Top Banner
11/14/12 Nibbles SCPNT © B. Parkinson 2012 1
20

11/14/12 Nibbles%SCPNT%©%B.%Parkinson%2012% 1...Professor%Brad%Parkinson% Stanford%University% Nibbles% 11/14/12 Nibbles%SCPNT%©%B.%Parkinson%2012% 2

Jan 31, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   1  

  • Professor  Brad  Parkinson  

    Stanford  University  

    Nibbles  

    11/14/12   2  Nibbles  SCPNT  ©  B.  Parkinson  2012  

  • Three  EssenAal  ACributes  for  any  GNSS:    the  Three  A's.    

    •  Availability  (Metric-‐  minutes  of  unavailability  per  day)  – Geometry  –  Clear  RecepAon  

    •  Affordability  –  Metrics:  –  Total  AmorAzed  cost  per  satellite-‐year  (on  orbit)  –  Cost  of  User  Equipment  (interference  resistance)  

    •  Accuracy  –  Metrics:  PNT  2σ,  Inaccuracy  “bound”  (3  or  4σ  or  10-‐7),  Probability  that  PNT  Safety  of  Life  value  is  exceeded  (“integrity’)  – Geometry  –  Ranging  Accuracy  

    Geometric  (un)Availability  is  strongly  dictated  by  number  of  

    slots  in  GPS  ConstellaAon  11/14/12   3  Nibbles  SCPNT  ©  B.  Parkinson  2012  

  • 11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   4  

    Geometric  Availability:  First  Measure  of  EffecAveness  (Unavailability  of  GPS  due  to  ConstellaAon  size  and  Moderate  Terrain  or  obstrucAons)  

    The  Message:    Require  at  least  a  30  slot  constellaAon  for  reasonable  availability  for  a  “sky-‐impaired”  GPS  user  in  typical  small  town  or  mountain  terrain  (and  

    possibly  on  airports  near  buildings)  

    Total  outages  of  2  to  five  hours  with  24  slots  

    Total  outages  are  negligible  with  33  slots  

    Moderate  Mountain  Slope  or  small  town  

  • 11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   5  

    The  Message:    A  33  slot  constella4on  is  required  for  reasonable  availability  when  user  is  “sky  

    impaired”  in  ciAes  or  rugged  terrain  

    First  Measure  of  EffecAveness  (Unavailability  of  GPS  due  to  ConstellaAon  size  and  Steeper  Terrain)  

    Total  outages  of  6  to  10  hours  with  24  GPS  slots  Total  outages  are  

    manageable  with  33  GPS  slots  

    Fairly  rugged    Mountain  Slope  

  • Affordability  and  Geometric  Availability    Co-‐Dependency  

    Simplis9c  Math  If:    Cost/Sat  =  CSAT+LAUNCH  

    Then  ~  #/Year  =  (Budget/Year)/C  

    Or  

    (#/Year)  *  C    ~  Constant  

    11/14/12   6  Nibbles  SCPNT  ©  B.  Parkinson  2012  

    $  Affordability  

    #  of  Satellites  

  • First  set  of  Nibbles  (aim  for  33+X):  •  Guidelines  

    –  15  to  18  Full-‐up  Satellites  –  The  Nibbles:    15  to  18  GPS  only  Satellites,    

         (all  NavigaAon  signals  no  surge  power)  

    •  Goal  –  Greatly  Reduced  Cost  per  Satellite  year  on-‐orbit  

    •  Approach:  

    11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   7  

    Nibble  at  Satellite  Weight,  

    Complexity  and  Power  

    Enable  Affordable  33  

    Satellite  ConstellaAon  

    Reduce  on-‐orbit  cost  by  at  least  50%  

    •   Directly  Reduce  Sat  Mfg.  Cost  

    •   Enable  Triple  or  Quadruple  Launch  

    Result:  greatly  enhanced  Geometric  

    Availability  for  users  

  • Nibbles  –  Satellite  SWaP    Design  Architecture  

    –  Only  “addiAonal”  payload  is  Laser  Reflector  –  Smaller  Commercial  Bus  

    •    Power  Requirements  (Current  Payload  ~2200W)  –  Shading  Angle  Spec  5o    changed  to  20o    

    •  With  affordable  30+X,  many  Satellites  above  20  degrees  •  Reduce  Satellite  antenna  complexity  (12  to  4  Elements?)  •  Total  Power  reduced  ~  0.6  dB  

    –  Spec  RF  Power  at  20o  reduced  by  1.5dB  –  Total  reducAon  40%  (2.1dB)  

       RF  Power  Conversion  Efficiency  –    Convert  from  GaAs  (25-‐30%)  to  GaN  (35-‐50%)  or  TWTAs  (50-‐65%)  

    11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   8  

  • 11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   9  

    Current  Designs  at  ~500W  RF  

    Nibbled  Designs  at  300W  RF  

    GaAs   GaN  TWTA  

    Solar  Array  Power  for  Various  Amplifier  Efficiencies-‐    (ηPA)  DC  Po

    wer  Req

    uired  (W

    aCs)  

     RF  Power  Amplifier  Efficiency  ηPA  

    DC  Power  =  (RF  Power)/ηPA  

  • 11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   10  

    Current  Designs  at  500W  RF  

    Nibbled  Designs  at  300W  RF  

    Nibbles  can  greatly  reduce  the  Satellite  Heat  RejecAon  Requirement  

    GaAs  GaN  

    TWTA  

    Heat  R

    ejecAo

    n  Re

    quire

    d  (W

    aCs)  

     RF  Power  Amplifier  Efficiency  ηPA  

    Heat  RejecAon  Required  =    (RF  Power)  *(1-‐  ηPA)/ηPA  

  • Nibbles  –  Satellite  SWaP    Design  Architecture  

    –  Only  “addiAonal”  payload  is  Laser  Reflector  –  Smaller  Commercial  Bus  

    •    Power  Requirements  (Current  Payload  ~2200W)  –  Shading  Angle  Spec  5o    changed  to  20o    

    •  With  affordable  30+X,  many  Satellites  above  20  degrees  •  Reduce  Satellite  antenna  complexity  (12  to  4  Elements?)  •  Total  Power  reduced  ~  0.6  dB  

    –  Spec  RF  Power  at  20o  reduced  by  1.5dB  –  Total  reducAon  40%  (2.1dB)  

     Power  Efficiency  –    Convert  from  GaAs  (30%)  to  GaN  or  TWTAs  

     AddiAonal  Nibbles  –  Lithium  Ion  BaCeries  –  State  of  Art  Solar  Array  Efficiency  

    •  Power  ReducAon  leads  to  ProporAonate  Overhead  ReducAons  

    –  BaCery  Size  –  EOL  Reserves  for  Solar  Array  –  S/A  Failure  Reserves  and  Design  Margin  

    11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   11  

  • CauAons  and  Decisions  

    •  Must  Maximize  use  of  “exisAng”  designs  and        components  

    •  Some  “overhead”  is  hard  to  shrink  •  TWTA’s    

    – Subtle  consequences  for  a  Nav  Ranging  Signal?  •  Degrees  of  

    – Hardening  – Redundancy  (Design  Life)  

    11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   12  

  • Type  Satellite  Cost  

    (AmorFzed)  

    Sats/Booster  

    Booster  Cost  

    “C”  Cost  of  Sat  on  Orbit  

    ~Number  of  Sats  for    $500M/yr  

    Current   $220M   1   $230M   $450M   ~  1  

    “Nibbled”  

    $60M   2   $200M   $160M   3  

    $55M   3   $210M   $125M   4  

    $50M   4   $240M   $110M   Almost  5  

    Es9mated  Value  of  Nibbles  (All  in  Brad  $,  exact  exchange  rates  to  US$,  Euros  or  Yen  not  determined)  

    11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   13  

  • What  about  the  small  reducAon  in  Radiated  power  with  “nibbled”  Satellite?  

    11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   14  

    •  Availability  (Metric-‐  minutes  of  unavailability  per  day)  – Geometry  –  Clear  RecepFon  

    •  Affordability  –  Metrics:  –  Total  AmorAzed  cost  per  satellite-‐year  (on  orbit)  –  Cost  of  User  Equipment  (interference  resistance)  

    •  Accuracy  –  Metrics:  PNT  2σ,  Inaccuracy  “bound”  (3σ),  Probability  that  PNT  Safety  of  Life  value  is  exceeded  (“integrity’)  – Geometry  –  Ranging  Accuracy  

    Leads  to  Nibbles  Part  2  

  • 11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   15  

    Payoff  of  Jamming  Resistance  

    JAMMER Maximum Effective Range (km)

    GPS

    REC

    EIVE

    R A

    NTI

    JAM

    CA

    PAB

    ILIT

    Y (d

    B)

    1 6 7 8 9 10 2 3 4 5

    100

    90

    80

    70

    50

    40

    30

    20

    10

    0

    60

    JAMMER ERP = 0.1 mW

    1 mW

    10 mW

    100 mW

    1 W

    10 W

    100 W

    1 kW

    10 kW

    NEEDED: About 35 dB of Additional

    Receiver Interference Resistance (From Processing, signal, receiver &

    antenna)

    Current:  1  WaC  

    EffecAve  to  2  to  5  

    Kilometers  

    Desired:  A  1kW  jammer  ineffecAve  to  

    Aircra|  flying  overhead  at  7000  

    Feet  

  • 11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   16  

    “Nibbles”  Part  2  -‐  Jam  Resistance    How  to  get  >  35  dB  of  Improved  Receiver  Performance  for  Commercial  Aircra@  

    In  addiFon  –  A  credible  reliable  backup  should  be  included:  Recommended  –  Either  Retained  (selected)  DME  or  eLoran  

    Technique   Range  of  improvement  

    Aircra|  Shading   5-‐10  dB  

    InerAal  And  Averaging  (MEMS,  CSAC,  Kasovich  Devices)    

    8-‐12  dB  

    Wider  Spreading  GNSS  Signal  (e.g.  L1C)  

    5  dB  

    Digital  Beam  Forming  Antenna   10-‐15  dB  

    “Spilker”  Vector  Receiver  (A  powerful  form  of  frequency  diversity)   At  least  10  dB  

    PotenFal  Total  Improvement   38  –  52  dB  

  • 11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   17  

    Payoff  of  Jamming  Resistance  

    JAMMER Maximum Effective Range (km)

    GPS

    REC

    EIVE

    R A

    NTI

    JAM

    CA

    PAB

    ILIT

    Y (d

    B)

    1 6 7 8 9 10 2 3 4 5

    100

    90

    80

    70

    50

    40

    30

    20

    10

    0

    60

    JAMMER ERP = 0.1 mW

    1 mW

    10 mW

    100 mW

    1 W

    10 W

    100 W

    1 kW

    10 kW

    Digital Technology is making beam steering and vector receivers much more affordable

    Believe This is a trend that will continue

    PotenAal  Nibbles  CumulaAvely  Produce  95  dB  or  more  of  Interference  

    Resistance  

  • Nibbles  Part  2  –  ConsideraAons  for  Receiver  improvements  

    •  Affordability  – Safety  of  Life  -‐  vastly  different  Threshold  of  $  Pain  – Synergy  with  WB  Aircra|  Antenna  InerAal  PoinAng  – Expanded  market  drives  down  cost  (cell  phone  camera)  

    •  FAA  Role  –  push  for  receiver  Interference          Resistance  Specs  

    •  Industry  Role  – Prototype  and  Develop  Robust  Receivers  

    11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   18  

  • Summary  –  Nibbling  to  improve  the  Three  EssenAal  ACributes  

    •  Availability  (Metric-‐  minutes  of  unavailability  per  day)  –  Deploy  ~  ½  Nibbled  Satellites  for  ≥  30+X  constellaFon  –  Focus  on  Nibbled  Technology  for  Receivers  

    •  Affordability  –  Metrics:  –  Nibble  on  size  weight  and  power  to  insure  mulFple-‐Launch,  Affordable  Satellites  

    –  Ride  Digital  Wave  for  Beam  Steering  plus  Vector  Receiver  •  Accuracy  –  Metrics:  PNT  2σ,  Inaccuracy  “bound”  (3σ),  Probability  that  

    PNT  Safety  of  Life  value  is  exceeded  (“integrity’)  –  Affordability  leads  to  Improved  Geometry  (Esp.  Sky  Impaired  users)  – MulAple  Frequencies  and  L1C  Improves  Ranging  Accuracy  

    11/14/12   19  Nibbles  SCPNT  ©  B.  Parkinson  2012  

  • 11/14/12   Nibbles  SCPNT  ©  B.  Parkinson  2012   20  

    Questions?