Top Banner
. . . . . . Section 3.8 Linear Approximation and Differentials Math 1a March 10, 2008 Announcements Midterm is graded. Come to office hours if you don’t have it back yet. Problem Sessions Sunday, Thursday, 7pm, SC 310 Office hours Tues, Weds, 2–4pm SC 323 . . Image: Flickr user cobalt123
36

Lesson 15: Linear Approximation and Differentials

Jul 01, 2015

Download

Technology

The tangent line to a graph at a point is the best possible linear approximation that agrees at that point. We can use it for estimation and error control.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 15: Linear Approximation and Differentials

. . . . . .

Section3.8LinearApproximationand

Differentials

Math1a

March10, 2008

Announcements

◮ Midtermisgraded. Cometoofficehoursifyoudon’thaveitbackyet.

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

.

.Image: Flickruser cobalt123

Page 2: Lesson 15: Linear Approximation and Differentials

. . . . . .

Announcements

◮ Midtermisgraded. Cometoofficehoursifyoudon’thaveitbackyet.

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

Page 3: Lesson 15: Linear Approximation and Differentials

. . . . . .

Outline

Thelinearapproximationofafunctionnearapoint

Examples

Page 4: Lesson 15: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 5: Lesson 15: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 6: Lesson 15: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 7: Lesson 15: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 8: Lesson 15: Linear Approximation and Differentials

. . . . . .

Outline

Thelinearapproximationofafunctionnearapoint

Examples

Page 9: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0. Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈ 0.0198.

Page 10: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0.

Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈ 0.0198.

Page 11: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0. Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈ 0.0198.

Page 12: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0. Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈

0.0198.

Page 13: Lesson 15: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate ln(1.02).

SolutionWeknow ln(1) = 0, so ln(1.02) shouldnotbetoofarfrom 0. Infact

ln(1.02) ≈ ln(1) +ddx

ln x∣∣∣∣x=0

(0.02)

= 0 + 1(0.02) = 0.02.

Calculatorcheck: . . . ln(1.02) ≈ 0.0198.

Page 14: Lesson 15: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

Solution

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 15: Lesson 15: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

Solution

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 16: Lesson 15: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

Solution

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=

36136

.

Page 17: Lesson 15: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

Solution

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 18: Lesson 15: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

If y = f(x),

thendydx

= f′(x), and dy = f′(x)dx.

. .x

.y

.x .x + ∆x

.dx = ∆x

.∆y.dy

Then ∆y ≈ dy = f′(x0)dx near x0.

Page 19: Lesson 15: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

If y = f(x), thendydx

= f′(x),

and dy = f′(x)dx.

. .x

.y

.x .x + ∆x

.dx = ∆x

.∆y.dy

Then ∆y ≈ dy = f′(x0)dx near x0.

Page 20: Lesson 15: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

If y = f(x), thendydx

= f′(x), and dy = f′(x)dx.

. .x

.y

.x .x + ∆x

.dx = ∆x

.∆y.dy

Then ∆y ≈ dy = f′(x0)dx near x0.

Page 21: Lesson 15: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

If y = f(x), thendydx

= f′(x), and dy = f′(x)dx.

. .x

.y

.x .x + ∆x

.dx = ∆x

.∆y.dy

Then ∆y ≈ dy = f′(x0)dx near x0.

Page 22: Lesson 15: Linear Approximation and Differentials

. . . . . .

Anotherexample

ExampleDropa1kgballofftheroofoftheScienceCenter(30mhigh). Weusuallysaythatafallingobjectfeelsaforce F = mg fromgravity.

Infact, theforcefeltis

F(r) =GMmr2

,

where M isthemassoftheearthand r isthedistancefromthecenteroftheearthtotheobject. G isaconstant.

At r = re theforcereallyisGMmr2e

= mg. Whatisthemaximum

errorinmakingthisapproximation? Therelativeerror? Thepercentageerror?

Note:re = 6378.1 km, M = 5.9724× 1024 kg, andG = 6.6742× 10−11 N ·m2 · kg−2

Page 23: Lesson 15: Linear Approximation and Differentials

. . . . . .

Anotherexample

ExampleDropa1kgballofftheroofoftheScienceCenter(30mhigh). Weusuallysaythatafallingobjectfeelsaforce F = mg fromgravity.Infact, theforcefeltis

F(r) =GMmr2

,

where M isthemassoftheearthand r isthedistancefromthecenteroftheearthtotheobject. G isaconstant.

At r = re theforcereallyisGMmr2e

= mg. Whatisthemaximum

errorinmakingthisapproximation? Therelativeerror? Thepercentageerror?

Note:re = 6378.1 km, M = 5.9724× 1024 kg, andG = 6.6742× 10−11 N ·m2 · kg−2

Page 24: Lesson 15: Linear Approximation and Differentials

. . . . . .

Anotherexample

ExampleDropa1kgballofftheroofoftheScienceCenter(30mhigh). Weusuallysaythatafallingobjectfeelsaforce F = mg fromgravity.Infact, theforcefeltis

F(r) =GMmr2

,

where M isthemassoftheearthand r isthedistancefromthecenteroftheearthtotheobject. G isaconstant.

At r = re theforcereallyisGMmr2e

= mg. Whatisthemaximum

errorinmakingthisapproximation? Therelativeerror? Thepercentageerror?

Note:re = 6378.1 km, M = 5.9724× 1024 kg, andG = 6.6742× 10−11 N ·m2 · kg−2

Page 25: Lesson 15: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

◮√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2.

So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

◮ Thisisabetterapproximationsince (17/12)2 = 289/144

◮ Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 26: Lesson 15: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

◮√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2. So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

◮ Thisisabetterapproximationsince (17/12)2 = 289/144

◮ Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 27: Lesson 15: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

◮√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2. So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

◮ Thisisabetterapproximationsince (17/12)2 = 289/144

◮ Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 28: Lesson 15: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

◮√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2. So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

◮ Thisisabetterapproximationsince (17/12)2 = 289/144

◮ Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 29: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

.

.2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 30: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

.

.2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 31: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 32: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 33: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 34: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 35: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2)

.•.(2, 17/12)

Page 36: Lesson 15: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.•.(9/4, 3/2).•

.(2, 17/12)