpendicular films
domain walls[110] [100]
9 K
65 K
T.D. et al., PRB’01
theory
Shono et al.
-
Transport properties: AMRTransport properties: AMR
x = 0.05compressiveε ≈ −0.002
x = 0.043tensileε ≈ 0.002
F.Matsukura, …, T.D., Physica E’03T. Jungwirth et al.,
APL’02
I
H strainspin-orbit
AMR = (ρ// - ρ⊥)/ρ//
-
Chemical trends – hole driven ferromagnetism xMn = 0.05, p =
3.5x1020 cm-3
Chemical trends – hole driven ferromagnetism xMn = 0.05, p =
3.5x1020 cm-3
Materials of light elements:
• large p-d hybridization
• small spin-orbit interaction
10 100 1000
C
ZnO
ZnTeZnSe
InAsInP
GaSb
GaPGaAs
GaNAlAs
AlPGe
Si
Curie temperature (K)
T.D. et al., Science ‘00
-
Chasing for functional ferromagnetic semiconductors
Chasing for functional ferromagnetic semiconductors
Ge1-xMnx Ga1-xMnxN
TC ≈ 940 KTC ≈ 940 K
Sonoda et al., J. Cryst. Growth’02Expl., LSDA, Park et al,
Science ‘02
Warning: precipitates and inclusions possible
-
Summary III-V and II-VI ferromagnetic DMS
Summary III-V and II-VI ferromagnetic DMS
• Spin manipulations -- spin injection (cf. H. Jaffres)-- GMR,
TMR-- ferro-FET, ferro-LED (electric field and light) --
dimensionality-- strain engineering
at low temperatures quantum information devices
• Theory -- Tc, M(T,H), magnetic anisotropy, domains, MCD, AHE,
AMR…
• Open issue: -- interplay between Stoner and Zener magnetism
near MIT
• Prospects for high TC: more materials science
-
Summary, spin-spin interactions in DMSSummary, spin-spin
interactions in DMS
DMS with no carriers: merely antiferro superexchange
DMS with carriers: ferro Zener/RKKY• strong for holes • weak for
electrons
-
LiteratureLiterature
DMSTD, in: Handbook on Semiconductors, vol. 3B ed. T.S. Moss
(Elsevier, Amsterdam 1994) p. 1251.
ferromagnetic DMS • F. Matsukura, H. Ohno, TD, in: Handbook
of
Magnetic Materials, vol. 14, Ed. K.H.J. Buschow, (Elsevier,
Amsterdam 2002) p. 1
• TD, Semicond. Sci. Technol. 17, 377 (2002)
MAGNETIC SEMICONDUCTORSDMS: standard semiconductor + magnetic
ionsMost of DMS: random antiferromagnetEvidences for
antiferromagnetic pairs H12 = -2JS1S2Evidences for
antiferromagnetic interactions: magnetic
susceptibilityMagnetization of localized spinsTuning magnetic
ordering by electric field (ferro-FET) (In,Mn)AsTransition metals –
free atomsTransition metals – free atomsTransition metals – free
atomsWhere d levels and carriers reside in DMS?TM impurities in
II-VI compoundsd-levels of TM (3dn4s2 ) impurities in II-VI’sTM
impurities in III-V compoundsPotential s-d exchange interactionSpin
dependent interaction between valence band holes and Mn
spinsContribution to the kp hamiltonian due to the presence of a
magnetic ionVirtual crystal and molecular-field
approximationsEffects of exchange interaction and determination of
exchange integralsDetermination of sp-d exchange integrals I -
giant splitting of exciton statesMagnetoabsorption --determination
of exchange integralsExchange energy ?NoMechanisms of couplings
between localized spinsMechanisms of couplings between localized
spinsFerromagnetic superexchange (?)Making (II,Mn)VI DMSs
ferromagnetic:Zener/RKKY MF model of doped DMSFerromagnetic
temperature in 2D p-Cd1-xMnxTe QW and 3D Zn1-xMnxTe:NCurie
temperature in p-Ga1-xMnxAstheory vs. experimentEffect of strain on
easy axis and anisotropy field (Ga,Mn)AsTemperature dependent
anisotropy(Ga,Mn)AsControlling quantum magnetic dotsStripe domains
in (Ga,Mn)As perpendicular filmsTransport properties: AMRChemical
trends – hole driven ferromagnetism xMn = 0.05, p = 3.5x1020
cm-3Chasing for functional ferromagnetic semiconductorsSummary
III-V and II-VI ferromagnetic DMSSummary, spin-spin interactions in
DMSLiterature