YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Lesson 15: Linear Approximation and Differentials

. . . . . .

Section3.8LinearApproximationand

Differentials

Math1a

March10, 2008

Announcements

◮ Midtermisgraded. Cometoofficehoursifyoudon’thaveitbackyet.

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

.

.Image: Flickruser cobalt123

Page 2: Lesson 15: Linear Approximation and Differentials

. . . . . .

Announcements

◮ Midtermisgraded. Cometoofficehoursifyoudon’thaveitbackyet.

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

Page 3: Lesson 15: Linear Approximation and Differentials

. . . . . .

Outline

Thelinearapproximationofafunctionnearapoint

Examples

Page 4: Lesson 15: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 5: Lesson 15: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 6: Lesson 15: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 7: Lesson 15: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 8: Lesson 15: Linear Approximation and Differentials

. . . . . .

Outline

Thelinearapproximationofafunctionnearapoint

Examples

Page 9: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0. Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈ 0.0198.

Page 10: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0.

Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈ 0.0198.

Page 11: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0. Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈ 0.0198.

Page 12: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0. Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈

0.0198.

Page 13: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0. Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈ 0.0198.

Page 14: Lesson 15: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

Solution

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 15: Lesson 15: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

Solution

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 16: Lesson 15: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

Solution

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=

36136

.

Page 17: Lesson 15: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

Solution

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 18: Lesson 15: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

If y = f(x),

thendydx

= f′(x), and dy = f′(x)dx.

. .x

.y

.x .x + ∆x

.dx = ∆x

.∆y.dy

Then ∆y ≈ dy = f′(x0)dx near x0.

Page 19: Lesson 15: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

If y = f(x), thendydx

= f′(x),

and dy = f′(x)dx.

. .x

.y

.x .x + ∆x

.dx = ∆x

.∆y.dy

Then ∆y ≈ dy = f′(x0)dx near x0.

Page 20: Lesson 15: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

If y = f(x), thendydx

= f′(x), and dy = f′(x)dx.

. .x

.y

.x .x + ∆x

.dx = ∆x

.∆y.dy

Then ∆y ≈ dy = f′(x0)dx near x0.

Page 21: Lesson 15: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

If y = f(x), thendydx

= f′(x), and dy = f′(x)dx.

. .x

.y

.x .x + ∆x

.dx = ∆x

.∆y.dy

Then ∆y ≈ dy = f′(x0)dx near x0.

Page 22: Lesson 15: Linear Approximation and Differentials

. . . . . .

Anotherexample

ExampleDropa1kgballofftheroofoftheScienceCenter(30mhigh). Weusuallysaythatafallingobjectfeelsaforce F = mg fromgravity.

Infact, theforcefeltis

F(r) =GMmr2

,

where M isthemassoftheearthand r isthedistancefromthecenteroftheearthtotheobject. G isaconstant.

At r = re theforcereallyisGMmr2e

= mg. Whatisthemaximum

errorinmakingthisapproximation? Therelativeerror? Thepercentageerror?

Note:re = 6378.1 km, M = 5.9724× 1024 kg, andG = 6.6742× 10−11 N ·m2 · kg−2

Page 23: Lesson 15: Linear Approximation and Differentials

. . . . . .

Anotherexample

ExampleDropa1kgballofftheroofoftheScienceCenter(30mhigh). Weusuallysaythatafallingobjectfeelsaforce F = mg fromgravity.Infact, theforcefeltis

F(r) =GMmr2

,

where M isthemassoftheearthand r isthedistancefromthecenteroftheearthtotheobject. G isaconstant.

At r = re theforcereallyisGMmr2e

= mg. Whatisthemaximum

errorinmakingthisapproximation? Therelativeerror? Thepercentageerror?

Note:re = 6378.1 km, M = 5.9724× 1024 kg, andG = 6.6742× 10−11 N ·m2 · kg−2

Page 24: Lesson 15: Linear Approximation and Differentials

. . . . . .

Anotherexample

ExampleDropa1kgballofftheroofoftheScienceCenter(30mhigh). Weusuallysaythatafallingobjectfeelsaforce F = mg fromgravity.Infact, theforcefeltis

F(r) =GMmr2

,

where M isthemassoftheearthand r isthedistancefromthecenteroftheearthtotheobject. G isaconstant.

At r = re theforcereallyisGMmr2e

= mg. Whatisthemaximum

errorinmakingthisapproximation? Therelativeerror? Thepercentageerror?

Note:re = 6378.1 km, M = 5.9724× 1024 kg, andG = 6.6742× 10−11 N ·m2 · kg−2

Page 25: Lesson 15: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

◮√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2.

So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

◮ Thisisabetterapproximationsince (17/12)2 = 289/144

◮ Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 26: Lesson 15: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

◮√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2. So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

◮ Thisisabetterapproximationsince (17/12)2 = 289/144

◮ Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 27: Lesson 15: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

◮√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2. So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

◮ Thisisabetterapproximationsince (17/12)2 = 289/144

◮ Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 28: Lesson 15: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

◮√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2. So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

◮ Thisisabetterapproximationsince (17/12)2 = 289/144

◮ Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 29: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

.

.2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 30: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

.

.2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 31: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 32: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 33: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 34: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 35: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 36: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2).•

.(2, 17/12)


Related Documents