YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Microrheology of the liquid-solid transition during gelation

Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008

Caroline E. Wagner

McKinley Gels Summer Reading GroupAugust 24 2017

(Also: T. H. Larsen, Schultz, K. and Furst, E. M. KARJ, 20(3), 2008)

Page 2: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Motivation: Characterizing gelation at smaller length scales

2

So far we have discussed several macrorheological experimental techniques for determining the physical characteristics of the liquid/gel transition

Chambon, F. and Winter, H. H. JoR (1987)

Winter, H. H. and Mours, M. Adv Polym Sci (1999)

~'~ nG G / 1tan G G

Winter, H. H. and Mours, M. Adv Polym Sci (1999)

Relaxation modulus ( )G tLong time residual stress

plateau of solid-like material

Rapid relaxation of stresses of liquid-like material

Sample-spanning network

Larsen and Furst argue that similar methods should be developed for microrheology, as macrorheological measurement may not always be possible / sufficient. For instance:

• Micrheology is more suitable when sample volumes are very limited (e.g. biological samples)

• Microstructural changes may be sufficiently small to not be reflected in the measured macrorheology

• Macrorheological measurements may not be suitable for studying very rapid gelation kinetics

Page 3: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Overview of microrheology

3

1𝜇m beads

1mm

50mm

a1i

x

1it i

t1i i

t t

Camera frame rate 1/f

2x

3

Average of N steps

Average of N-2 steps

Experimental notes• Fewer statistical points at larger lag times.. Image for longer than

you need data!• Heterogeneity at scales larger than the particles can result in a

spectrum of particle walks and hence the MSD may not be representative of the medium properties

log( )

2og( )l x

1

1

1Superdiffusion Diffusion

• Brownian motion (viscous liquid)

Subdiffusion

Elastic solid

x3it

it

Page 4: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Overview of microrheology

4

What rheological information can the MSD provide us with?

Mason, T. G. and Weitz, D. A. PRL (1995)Squires, T. M. and Mason, T. G. Ann Rev Flu Mech (2010)

m VDf

Fluid resistance

RfRandom forces

Generalized Langevin Eq: ( ) ( ) ( ) ( )t

Ro

V t f t t dm V

( )tProbe resistance:

Take Laplace transform:( )

( )

(0)( ) RV fms

ms

sV

s

Velocity autocorrelationfunction:

2(0) (0)(0)

)(

()

( )RV fms

ms

s VV V

s

Helpful identity:

0 if random forces and velocity are uncorrelated

NkBT (equipartition) Assume inertia small compared to fluid resistance

2 22 2r ((0) ( )

2) (

2)V V t rs s

s s

Simplify:2 2

2( )

( )

BNk T

ss r s

Use Stokes identity: ( ) 6 ( )s s a 2 2( )

3 ( )

BNk T

sas r s

Modulus: 2

( ) ( )3 ( )

BNk T

G s s sas r s

Compliance:

23 ( )1( )

( )B

a r sJ s

Nk TsG s

Analytic continuation:s i

*( ) ( )G s G

Inverse Laplace transform

23( ) ( )

B

aJ t r t

Nk T

2 2

3

( ) /( )( ) ~

/B

r t atJ t

k T a

Both J(t) and <r2(t)> are in the time domain!

Another way of thinking about it:

G*(𝜔) is in frequency domain but <r2(t)> is in the time domain

This conversion is sensitive to the range of times over which you have experimental MSD data (which is finite)

Page 5: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Experimental systems in Larsen and Furst

5

1) Physically-crosslinked gel

2) Chemically-crosslinked gels

Observe transient gelation for a fixed peptide concentrationOzbas, B. et al. PRL (2004)

• 20 amino acid long peptide (MAX1) assumes a folded 𝛽-hairpin conformation in response to pH or ionic strength trigger.

• Folded peptides self-assemble to form a network

Polyacrylamide Bis-acrylamide x-linker

• Extent of cross-linking in gel is controlled by concentration of bis-acrylamide

Observe steady state fluid structure for various concentrations of cross-linker

i) Polyacrylamide

i) Heparin (KARJ paper only)

Maleimide-functionalizedHigh MW heparin (HMWH)

Bis-thiol PEG

Observe transient gelation for fixed polymer and x-linker concentrations

• Perform microrheology after sample has equilibrated for 6 hours (ensure equilibrium using UV-vis spectroscopy)

Page 6: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Experimental results for peptide and acrylamide

6

Page 7: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Breakdown of expected MSD scaling

7Jones, R. A. L. Soft Condensed Matter (2002)

Page 8: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

MSD during the pre-gel phase

8

• As clusters form during the very early phases of gelation, the relaxation time and hence it appears as though the only effect is an increase in viscosity

log( )

2og( )l x 1

• The longest relaxation time is associated with Rouse-like fluctuations of the clusters. As they grow, increases. For subdiffusive motion is observed, while for normal diffusion is recovered

• As the clusters continue to grow, continues to increase, and subdiffusive motion is observed for longer and longer lag times.

L

L

1/L

f

L

L

L

L

L

Page 9: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

MSD during the post-gel phase

9

log( )

2og( )l x

L

L

• Beyond the establishment of a sample-spanning cluster at the critical point, the network continues to develop, forming a viscoelastic solid with relaxation time . Increasing connectivity results in a decreasing .

• For the same Rouse-like subdiffusive dynamics persist, while for , the motion of the particles is arrested by the network and a plateau in the MSD is observed.

• At the most advanced stages of gelation, the particle motion is arrested for all lag times

L L

L

L

Page 10: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Collapsing onto master curves

10

Introduce shift factors:2 2( ) ( )

shiftr b r

shifta

MSD:

Lag time:

0~1/e

b J

~1/L

a

Shift onto curve at lowest extent of gelation

Shift onto curve at highest extent of gelation

Page 11: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Percolation theory and scaling near the critical gel point

11

cp p

cp p

cp p

ct t

ct t

ct t

c c

c c

t t p p

t p

Distance fromcritical point

Winter, H. H. and Mours, M. Adv Polym Sci (1999)

Scaling of static properties

Scaling of dynamic properties

max

0~ ( )k

cp p

~ ( )c

zeG p p

~max

yL

( )

0~G ~k z y

e maxy z k

0 ~ zeJ

( ) nG t St

@max

t

~ ~ ~z n yne maxG /n z y

Gel fraction (or probability of being in the infinite cluster)

Weight averaged MW (or degree of polymerization)

~ )(c

G p p

(~ )w c

DP p p

Typical cluster radius ~ )(cp p

~( ) nJ t t

Page 12: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Percolation theory and scaling near the critical gel point

12

0 ~ zeJ

Equilibrium compliance

~ yL

Longest relaxation time

/n z y

Acrylamide

Peptide 0.6 0.02n

0.55 0.03n

2( ()~ ) ~ nJ r t tt

Consistent with Rouse dynamics (?)2/3n

Page 13: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Origin of the n=2/3 scaling

13J. E. Martin, Adolf, D. and Wilcoxon, J. P. PRL (1988)

Based on a percolation model for gelation

Lattice dimension: dBond probability: p

Cluster size distribution: (1 / ) /( ) f z

d d m MeN m m

z-average cluster mass (or number):

Fractal dimension: df

Cluster radius: R

Cluster mass (or # of monomers): m

Radius of cluster of mass Mz: 𝜉

Goal: compute relaxation times for a solution or melt of branched polymers

First consider dynamics of single cluster

Relaxation time of a polymer chain : 2~ /r tR D

Assuming self-similar Brownian dynamics, relaxation timesof a linear or branched polymer of m monomers: ~ (1 )

Rjj j m

Cluster diffusion coefficient: ~ btD R

Relaxation time of shortest mode: 0~

m

(2 )/

0~( / ) (1 )fb d

jj m j m

Shear relaxation modulus: )

1

/ /(2

0~ ~ / (( ) )j f

mt d b

m RG dt m t tt e

Zimm

Rouse

Stokes-Einstein: 2~ / dt BD k T R

/2 ( )~ / fd d

mb d G t m t

0~ /t BD k T m

Individual monomer friction

~ ~f fd d

zM m R

0~ / fd

B fRk T b d

/(2 )( )~ / f fd d

mG t m t

Theta solvent:

1/2( )~ /mG t m t

1/ 2fd

Page 14: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Origin of the n=2/3 scaling

J. E. Martin, Adolf, D. and Wilcoxon, J. P. PRL (1988)

Based on a percolation model for gelation

Lattice dimension: dBond probability: p

Cluster size distribution: (1 / ) /( ) f z

d d m MeN m m

z-average cluster mass (or number):

Fractal dimension: df

Cluster radius: R

Cluster mass (or # of monomers): m

Radius of cluster of mass Mz: 𝜉

Goal: compute relaxation times for a solution or melt of branched polymers

Need to understand diffusion in the reaction bath – requires a size dependent viscosity

~ ~f fd d

zM m R

Assume clusters larger than correlation length feel bulk viscosity

Assume clusters smaller than correlation length feel a finite viscosity independent of (since diverges)

b

0

/( )~ ( / )~ kb

R f R R

Describe diffusion of a cluster by Stokes Einstein relationship in d dimensions: 2( ) /6 dt BR k T RD

Hence we obtain: 2 /( )~1/ d ktR RD

ZimmRouse

~1/ fd

tD R 2~1/ d

tD R

2 /2f

d k dd

Use percolation estimate 2

2f

dd

0 1.35k

RouseZimm

and 0.9

6

20 /

dk

Page 15: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Origin of the n=2/3 scaling

J. E. Martin, Adolf, D. and Wilcoxon, J. P. PRL (1988)

Based on a percolation model for gelation

Lattice dimension: dBond probability: p

Cluster size distribution: (1 / ) /( ) f z

d d m MeN m m

z-average cluster mass (or number):

Fractal dimension: df

Cluster radius: R

Cluster mass (or # of monomers): m

Radius of cluster of mass Mz: 𝜉

Goal: compute relaxation times for a solution or melt of branched polymers

For a single branched polymer:

~ ~f fd d

zM m R

/ /(2 ) (

1

)/~ ~ / ~ /( ) j f f f

mdt d b k d

mde tG t m t mt

2

f f

f

kd d

b d

For the macroscopic sample:

( )/( ) ln / lnf fd k d

mH t d t m t d t

and

Relaxation time spectrum

/( )( ) ( ) ( ) ( )~1/ d d km

H t N m H t H t t

nd

d k

ZimmRouse

1n

0k 1.35k

0.67n

Page 16: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Actually the percolation scaling for acrylamide isn’t perfect…

16

0z

1.4y

og( 0 0l ) p c

c

p p

p

since

For 1/L

f

log( )

2og( )l x

1/ f

1

L

a

bSince this is normal diffusion 2x C

2 ( )shift

x C a

2 ( )shift

x C b b a 0

~1/ ~ y ke

b J

Theory has

But if “only” changing0

0~1/ ~ k

eb JSo shifting along the abscissa gives

0,~ ~ka b

3 1.7 1.4k y z

0 ~ zeJ

~ yL

~( ) nJ t ty z k

/n z y

Page 17: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Experimental results for heparin

17No longer Rouse dynamics?

Page 18: Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 · Microrheology of the liquid-solid transition during gelation Travis. H. Larsen and Eric M. Furst, PRL, 100(14), 2008 Caroline

Origin of the heparin scaling n≈0.4

18

J. E. Martin, Adolf, D. and Wilcoxon, J. P. PRL (1988)Stauffer, D. et al. Adv Polym Sci (1982)

Percolation model for gelation

Lattice dimension: dBond probability: p

Fractal dimension: df

Critical lattice dimension d=6

Flory-Stockmayer/ mean-field model for gelation

Bethe lattice

nd

d k

06

/ 02

dk k

1n

polyacrylamide heparin

High MW between crosslinks

When long linear chains form during the gelation process, they can contribute Rouse relaxation modes, which could tend to reduce 0.5n


Related Documents