Top Banner
Fluids and Electrolytes Acids and Bases Principles of Surgery July 25, 2012 May Tee, MD, MPH PGY5 General Surgery
61

Fluids and Electrolytes Acids and Bases

Feb 09, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Fluids and Electrolytes Acids and Bases

Fluids  and  Electrolytes  Acids  and  Bases  

Principles  of  Surgery  

July  25,  2012  

May  Tee,  MD,  MPH  PGY-­‐5  General  Surgery  

Page 2: Fluids and Electrolytes Acids and Bases

Outline  

•  Fluids  and  Electrolytes  – Homeostasis  (normal  physiology)  – Effects  of  surgery  (physiologic  stress)  and  implicaKons  for  fluid  and  electrolyte  shiMs  

– Derangements  of  fluid  /  electrolyte  balance  (pathophysiology)  and  management  

•  Acids  and  Bases  – Physiology  – Pathophysiology  

Page 3: Fluids and Electrolytes Acids and Bases

Fluids  and  Electrolytes  

Overview  with  Cases  

Page 4: Fluids and Electrolytes Acids and Bases

Total  Body  Water  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 5: Fluids and Electrolytes Acids and Bases

Water  DistribuKon  

TBW  

 (60%)  

ECF  -­‐  1/3  

(20%)  

IntersKKal  3/4  (15%)  

Intravascular  1/4  (5%)  

ICF  –  2/3  

(40%)  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 6: Fluids and Electrolytes Acids and Bases

Electrolyte  DistribuKon  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 7: Fluids and Electrolytes Acids and Bases

Nephrology  for  Surgeons  

•  Kidneys  regulate  constant  volume  and  composiKon  of  body  fluids.  –  ReabsorpKon  /  excreKon  of  sodium    –  RegulaKon  of  water  re-­‐uptake  

•  Homeostasis  maintained  despite  variable  intake  of  sodium  and  water.  

•  Analysis  of  urine  can  someKmes  give  insight  on  disorders  of  fluids  /  electrolytes.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 8: Fluids and Electrolytes Acids and Bases

Effect  of  Surgery  

•  RetenKon  of  fluids  and  electrolytes  is  driven  by  the  stress  response  induced  by  surgery:  catecholamines  and  counter-­‐regulatory  hormones  are  upregulated.  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 9: Fluids and Electrolytes Acids and Bases

Key  Hormones  

•  CorKsol  –  Secreted  by  adrenal  cortex,  sKmulated  by  ACTH  produced  in  

anterior  pituitary  due  to  decreased  intravascular  volume,  pressure,  and  sodium.  

•  Renin-­‐Angiotensin-­‐System    –  Renin  produced  by  juxtoglomerular  complex  of  kidney  in  

response  to  decreased  renal  blood  flow,  which  generates  AI  that  converts  to  AII  by  lungs.  

•  Aldosterone  –  Produced  by  adrenal  cortex  in  response  to  AII  to  sKmulate  renal  

recovery  of  Na  and  excreKon  of  K.  •  AnK-­‐DiureKc  Hormone  

–  Produced  by  the  pituitary  to  re-­‐absorb  water  in  kidneys,  effect  usually  wears  off  aMer  about  2  days.  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 10: Fluids and Electrolytes Acids and Bases

Clinical  ImplicaKons  

•  Decreased  urine  output  immediately  post-­‐operaKve  is  part  of  the  physiological  response  to  stress.  

•  Problems  may  arise  when  paKents  have  underlying  cardio-­‐respiratory,  renal,  and  /  or  hepaKc  dysfuncKon  who  cannot  handle  major  fluid  and  electrolyte  shiMs.  

•  These  paKents  need  to  be  resuscitated  with  appropriate  fluids  and  electrolytes.  How?    

Page 11: Fluids and Electrolytes Acids and Bases

Case  

•  70  year-­‐old  male  undergoing  open  AAA  repair.  

•  PMHx:  CAD,  PVD,  HTN,  Hyperlipidemia,  DM.  

•  Meds:  ASA,  Ramipril,  Metoprolol,  AtorvastaKn,  Meeormin.  

•  All:  None.  

Page 12: Fluids and Electrolytes Acids and Bases

IV  Fluids  

What  to  order?  •  How  much  fluid?  •  What  kind  of  fluid?  •  Colloid  versus  crystalloid?  •  How  much  electrolyte?  •  What  to  do  when  there  are  problems  with  fluid  and  /  or  electrolyte  status?  

Page 13: Fluids and Electrolytes Acids and Bases

Water  Requirements  

•  For  a  70  kg  person,  minimum  obligate  water  requirement  is  about  800  mL  /  day,  which  would  yield  500  mL  of  urine.  

•  Normal  intake:  2500  ml  (1500  ml  liquids,  700  ml  solids,  300  ml  endogenous).  

•  Normal  output:  1400-­‐2300  ml  (urine  800-­‐1500  ml,  stool  250  ml,  600-­‐900  ml  insensible  losses).  

Source:    Clinician’s  Pocket  Reference,  10th  Ed.  (2004)  

Page 14: Fluids and Electrolytes Acids and Bases

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 15: Fluids and Electrolytes Acids and Bases

How  Much  Water  is  Needed?  

•  These  are  basic  requirements  

•  4-­‐2-­‐1  Rule  (see  box  from  Sabiston)  –  Can  use  for  kids  –  70  Kg  adult:  110  ml  /  hr  or  2640  ml  /  24  hr.  

•  EsKmate  for  adults:  35  ml  /  Kg  –  70  Kg  adult:  2450  ml  /  24  hr  or  100  ml  /  hr  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 16: Fluids and Electrolytes Acids and Bases

Crystalloids  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

(+  20  mEq  KCl  =  2  mEq    K)  

(provides  50g  glucose)  

Page 17: Fluids and Electrolytes Acids and Bases

Ringer’s  versus  D5  ½  NS  with  KCl  

Ringer’s  •  Fluid  shiMs  in  major  surgery  

are  due  to  leakage  of  intravascular  fluid  into  the  intersKKal  space.  

•  What  is  lost  is  PLASMA.  •  The  crystalloid  that  is  most  

similar  to  plasma  is  Ringer’s  (also  Plasmalyte).  

•  However,  the  lacKc  acid  buffer  may  have  detrimental  effects.  

D5  ½  NS  with  20  mEq  KCl  •  Stress  from  surgery  induces  

catabolism  and  muscle  breakdown.    

•  IV  glucose  slows  this  down  by  providing  some  basal  energy  needs.  

•  For  a  70  Kg  pt  taking  2400  ml  /  24  hrs,  it  provides:  –  184  mEq  Na  (140  mEq  req)  –  48  mEq  K  (35  mEq  req)  –  120g  Glucose  (100g  needed  to  

spare  muscle  breakdown)  

Page 18: Fluids and Electrolytes Acids and Bases

Case  

•  45  year-­‐old  male  undergoing  elecKve  R  Hemi,  R  nephrectomy,  R  adrenalectomy  for  retroperitoneal  sarcoma  excision.  

•  PMHx:  Healthy.  •  Meds:  None.  •  All:  None.  

•  What  is  a  good  peri-­‐op  IV  fluid?  

•  What  rate  would  you  run  this  guy  if  he  were  70  kg?  

Page 19: Fluids and Electrolytes Acids and Bases

Case  

•  55  year-­‐old  female  with  SBO,  being  admined  with  goal  to  trial  non-­‐operaKve  management  first.  

•  PMHx:  Hypertension,  CAD.  

•  Meds:  Ramipril  /  HCTZ,  ASA,  AtorvastaKn.  

•  All:  None.  

•  Would  you  bolus  this  paKent  if  she  looked  dry  given  CAD?  

•  What  IV  fluid  would  you  use  and  how  much?  

•  What  about  NG  losses  –  would  you  replace  them?  

Page 20: Fluids and Electrolytes Acids and Bases

Colloids  

•  Unlike  crystalloids,  colloids  exert  enough  oncoKc  pressure  to  stay  within  the  intravascular  space  rather  than  redistribute  to  the  intersKKal  space.  

•  Two  types  of  colloids:  –  (1)  Biologic:  red  blood  cells,  

platelets,  fresh  frozen  plasma,  albumin.  

–  (2)  SyntheKc:  starch  (pentaspan,  voluven)  or  glucose  (dextran)  polymers.  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 21: Fluids and Electrolytes Acids and Bases

Case  

•  55  year-­‐old  paKent  with  Hep  B  cirrhosis,  POD  #1  segmental  liver  resecKon  for  HCC.  

•  Called  re:  low  urine  output.  

•  PMHx:  Hep  B  cirrhosis,  portal  hypertension.  

•  Meds:  Spironolactone,  Propranolol,  Lactulose.  

•  All:  None.  

•  What  maintenance  IV  fluid  might  be  appropriate?  

•  What  fluid  could  be  used  to  bolus  the  paKent?  

Page 22: Fluids and Electrolytes Acids and Bases

Colloids  versus  Crystalloids  

Page 23: Fluids and Electrolytes Acids and Bases

Case  

•  18  year-­‐old,  previously  healthy  female,  admined  earlier  today  for  30%  TBSA  burns  from  apartment  fire.  

•  Called  re:  low  urine  output.  

•  What  is  opKmal  urine  output?  

•  Should  we  bolus  the  paKent?  

•  What  IV  Fluid  and  how  much?  

Page 24: Fluids and Electrolytes Acids and Bases

Glucose  /  Electrolyte  Requirements  

•  Sodium:  80–120  mEq/d  (children,  3–4  mEq/kg/24  h)  

•  Potassium:  50–100  mEq/d  (children,  2–3  mEq/kg/24  h)  

•  Calcium:  1–3  g/d,  most  of  which  is  secreted  by  the  GI  tract  

•  Magnesium:  20  mEq/d  

•  Glucose:  100–200  g/d  (65–75  g/d/m2)  

Source:    Clinician’s  Pocket  Reference,  10th  Ed.  (2004)  

Page 25: Fluids and Electrolytes Acids and Bases

Electrolyte  AbnormaliKes  

•  No  perfect  IV  soluKon  exists  but  you  can  choose  the  best  one  available  based  on  what  the  paKent  needs  (e.g.  replace  what  is  lost).  

•  Electrolyte  can  be  too  high  

•  Electrolyte  can  be  too  low  

Page 26: Fluids and Electrolytes Acids and Bases

Hyponatremia  

•  Low  sodium:  very  common  problem,  ADH  is  key.  •  In  addiKon  to  thinking  of  the  problem  based  on  volume,  consider  thinking  of  it  based  on  physiology:  –  Appropriate  /  AdapKve:  recall  that  the  stress  response  in  surgery  upregulates  ADH,  thus,  you  will  see  this  as  a  surgeon  in  at  least  some  of  your  post-­‐op  pts.    

–  Inappropriate:  SIADH  (Syndrome  of  Inappropriate  ADH),  might  see  in  head  trauma,  lung  cancer,  paraneoplasKc  syndromes.  

– MaladapKve:  paKents  with  heart,  liver,  and  kidney  failure  have  decreased  effecKve  intravascular  circulaKng  volume,  which  leads  to  increased  ADH  secreKon  that  does  not  address  the  underlying  pathology.  

Page 27: Fluids and Electrolytes Acids and Bases

Hyponatremia  

•  DefiniKon  based  on  severity  of  Na  deficit  –  Mild  (130  to  138  mEq/L)  –  Moderate  (120  to  130)  –  Severe  (<120  mEq/liter)  

•  Classify  by  volume  status  –  Hypovolemic  (e.g.  burns,  

open  wounds,  sweaKng,  GI/renal  losses)  

–  Euvolemic  (e.g.  SIADH  –  look  at  brain  and  lungs)  

–  Hypervolemic  (e.g.  CHF,  cirrhosis)  

•  Treatment  –  Pseudo-­‐Hyponatremia:  

treat  underlying  cause  (e.g.  hyperglycemia,  which  dilutes  extracellular  sodium)  

–  Hypovolemic:  fluid  resuscitate  (e.g.  normal  saline  boluses)  

–  Euvolemic:  water  restrict  –  Hypervolemic:  diurese  (e.g.  

furosemide)  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 28: Fluids and Electrolytes Acids and Bases

Central  PonKne  Myelinolysis  

•  This  is  a  devastaKng  iatrogenic  complicaKon  of  correcKng  hyponatremia  too  quickly.  

•  The  pons  swells  leading  to  brainstem  dysfuncKon.  

•  Rate  of  Serum  Na  rise  should  be  <  0.5  mEq/L  per  hour  and  <  12  mEq  /  L  over  24  hours.  

•  Example  order:  3%  hypertonic  saline  @  10-­‐30  cc  /  hr  with  electrolytes  and  neurovitals  checked  q  1-­‐2  h.  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 29: Fluids and Electrolytes Acids and Bases

Hypernatremia  

•  Na  >  145  mEq  /  L  (up  to  159  mEq  /  L  is  well-­‐tolerated).  

•  Treat  by  volume  status:  –  Hypovolemic:  fluid  

resuscitate  (NS,  RL,  or  D51/2NS)  then  correct  free  water  deficit.  

–  Euvolemic:  correct  free  water  deficit.  

–  Hypervolemic:  consider  diuresis  then  correct  free  water  deficit.  

•  How  much  free  water  to  give  back  is  based  on  the  free  water  deficit:  

Free  H20  deficit  (L)  =    [(Serum  Na  –  140)  /  140]  x  

TBW  

TBW  =  Total  Body  Water  (esKmate  from  body  weight  in  Kg:  50%  for  men,  40%  for  women)  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010);  Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 30: Fluids and Electrolytes Acids and Bases

Cerebral  Edema  and  HerniaKon  

•  Again,  do  not  correct  Na  too  quickly.  

•  Acute  hypernatremia:  correct  at  rate  of  1  mEq  /  hr.    

•  Chronic  hypernatremia:  correct  more  slowly  at    rate  of  0.7  mEq  /  hr.    

•  PO  or  IV  free  water  replacement  is  okay.    

•  Example  order:  D5W  or  D51/2NS  @  50-­‐100  cc  /  hr  with  electrolytes  and  neurovitals  checked  q  1-­‐2h.  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 31: Fluids and Electrolytes Acids and Bases

Sodium  Formulas  

Source:    Sabiston  Textbook  of  Surgery,  19th  Ed.  (2012)  

Page 32: Fluids and Electrolytes Acids and Bases

Potassium  

•  While  sodium  is  the  main  extracellular  caKon,  potassium  is  the  main  intracellular  caKon  (98%  is  in  cells).  

•  Excreted  by  kidneys.  •  Acid-­‐base  balance  also  affects  extracellular  potassium  due  to  H+/K+  ATP  ion  exchanger.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 33: Fluids and Electrolytes Acids and Bases

Hypokalemia  

•  K  <  3.5  mmol  /  L  •  EKology:  GI  /  GU  losses,  

meds,  low  Mg.  •  Immediately  post-­‐op  is  

rare  since  cell  lysis  can  predispose  to  hyperkalemia.  

•  Aldosterone  (secreted  in  stress  response  from  surgery)  will  waste  K  in  favor  of  reabsorbing  Na.    

•  How  to  replace  K:  –  Oral:  KCl  20  mEq  or  40  mEq  

up  to  3  doses  per  day  (can  be  liquid  or  tablet  form).  

–  IV:  20  mEq  or  40  mEq  KCl  in  250cc  or  500cc  bag  of  D5W  or  NS  infused  over  at  least  4  hours.  

–  Remember  to  re-­‐check  potassium  aMer  replacement  to  ensure  adequate  therapy  (at  least  2  hours  aMer  replacement).  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 34: Fluids and Electrolytes Acids and Bases

Hyperkalemia  

•  PotenKally  life-­‐threatening  (one  of  the  H’s/T’s  for  cardiac  arrest!).  

•  Risk  factors:  renal  failure,  burns  and  trauma.  

•  Acute  life-­‐threatening  treatment:  –  Insulin  10-­‐20  units  with  1  amp  

D50W  –  CaCl  1  amp  IV  –  NaHCO3  1  amp  IV  –  NS  bolus  –  Hemodialysis    

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 35: Fluids and Electrolytes Acids and Bases

Hyperkalemia  Treatment  OpKons  

Source:    Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 36: Fluids and Electrolytes Acids and Bases

Magnesium  

•  Present  in  bones  and  cells,  important  role  in  cellular  metabolism.  –  Co-­‐factor  in  many  enzymaKc  reacKons.  – Major  role  in  acKvity  of  electrically  excitable  Kssues  .  –  Regulates  movement  of  Ca  into  smooth  muscle  cells.  

•  Normal  range:  1.5-­‐2.5  mEq  /  L.  •  Excreted  by  kidneys.  •  Metabolism  closely  related  to  Potassium.  •  Serum  Mg  =  Total  body  Mg.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 37: Fluids and Electrolytes Acids and Bases

Disorders  of  Magnesium  

Hypomagnesemia  

•  EKology:  GI/GU  losses,  malabsorpKon,    Ca,    K,  poor  intake.  

•  Treatment:  –  MgSO4  2g  or  5g  IV  qD  x  up  to  

3  days  or  

–  Milk  of  Magnesia  15  cc  qD  x  3  days  (hold  for  diarrhea)  

–  Re-­‐check  Mg  daily  for  3  days  to  ensure  adequate  replacement.  

Hypermagnesemia  

•  EKology:  usually  renal  failure  (inability  of  kidneys  to  clear  excess  Mg).  

•  Treatment:  –  NS  IV  infusion  to  promote  

renal  excreKon  of  Mg.  

–  CaCl  IV  to  antagonize  neuromuscular  effects  of  Mg.  

–  May  need  hemodialysis  with  ECG  changes,  somnolence,  coma.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010);  Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 38: Fluids and Electrolytes Acids and Bases

Calcium  

•  99%  found  in  bones,  only  1%  in  extra-­‐cellular  fluid.  

•  Important  role  in  neuromuscular  funcKon  and  enzymaKc  processes.  

•  Normal  serum  Ca:  4.2-­‐5.2  mEq  /  L  (1.0-­‐1.5  mmol  /  L).  

•  Mediators  of  Ca  metabolism:  PTH  (parathyroid),  calcitonin  (thyroid),  vitamin  D  (kidneys  /  diet  /  sun).  

•  Serum  Ca  measurements  are  affected  by  acid-­‐base  status  and  albumin  (  H  /  alkalemia  and    albumin  will  lead  to    Ca).  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010)  

Page 39: Fluids and Electrolytes Acids and Bases

Hypocalcemia  

•  EKology:    PTH,    Mg,  pancreaKKs,  renal  failure,  trauma,  rhadbomyolysis,  necroKzing  fasciiKs.  

•  Symptoms:  hyperacKve  DTR,  Chvostek  sx,  cramps.  

•  Treatment:  –  If  symptomaKc:  Calcium  gluconate  

2g  IV  over  1h  or  CaCl  1  amp  IV  x  1  –  If  not  severe:  CaCO3  (TUMS)  

500-­‐1500  mg  PO  QID  –  Re-­‐check  Ca  q6h  if  severe  or  daily  

for  3  days.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010);  Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 40: Fluids and Electrolytes Acids and Bases

Hypercalcemia  

•  EKology:    PTH  (primary  or  ectopic),  bone  mets,    Vit  D,  sarcoidosis,  milk-­‐alkali  sx,  thiazides,  prolonged  immobilizaKon.  

•  Moans,  bones,  stones  and  psychological    overtones.  

•  Treatment:  –  IV  NS  and  Furosemide  to  

increase  renal  excreKon.  –  Calcitonin  and  

bisphosphonates  an  opKon.  –  Tx  underlying  pathology.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010);  Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 41: Fluids and Electrolytes Acids and Bases

Phosphate  

Physiology  

•  Primarily  a  consKtuent  of  bone  (metabolism  closely  related  with  Ca).  

•  Important  intracellular  funcKon  (ATP  and  DNA  require  phosphate,  important  in  surgical  paKents  for  Kssue  healing).  

•  ExcreKon  is  by  the  kidneys  and  mediated  by  PTH.  

Pathophysiology  /  Treatment  •  Hypophosphatemia  

–  EKology:    PTH,  poor  diet,  refeeding  syndrome  (neuromuscular  effects  including  cardiac  death).  

–  Tx:  Potassium  or  Sodium  Phosphate  15  mmol  IV  q8h  x  2-­‐3  doses.  PO  form  also  available.  Re-­‐check  levels.  

•  Hyperphosphatemia  –  EKology:  usually  renal  dx.  –  Tx:  diuresis,  Al(OH)3,  HD.  

Source:    CURRENT  Diagnosis  and  Treatment  Surgery:  13th  Ed.  (2010);  Schwartz's  Principles  of  Surgery,  9th  Ed.  (2010)  

Page 42: Fluids and Electrolytes Acids and Bases

Case  

•  28  year-­‐old  male  involved  in  rollover  MVC  who  sustained  closed  head  injury.  Looks  euvolemic.  Urine  osmolality  >  serum  osmolality.  Urine  sodium  concentraKon  high.  Normal  thyroid,  adrenal,  and  renal  funcKon.  

•  Sodium  trending  down  and  hovering  around  125  mmol  /  L  range  –  what  could  we  do  to  prevent  this  from  going  down  further?  

Page 43: Fluids and Electrolytes Acids and Bases

Case  

•  55  year-­‐old  female  with  primary  hyperparathyroidism,  POD  #0  bilateral  neck  exploraKon  and  subtotal  parathyroidectomy  for  presumed  hyperplasia.  

•  Ca  6  hours  post-­‐op  =  0.9  mmol  /  L  without  symptoms.  

•  What  therapy  can  be  iniKated?  

Page 44: Fluids and Electrolytes Acids and Bases

Case  

•  65  year-­‐old  female,  POD  #  2  for  wide  excision  of  melanoma  on  chest  with  rotaKonal  flap  graM.  

•  Potassium  =  5.5  mmol  /  L.  No  ECG  changes.  Stable.  Cr  increased  from  80  at  baseline  to  150.  

•  Management?  

Page 45: Fluids and Electrolytes Acids and Bases

Acids  and  Bases  

Basic  Primer  

Page 46: Fluids and Electrolytes Acids and Bases

Acids  and  Bases  

•  Hendersen-­‐Hasselbach  EquaKon:  

H2O  +  CO2  <-­‐>  H2CO3  <-­‐>  H+  +  HCO3-­‐  

•  CO2  is  directly  proporKonal  to  H+.  

•  CO2  is  a  product  of  metabolism  that  is  removed  by  respiraKon.  

Page 47: Fluids and Electrolytes Acids and Bases

Normal  Values  

•  pH  =  7.36  –  7.44  (7.4)  •  PCO2  =  35  –  45  mmHg  (40)    •  PO2  =  >  80  mmHg      •  HCO3-­‐  =  21  –  25  mEq/L  (24)    •  Anion  Gap  =  10  +/-­‐  2      

•  ABG  report  of  results:    pH  /  PCO2  /  PO2  /  HCO3-­‐    

Page 48: Fluids and Electrolytes Acids and Bases

Approach  to  Acid/Base  Problems  

•  What  is  the  “emia”?  (ACIDemia  or  ALKALemia)  •  What  is  the  major  “osis”?  (4  Categories)    

•  Calculate  the  AG  for  metabolic  acidosis  

•  Is  there  a  superimposed  METABOLIC  disorder?  

•  Is  there  a  superimposed  RESPIRATORY  disorder?  

Page 49: Fluids and Electrolytes Acids and Bases

Acidemia  

•  Increased  H+  due  to:  

–  Increased  CO2  (Respiratory)  

         OR  

– Decreased  HCO3-­‐  (Metabolic)  

Page 50: Fluids and Electrolytes Acids and Bases

Alkalemia  

•  Decreased  H+  due  to:  

– Decreased  CO2  (Respiratory)  

         OR  

–  Increased  HCO3-­‐  (Metabolic)  

Page 51: Fluids and Electrolytes Acids and Bases

Anion  Gap  

•  Anion  Gap  (AG)  =  CaKons  -­‐  Anions  – CaKons  =  calcium  /  potassium  /  magnesium      

– Anions  =  proteins  /  acids  /  phosphates  /  sulfates    

•  Normal  AG  =  Na+  -­‐  (Cl-­‐  +  HCO3-­‐)  =  10  mEq/L  ±  2  

Page 52: Fluids and Electrolytes Acids and Bases

Increased  AG    (Metabolic  Acidosis)  

•  M  –  methanol    

•  U  –  uremia    •  D  –  DKA  /  ETOH  /starvaKon    •  P  –  paraldehyde  /phenformin    

•  I  –  iron  /  INH    •  L  –  lacKc  acidosis    •  E  –  ethylene  glycol    •  S  –  salicylates  

K – keytones

U – uremia

S – salicylates

M – methanol

A – other alcohols

L – lactate

Page 53: Fluids and Electrolytes Acids and Bases

Normal  AG    (Metabolic  Acidosis)  

•  Normal    Anion  Gap  =  bicarb  loss    •  Renal  loss    – RTA  I,  II,  IV    – Carbonic  anhydrase  inhibitors    – 1°  hyperparathyroidism    

•  GI  loss  Diarrhea    •  Aldosterone  deficiency  /  antagonism    

•  NS  fluid  resuscitaKon    

Page 54: Fluids and Electrolytes Acids and Bases

Metabolic  Acidosis  

•  Treatment:  – Treat  the  underlying  cause  – Sodium  bicarbonate  may  be  needed  

Page 55: Fluids and Electrolytes Acids and Bases

Example  

•  60  year-­‐old  female,  POD  #  3  from  radical  cystectomy  and  ileal  conduit  neobladder  reconstrucKon.  Febrile,  tachycardic  and  flushed  with  costovertebral  angle  tenderness.  

•  pH  /  PCO2  /  PO2  /  HCO3-­‐    

•  7.27  /  29  /  50  /  13  •  Na  –  138,  K  -­‐  5.0,  Cl  -­‐  102  

Page 56: Fluids and Electrolytes Acids and Bases

Metabolic  Alkalosis  

•  Physiologic  =  Volume  sensiKve/Cl-­‐  responsive          –  Cause:  volume  depleKon    –  Clue:  volume  depleKon    – Urine  Cl-­‐  <  15  mEq/L    

•  Pathologic  =  Volume  resistant/  Cl-­‐  resistant        –  Cause:    aldosterone  /  renin    –  Clue:  HTN,  K+  depleKon    – Urine  Cl-­‐  >  25  mEq/L    

•  Treatment:  –  Volume  Resuscitate  so  that  kidneys  can  start  wasKng  excess  HCO3

-­‐  

Page 57: Fluids and Electrolytes Acids and Bases

Respiratory  Acidosis  

•  Increased  PCO2  due  to  hypovenKlaKon  •  Causes:    – Pulmonary  disease    

– CNS  dysfuncKon    – Neuromuscular  disease    – Drug  induced  hypovenKlaKon  

•  Treatment:  treat  underlying  cause,  may  need  to  iniKate  mechanical  venKlaKon.  

Page 58: Fluids and Electrolytes Acids and Bases

Example  

•  25  year-­‐old  male,  POD  #0  from  R  Kbia  /  fibula  ORIF  on  PCA  hydromorphone.  Called  to  assess  decreased  LOC.  

•  pH  /  PCO2  /  PO2  /  HCO3-­‐    

•  7.30  /  50  /  90  /24  

•  What  is  the  acid/base  problem?  

Page 59: Fluids and Electrolytes Acids and Bases

Respiratory  Alkalosis  

•  Decreased  PCO2  due  to  hypervenKlaKon  

•  Cardiorespiratory  and  non-­‐cardiorespiratory  causes  

Page 60: Fluids and Electrolytes Acids and Bases

Respiratory  Alkalosis  

Cardiorespiratory  

•  Hypoxia    •  Early  restricKve  lung  disease    •  PE    •  Pneumonia    •  Mild  CHF    

•  Mechanical  venKlaKon    

Non-­‐Cardiorespiratory    

•  Fever    •  Sepsis    •  Drugs  (ASA)    •  Anxiety    •  CNS  disorders    •  Hyperthyroidism    

•  Pregnancy    •  Liver  failure  

Page 61: Fluids and Electrolytes Acids and Bases

CompensaKon  

Respiratory  

•  Respiratory  compensaKon  occurs  quickly  by  altering  respiratory  rate  /  panern.  

•  Metabolic  acidosis:  decreased  CO2    

•  Metabolic  alkalosis:  increased  CO2  

Metabolic  

•  Metabolic  compensaKon  occurs  more  slowly  via  kidneys  correct  acid-­‐base  abnormaliKes,  usually  from  primary  lung  disease.  

•  Chronic  respiratory  acidosis:  increased  HCO3

-­‐  

•  Chronic  respiratory  alkalosis:  decreased  HCO3

-­‐