YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Fluids and Electrolytes Acids and Bases

Fluids  and  Electrolytes  Acids  and  Bases  

Principles  of  Surgery  

July  25,  2012  

May  Tee,  MD,  MPH  PGY-­‐5  General  Surgery  

Page 2: Fluids and Electrolytes Acids and Bases

Outline  

•  Fluids  and  Electrolytes  – Homeostasis  (normal  physiology)  – Effects  of  surgery  (physiologic  stress)  and  implicaKons  for  fluid  and  electrolyte  shiMs  

– Derangements  of  fluid  /  electrolyte  balance  (pathophysiology)  and  management  

•  Acids  and  Bases  – Physiology  – Pathophysiology  

Page 3: Fluids and Electrolytes Acids and Bases

Fluids  and  Electrolytes  

Overview  with  Cases  

Page 4: Fluids and Electrolytes Acids and Bases

Total  Body  Water  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 5: Fluids and Electrolytes Acids and Bases

Water  DistribuKon  

TBW  

 (60%)  

ECF  -­‐  1/3  

(20%)  

IntersKKal  3/4  (15%)  

Intravascular  1/4  (5%)  

ICF  –  2/3  

(40%)  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 6: Fluids and Electrolytes Acids and Bases

Electrolyte  DistribuKon  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 7: Fluids and Electrolytes Acids and Bases

Nephrology  for  Surgeons  

•  Kidneys  regulate  constant  volume  and  composiKon  of  body  fluids.  –  ReabsorpKon  /  excreKon  of  sodium    –  RegulaKon  of  water  re-­‐uptake  

•  Homeostasis  maintained  despite  variable  intake  of  sodium  and  water.  

•  Analysis  of  urine  can  someKmes  give  insight  on  disorders  of  fluids  /  electrolytes.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 8: Fluids and Electrolytes Acids and Bases

Effect  of  Surgery  

•  RetenKon  of  fluids  and  electrolytes  is  driven  by  the  stress  response  induced  by  surgery:  catecholamines  and  counter-­‐regulatory  hormones  are  upregulated.  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 9: Fluids and Electrolytes Acids and Bases

Key  Hormones  

•  CorKsol  –  Secreted  by  adrenal  cortex,  sKmulated  by  ACTH  produced  in  

anterior  pituitary  due  to  decreased  intravascular  volume,  pressure,  and  sodium.  

•  Renin-­‐Angiotensin-­‐System    –  Renin  produced  by  juxtoglomerular  complex  of  kidney  in  

response  to  decreased  renal  blood  flow,  which  generates  AI  that  converts  to  AII  by  lungs.  

•  Aldosterone  –  Produced  by  adrenal  cortex  in  response  to  AII  to  sKmulate  renal  

recovery  of  Na  and  excreKon  of  K.  •  AnK-­‐DiureKc  Hormone  

–  Produced  by  the  pituitary  to  re-­‐absorb  water  in  kidneys,  effect  usually  wears  off  aMer  about  2  days.  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 10: Fluids and Electrolytes Acids and Bases

Clinical  ImplicaKons  

•  Decreased  urine  output  immediately  post-­‐operaKve  is  part  of  the  physiological  response  to  stress.  

•  Problems  may  arise  when  paKents  have  underlying  cardio-­‐respiratory,  renal,  and  /  or  hepaKc  dysfuncKon  who  cannot  handle  major  fluid  and  electrolyte  shiMs.  

•  These  paKents  need  to  be  resuscitated  with  appropriate  fluids  and  electrolytes.  How?    

Page 11: Fluids and Electrolytes Acids and Bases

Case  

•  70  year-­‐old  male  undergoing  open  AAA  repair.  

•  PMHx:  CAD,  PVD,  HTN,  Hyperlipidemia,  DM.  

•  Meds:  ASA,  Ramipril,  Metoprolol,  AtorvastaKn,  Meeormin.  

•  All:  None.  

Page 12: Fluids and Electrolytes Acids and Bases

IV  Fluids  

What  to  order?  •  How  much  fluid?  •  What  kind  of  fluid?  •  Colloid  versus  crystalloid?  •  How  much  electrolyte?  •  What  to  do  when  there  are  problems  with  fluid  and  /  or  electrolyte  status?  

Page 13: Fluids and Electrolytes Acids and Bases

Water  Requirements  

•  For  a  70  kg  person,  minimum  obligate  water  requirement  is  about  800  mL  /  day,  which  would  yield  500  mL  of  urine.  

•  Normal  intake:  2500  ml  (1500  ml  liquids,  700  ml  solids,  300  ml  endogenous).  

•  Normal  output:  1400-­‐2300  ml  (urine  800-­‐1500  ml,  stool  250  ml,  600-­‐900  ml  insensible  losses).  

Source:    Clinician’s  Pocket  Reference,  10th  Ed.  (2004)  

Page 14: Fluids and Electrolytes Acids and Bases

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 15: Fluids and Electrolytes Acids and Bases

How  Much  Water  is  Needed?  

•  These  are  basic  requirements  

•  4-­‐2-­‐1  Rule  (see  box  from  Sabiston)  –  Can  use  for  kids  –  70  Kg  adult:  110  ml  /  hr  or  2640  ml  /  24  hr.  

•  EsKmate  for  adults:  35  ml  /  Kg  –  70  Kg  adult:  2450  ml  /  24  hr  or  100  ml  /  hr  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 16: Fluids and Electrolytes Acids and Bases

Crystalloids  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

(+  20  mEq  KCl  =  2  mEq    K)  

(provides  50g  glucose)  

Page 17: Fluids and Electrolytes Acids and Bases

Ringer’s  versus  D5  ½  NS  with  KCl  

Ringer’s  •  Fluid  shiMs  in  major  surgery  

are  due  to  leakage  of  intravascular  fluid  into  the  intersKKal  space.  

•  What  is  lost  is  PLASMA.  •  The  crystalloid  that  is  most  

similar  to  plasma  is  Ringer’s  (also  Plasmalyte).  

•  However,  the  lacKc  acid  buffer  may  have  detrimental  effects.  

D5  ½  NS  with  20  mEq  KCl  •  Stress  from  surgery  induces  

catabolism  and  muscle  breakdown.    

•  IV  glucose  slows  this  down  by  providing  some  basal  energy  needs.  

•  For  a  70  Kg  pt  taking  2400  ml  /  24  hrs,  it  provides:  –  184  mEq  Na  (140  mEq  req)  –  48  mEq  K  (35  mEq  req)  –  120g  Glucose  (100g  needed  to  

spare  muscle  breakdown)  

Page 18: Fluids and Electrolytes Acids and Bases

Case  

•  45  year-­‐old  male  undergoing  elecKve  R  Hemi,  R  nephrectomy,  R  adrenalectomy  for  retroperitoneal  sarcoma  excision.  

•  PMHx:  Healthy.  •  Meds:  None.  •  All:  None.  

•  What  is  a  good  peri-­‐op  IV  fluid?  

•  What  rate  would  you  run  this  guy  if  he  were  70  kg?  

Page 19: Fluids and Electrolytes Acids and Bases

Case  

•  55  year-­‐old  female  with  SBO,  being  admined  with  goal  to  trial  non-­‐operaKve  management  first.  

•  PMHx:  Hypertension,  CAD.  

•  Meds:  Ramipril  /  HCTZ,  ASA,  AtorvastaKn.  

•  All:  None.  

•  Would  you  bolus  this  paKent  if  she  looked  dry  given  CAD?  

•  What  IV  fluid  would  you  use  and  how  much?  

•  What  about  NG  losses  –  would  you  replace  them?  

Page 20: Fluids and Electrolytes Acids and Bases

Colloids  

•  Unlike  crystalloids,  colloids  exert  enough  oncoKc  pressure  to  stay  within  the  intravascular  space  rather  than  redistribute  to  the  intersKKal  space.  

•  Two  types  of  colloids:  –  (1)  Biologic:  red  blood  cells,  

platelets,  fresh  frozen  plasma,  albumin.  

–  (2)  SyntheKc:  starch  (pentaspan,  voluven)  or  glucose  (dextran)  polymers.  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 21: Fluids and Electrolytes Acids and Bases

Case  

•  55  year-­‐old  paKent  with  Hep  B  cirrhosis,  POD  #1  segmental  liver  resecKon  for  HCC.  

•  Called  re:  low  urine  output.  

•  PMHx:  Hep  B  cirrhosis,  portal  hypertension.  

•  Meds:  Spironolactone,  Propranolol,  Lactulose.  

•  All:  None.  

•  What  maintenance  IV  fluid  might  be  appropriate?  

•  What  fluid  could  be  used  to  bolus  the  paKent?  

Page 22: Fluids and Electrolytes Acids and Bases

Colloids  versus  Crystalloids  

Page 23: Fluids and Electrolytes Acids and Bases

Case  

•  18  year-­‐old,  previously  healthy  female,  admined  earlier  today  for  30%  TBSA  burns  from  apartment  fire.  

•  Called  re:  low  urine  output.  

•  What  is  opKmal  urine  output?  

•  Should  we  bolus  the  paKent?  

•  What  IV  Fluid  and  how  much?  

Page 24: Fluids and Electrolytes Acids and Bases

Glucose  /  Electrolyte  Requirements  

•  Sodium:  80–120  mEq/d  (children,  3–4  mEq/kg/24  h)  

•  Potassium:  50–100  mEq/d  (children,  2–3  mEq/kg/24  h)  

•  Calcium:  1–3  g/d,  most  of  which  is  secreted  by  the  GI  tract  

•  Magnesium:  20  mEq/d  

•  Glucose:  100–200  g/d  (65–75  g/d/m2)  

Source:    Clinician’s  Pocket  Reference,  10th  Ed.  (2004)  

Page 25: Fluids and Electrolytes Acids and Bases

Electrolyte  AbnormaliKes  

•  No  perfect  IV  soluKon  exists  but  you  can  choose  the  best  one  available  based  on  what  the  paKent  needs  (e.g.  replace  what  is  lost).  

•  Electrolyte  can  be  too  high  

•  Electrolyte  can  be  too  low  

Page 26: Fluids and Electrolytes Acids and Bases

Hyponatremia  

•  Low  sodium:  very  common  problem,  ADH  is  key.  •  In  addiKon  to  thinking  of  the  problem  based  on  volume,  consider  thinking  of  it  based  on  physiology:  –  Appropriate  /  AdapKve:  recall  that  the  stress  response  in  surgery  upregulates  ADH,  thus,  you  will  see  this  as  a  surgeon  in  at  least  some  of  your  post-­‐op  pts.    

–  Inappropriate:  SIADH  (Syndrome  of  Inappropriate  ADH),  might  see  in  head  trauma,  lung  cancer,  paraneoplasKc  syndromes.  

– MaladapKve:  paKents  with  heart,  liver,  and  kidney  failure  have  decreased  effecKve  intravascular  circulaKng  volume,  which  leads  to  increased  ADH  secreKon  that  does  not  address  the  underlying  pathology.  

Page 27: Fluids and Electrolytes Acids and Bases

Hyponatremia  

•  DefiniKon  based  on  severity  of  Na  deficit  –  Mild  (130  to  138  mEq/L)  –  Moderate  (120  to  130)  –  Severe  (<120  mEq/liter)  

•  Classify  by  volume  status  –  Hypovolemic  (e.g.  burns,  

open  wounds,  sweaKng,  GI/renal  losses)  

–  Euvolemic  (e.g.  SIADH  –  look  at  brain  and  lungs)  

–  Hypervolemic  (e.g.  CHF,  cirrhosis)  

•  Treatment  –  Pseudo-­‐Hyponatremia:  

treat  underlying  cause  (e.g.  hyperglycemia,  which  dilutes  extracellular  sodium)  

–  Hypovolemic:  fluid  resuscitate  (e.g.  normal  saline  boluses)  

–  Euvolemic:  water  restrict  –  Hypervolemic:  diurese  (e.g.  

furosemide)  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 28: Fluids and Electrolytes Acids and Bases

Central  PonKne  Myelinolysis  

•  This  is  a  devastaKng  iatrogenic  complicaKon  of  correcKng  hyponatremia  too  quickly.  

•  The  pons  swells  leading  to  brainstem  dysfuncKon.  

•  Rate  of  Serum  Na  rise  should  be  <  0.5  mEq/L  per  hour  and  <  12  mEq  /  L  over  24  hours.  

•  Example  order:  3%  hypertonic  saline  @  10-­‐30  cc  /  hr  with  electrolytes  and  neurovitals  checked  q  1-­‐2  h.  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 29: Fluids and Electrolytes Acids and Bases

Hypernatremia  

•  Na  >  145  mEq  /  L  (up  to  159  mEq  /  L  is  well-­‐tolerated).  

•  Treat  by  volume  status:  –  Hypovolemic:  fluid  

resuscitate  (NS,  RL,  or  D51/2NS)  then  correct  free  water  deficit.  

–  Euvolemic:  correct  free  water  deficit.  

–  Hypervolemic:  consider  diuresis  then  correct  free  water  deficit.  

•  How  much  free  water  to  give  back  is  based  on  the  free  water  deficit:  

Free  H20  deficit  (L)  =    [(Serum  Na  –  140)  /  140]  x  

TBW  

TBW  =  Total  Body  Water  (esKmate  from  body  weight  in  Kg:  50%  for  men,  40%  for  women)  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010);  Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 30: Fluids and Electrolytes Acids and Bases

Cerebral  Edema  and  HerniaKon  

•  Again,  do  not  correct  Na  too  quickly.  

•  Acute  hypernatremia:  correct  at  rate  of  1  mEq  /  hr.    

•  Chronic  hypernatremia:  correct  more  slowly  at    rate  of  0.7  mEq  /  hr.    

•  PO  or  IV  free  water  replacement  is  okay.    

•  Example  order:  D5W  or  D51/2NS  @  50-­‐100  cc  /  hr  with  electrolytes  and  neurovitals  checked  q  1-­‐2h.  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 31: Fluids and Electrolytes Acids and Bases

Sodium  Formulas  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 32: Fluids and Electrolytes Acids and Bases

Potassium  

•  While  sodium  is  the  main  extracellular  caKon,  potassium  is  the  main  intracellular  caKon  (98%  is  in  cells).  

•  Excreted  by  kidneys.  •  Acid-­‐base  balance  also  affects  extracellular  potassium  due  to  H+/K+  ATP  ion  exchanger.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 33: Fluids and Electrolytes Acids and Bases

Hypokalemia  

•  K  <  3.5  mmol  /  L  •  EKology:  GI  /  GU  losses,  

meds,  low  Mg.  •  Immediately  post-­‐op  is  

rare  since  cell  lysis  can  predispose  to  hyperkalemia.  

•  Aldosterone  (secreted  in  stress  response  from  surgery)  will  waste  K  in  favor  of  reabsorbing  Na.    

•  How  to  replace  K:  –  Oral:  KCl  20  mEq  or  40  mEq  

up  to  3  doses  per  day  (can  be  liquid  or  tablet  form).  

–  IV:  20  mEq  or  40  mEq  KCl  in  250cc  or  500cc  bag  of  D5W  or  NS  infused  over  at  least  4  hours.  

–  Remember  to  re-­‐check  potassium  aMer  replacement  to  ensure  adequate  therapy  (at  least  2  hours  aMer  replacement).  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 34: Fluids and Electrolytes Acids and Bases

Hyperkalemia  

•  PotenKally  life-­‐threatening  (one  of  the  H’s/T’s  for  cardiac  arrest!).  

•  Risk  factors:  renal  failure,  burns  and  trauma.  

•  Acute  life-­‐threatening  treatment:  –  Insulin  10-­‐20  units  with  1  amp  

D50W  –  CaCl  1  amp  IV  –  NaHCO3  1  amp  IV  –  NS  bolus  –  Hemodialysis    

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 35: Fluids and Electrolytes Acids and Bases

Hyperkalemia  Treatment  OpKons  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 36: Fluids and Electrolytes Acids and Bases

Magnesium  

•  Present  in  bones  and  cells,  important  role  in  cellular  metabolism.  –  Co-­‐factor  in  many  enzymaKc  reacKons.  – Major  role  in  acKvity  of  electrically  excitable  Kssues  .  –  Regulates  movement  of  Ca  into  smooth  muscle  cells.  

•  Normal  range:  1.5-­‐2.5  mEq  /  L.  •  Excreted  by  kidneys.  •  Metabolism  closely  related  to  Potassium.  •  Serum  Mg  =  Total  body  Mg.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 37: Fluids and Electrolytes Acids and Bases

Disorders  of  Magnesium  

Hypomagnesemia  

•  EKology:  GI/GU  losses,  malabsorpKon,    Ca,    K,  poor  intake.  

•  Treatment:  –  MgSO4  2g  or  5g  IV  qD  x  up  to  

3  days  or  

–  Milk  of  Magnesia  15  cc  qD  x  3  days  (hold  for  diarrhea)  

–  Re-­‐check  Mg  daily  for  3  days  to  ensure  adequate  replacement.  

Hypermagnesemia  

•  EKology:  usually  renal  failure  (inability  of  kidneys  to  clear  excess  Mg).  

•  Treatment:  –  NS  IV  infusion  to  promote  

renal  excreKon  of  Mg.  

–  CaCl  IV  to  antagonize  neuromuscular  effects  of  Mg.  

–  May  need  hemodialysis  with  ECG  changes,  somnolence,  coma.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010);  Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 38: Fluids and Electrolytes Acids and Bases

Calcium  

•  99%  found  in  bones,  only  1%  in  extra-­‐cellular  fluid.  

•  Important  role  in  neuromuscular  funcKon  and  enzymaKc  processes.  

•  Normal  serum  Ca:  4.2-­‐5.2  mEq  /  L  (1.0-­‐1.5  mmol  /  L).  

•  Mediators  of  Ca  metabolism:  PTH  (parathyroid),  calcitonin  (thyroid),  vitamin  D  (kidneys  /  diet  /  sun).  

•  Serum  Ca  measurements  are  affected  by  acid-­‐base  status  and  albumin  (  H  /  alkalemia  and    albumin  will  lead  to    Ca).  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 39: Fluids and Electrolytes Acids and Bases

Hypocalcemia  

•  EKology:    PTH,    Mg,  pancreaKKs,  renal  failure,  trauma,  rhadbomyolysis,  necroKzing  fasciiKs.  

•  Symptoms:  hyperacKve  DTR,  Chvostek  sx,  cramps.  

•  Treatment:  –  If  symptomaKc:  Calcium  gluconate  

2g  IV  over  1h  or  CaCl  1  amp  IV  x  1  –  If  not  severe:  CaCO3  (TUMS)  

500-­‐1500  mg  PO  QID  –  Re-­‐check  Ca  q6h  if  severe  or  daily  

for  3  days.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010);  Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 40: Fluids and Electrolytes Acids and Bases

Hypercalcemia  

•  EKology:    PTH  (primary  or  ectopic),  bone  mets,    Vit  D,  sarcoidosis,  milk-­‐alkali  sx,  thiazides,  prolonged  immobilizaKon.  

•  Moans,  bones,  stones  and  psychological    overtones.  

•  Treatment:  –  IV  NS  and  Furosemide  to  

increase  renal  excreKon.  –  Calcitonin  and  

bisphosphonates  an  opKon.  –  Tx  underlying  pathology.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010);  Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 41: Fluids and Electrolytes Acids and Bases

Phosphate  

Physiology  

•  Primarily  a  consKtuent  of  bone  (metabolism  closely  related  with  Ca).  

•  Important  intracellular  funcKon  (ATP  and  DNA  require  phosphate,  important  in  surgical  paKents  for  Kssue  healing).  

•  ExcreKon  is  by  the  kidneys  and  mediated  by  PTH.  

Pathophysiology  /  Treatment  •  Hypophosphatemia  

–  EKology:    PTH,  poor  diet,  refeeding  syndrome  (neuromuscular  effects  including  cardiac  death).  

–  Tx:  Potassium  or  Sodium  Phosphate  15  mmol  IV  q8h  x  2-­‐3  doses.  PO  form  also  available.  Re-­‐check  levels.  

•  Hyperphosphatemia  –  EKology:  usually  renal  dx.  –  Tx:  diuresis,  Al(OH)3,  HD.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010);  Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 42: Fluids and Electrolytes Acids and Bases

Case  

•  28  year-­‐old  male  involved  in  rollover  MVC  who  sustained  closed  head  injury.  Looks  euvolemic.  Urine  osmolality  >  serum  osmolality.  Urine  sodium  concentraKon  high.  Normal  thyroid,  adrenal,  and  renal  funcKon.  

•  Sodium  trending  down  and  hovering  around  125  mmol  /  L  range  –  what  could  we  do  to  prevent  this  from  going  down  further?  

Page 43: Fluids and Electrolytes Acids and Bases

Case  

•  55  year-­‐old  female  with  primary  hyperparathyroidism,  POD  #0  bilateral  neck  exploraKon  and  subtotal  parathyroidectomy  for  presumed  hyperplasia.  

•  Ca  6  hours  post-­‐op  =  0.9  mmol  /  L  without  symptoms.  

•  What  therapy  can  be  iniKated?  

Page 44: Fluids and Electrolytes Acids and Bases

Case  

•  65  year-­‐old  female,  POD  #  2  for  wide  excision  of  melanoma  on  chest  with  rotaKonal  flap  graM.  

•  Potassium  =  5.5  mmol  /  L.  No  ECG  changes.  Stable.  Cr  increased  from  80  at  baseline  to  150.  

•  Management?  

Page 45: Fluids and Electrolytes Acids and Bases

Acids  and  Bases  

Basic  Primer  

Page 46: Fluids and Electrolytes Acids and Bases

Acids  and  Bases  

•  Hendersen-­‐Hasselbach  EquaKon:  

H2O  +  CO2  <-­‐>  H2CO3  <-­‐>  H+  +  HCO3-­‐  

•  CO2  is  directly  proporKonal  to  H+.  

•  CO2  is  a  product  of  metabolism  that  is  removed  by  respiraKon.  

Page 47: Fluids and Electrolytes Acids and Bases

Normal  Values  

•  pH  =  7.36  –  7.44  (7.4)  •  PCO2  =  35  –  45  mmHg  (40)    •  PO2  =  >  80  mmHg      •  HCO3-­‐  =  21  –  25  mEq/L  (24)    •  Anion  Gap  =  10  +/-­‐  2      

•  ABG  report  of  results:    pH  /  PCO2  /  PO2  /  HCO3-­‐    

Page 48: Fluids and Electrolytes Acids and Bases

Approach  to  Acid/Base  Problems  

•  What  is  the  “emia”?  (ACIDemia  or  ALKALemia)  •  What  is  the  major  “osis”?  (4  Categories)    

•  Calculate  the  AG  for  metabolic  acidosis  

•  Is  there  a  superimposed  METABOLIC  disorder?  

•  Is  there  a  superimposed  RESPIRATORY  disorder?  

Page 49: Fluids and Electrolytes Acids and Bases

Acidemia  

•  Increased  H+  due  to:  

–  Increased  CO2  (Respiratory)  

         OR  

– Decreased  HCO3-­‐  (Metabolic)  

Page 50: Fluids and Electrolytes Acids and Bases

Alkalemia  

•  Decreased  H+  due  to:  

– Decreased  CO2  (Respiratory)  

         OR  

–  Increased  HCO3-­‐  (Metabolic)  

Page 51: Fluids and Electrolytes Acids and Bases

Anion  Gap  

•  Anion  Gap  (AG)  =  CaKons  -­‐  Anions  – CaKons  =  calcium  /  potassium  /  magnesium      

– Anions  =  proteins  /  acids  /  phosphates  /  sulfates    

•  Normal  AG  =  Na+  -­‐  (Cl-­‐  +  HCO3-­‐)  =  10  mEq/L  ±  2  

Page 52: Fluids and Electrolytes Acids and Bases

Increased  AG    (Metabolic  Acidosis)  

•  M  –  methanol    

•  U  –  uremia    •  D  –  DKA  /  ETOH  /starvaKon    •  P  –  paraldehyde  /phenformin    

•  I  –  iron  /  INH    •  L  –  lacKc  acidosis    •  E  –  ethylene  glycol    •  S  –  salicylates  

K – keytones

U – uremia

S – salicylates

M – methanol

A – other alcohols

L – lactate

Page 53: Fluids and Electrolytes Acids and Bases

Normal  AG    (Metabolic  Acidosis)  

•  Normal    Anion  Gap  =  bicarb  loss    •  Renal  loss    – RTA  I,  II,  IV    – Carbonic  anhydrase  inhibitors    – 1°  hyperparathyroidism    

•  GI  loss  Diarrhea    •  Aldosterone  deficiency  /  antagonism    

•  NS  fluid  resuscitaKon    

Page 54: Fluids and Electrolytes Acids and Bases

Metabolic  Acidosis  

•  Treatment:  – Treat  the  underlying  cause  – Sodium  bicarbonate  may  be  needed  

Page 55: Fluids and Electrolytes Acids and Bases

Example  

•  60  year-­‐old  female,  POD  #  3  from  radical  cystectomy  and  ileal  conduit  neobladder  reconstrucKon.  Febrile,  tachycardic  and  flushed  with  costovertebral  angle  tenderness.  

•  pH  /  PCO2  /  PO2  /  HCO3-­‐    

•  7.27  /  29  /  50  /  13  •  Na  –  138,  K  -­‐  5.0,  Cl  -­‐  102  

Page 56: Fluids and Electrolytes Acids and Bases

Metabolic  Alkalosis  

•  Physiologic  =  Volume  sensiKve/Cl-­‐  responsive          –  Cause:  volume  depleKon    –  Clue:  volume  depleKon    – Urine  Cl-­‐  <  15  mEq/L    

•  Pathologic  =  Volume  resistant/  Cl-­‐  resistant        –  Cause:    aldosterone  /  renin    –  Clue:  HTN,  K+  depleKon    – Urine  Cl-­‐  >  25  mEq/L    

•  Treatment:  –  Volume  Resuscitate  so  that  kidneys  can  start  wasKng  excess  HCO3

-­‐  

Page 57: Fluids and Electrolytes Acids and Bases

Respiratory  Acidosis  

•  Increased  PCO2  due  to  hypovenKlaKon  •  Causes:    – Pulmonary  disease    

– CNS  dysfuncKon    – Neuromuscular  disease    – Drug  induced  hypovenKlaKon  

•  Treatment:  treat  underlying  cause,  may  need  to  iniKate  mechanical  venKlaKon.  

Page 58: Fluids and Electrolytes Acids and Bases

Example  

•  25  year-­‐old  male,  POD  #0  from  R  Kbia  /  fibula  ORIF  on  PCA  hydromorphone.  Called  to  assess  decreased  LOC.  

•  pH  /  PCO2  /  PO2  /  HCO3-­‐    

•  7.30  /  50  /  90  /24  

•  What  is  the  acid/base  problem?  

Page 59: Fluids and Electrolytes Acids and Bases

Respiratory  Alkalosis  

•  Decreased  PCO2  due  to  hypervenKlaKon  

•  Cardiorespiratory  and  non-­‐cardiorespiratory  causes  

Page 60: Fluids and Electrolytes Acids and Bases

Respiratory  Alkalosis  

Cardiorespiratory  

•  Hypoxia    •  Early  restricKve  lung  disease    •  PE    •  Pneumonia    •  Mild  CHF    

•  Mechanical  venKlaKon    

Non-­‐Cardiorespiratory    

•  Fever    •  Sepsis    •  Drugs  (ASA)    •  Anxiety    •  CNS  disorders    •  Hyperthyroidism    

•  Pregnancy    •  Liver  failure  

Page 61: Fluids and Electrolytes Acids and Bases

CompensaKon  

Respiratory  

•  Respiratory  compensaKon  occurs  quickly  by  altering  respiratory  rate  /  panern.  

•  Metabolic  acidosis:  decreased  CO2    

•  Metabolic  alkalosis:  increased  CO2  

Metabolic  

•  Metabolic  compensaKon  occurs  more  slowly  via  kidneys  correct  acid-­‐base  abnormaliKes,  usually  from  primary  lung  disease.  

•  Chronic  respiratory  acidosis:  increased  HCO3

-­‐  

•  Chronic  respiratory  alkalosis:  decreased  HCO3

-­‐