YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
  • Discrete elasticafor shape design of gridshells

    Yusuke Sakai (Kyoto University)Makoto Ohsaki (Kyoto University)

    1

    Y. Sakai and M. Ohsaki, Discrete elastica for shape design of gridshells,Eng. Struct., Vol. 169, pp. 55-67, 2018.

  • Problem of the generating process

    2

    Desired shape

    Initial shape

    Generated shape

    Large deformation analysis

    Unknown:Forced disp., Load, External moment etc…

    Trial & Error

    Interaction forces Too large

    Inappropriate shape

    Engineer

    Designer

  • [1] Ohsaki M, Seki K, Miyazu Y. Optimization of locations of slot connections of gridshells modeled using elastica. Proc IASS Symposium 2016, Tokyo. Int Assoc Shell and Spatial Struct 2016;Paper No. CS5A-1012.

    Solution & BackgroundTarget shape of a curved beam

    Elastica: Shape of a buckled beam-column Reduce the interaction forces [1]

    3

    Continuous elastica

    min. 𝑈𝑈 = �12𝐸𝐸𝐸𝐸𝜅𝜅2 + 𝛽𝛽 𝑑𝑑𝑑𝑑 ,

    𝜅𝜅 𝑑𝑑 =𝜕𝜕Ψ(𝑑𝑑)𝜕𝜕𝑑𝑑

    𝑑𝑑: arc-length parameter, 𝐸𝐸𝐸𝐸: bending stiffness, 𝜅𝜅 𝑑𝑑 : curvature, 𝛽𝛽: penalty parameter for the total length

  • 1. Initial shape (straight) Equilibrium shape2. Span & Height of a support Only a few parameters3. Uniaxial bending Planar model

    4

    [2] A. M. Bruckstein, R. J. Holt and A. N. Netravali, Discrete elastica, Appl. Anal., Vol. 78, pp. 453-485, 2001.

    [3] Y. SAKAI and M. OHSAKI, Discrete elastica for shape design of gridshell, Eng. Struct., Vol. 169, pp. 55-67, 2018.

    Ψ𝑖𝑖

    𝑙𝑙: Length of each segment,𝚿𝚿 = Ψ0, … ,Ψ𝑁𝑁 𝑇𝑇:Deflection angles between

    each segment and 𝑥𝑥 axis

    𝑙𝑙

    𝑥𝑥

    𝑥𝑥

    Discrete elastica

    Rotationalspring

  • 𝑃𝑃𝑖𝑖 𝑖𝑖 = 0, … ,𝑁𝑁 + 1 : Nodes𝑙𝑙: Length of each segment𝚿𝚿 = Ψ0, … ,Ψ𝑁𝑁 : Deflection angle of a segment from 𝑥𝑥-axis

    Equivalence of strain energyStiffness of rotational spring

    Ψ𝑖𝑖

    Ψ𝑖𝑖−1𝜃𝜃𝑖𝑖 = Ψ𝑖𝑖−1 − Ψ𝑖𝑖

    Curvature: 𝜅𝜅 = 𝜃𝜃𝑖𝑖𝑙𝑙

    Strain energy: 𝑆𝑆 = 12𝐸𝐸𝐸𝐸𝜅𝜅2𝑙𝑙 = 1

    2𝐸𝐸𝐸𝐸 𝜃𝜃𝑖𝑖

    𝑙𝑙

    2𝑙𝑙 = 𝐸𝐸𝐸𝐸

    2𝑙𝑙𝜃𝜃𝑖𝑖2

    𝐸𝐸𝐸𝐸/𝑙𝑙

    𝑥𝑥

    𝑙𝑙

    5

  • External workDiscretized form of 𝑈𝑈 = ∫ 12 𝐸𝐸𝐸𝐸𝜅𝜅

    2 + 𝛽𝛽 𝑑𝑑𝑑𝑑

    𝛽𝛽 = 1000

    Optimization problem (Minimize total potential energy)

    ( ) ( )21, , 10 0 1

    0

    0

    min. ,2

    subject to cos ,

    sin

    N

    i il i

    N NN

    iiN

    ii

    EIl ll

    M M

    l L

    l H

    β−=

    +

    =

    =

    Π = Ψ −Ψ + − Ψ − Ψ

    Ψ =

    Ψ =

    Ψ ΦΨ

    : Span length

    : Height of a support

    6

    Stationary conditions = Equilibrium of segments Lagrange multipliers = Reaction forces

  • Lagrangian (𝜆𝜆1 and 𝜆𝜆2 are Lagrange multipliers)

    ℒ 𝚿𝚿, 𝑙𝑙, 𝜆𝜆1, 𝜆𝜆2 = Π + 𝜆𝜆1 �𝑖𝑖=1

    𝑁𝑁

    𝑙𝑙 cosΨ𝑖𝑖 − 𝐿𝐿 + 𝜆𝜆2 �𝑖𝑖=1

    𝑁𝑁

    𝑙𝑙 sinΨ𝑖𝑖 − 𝐻𝐻

    Stationary conditions: Derivatives with respect to 𝚿𝚿 = Ψ0, … ,Ψ𝑁𝑁 𝑇𝑇

    𝐸𝐸𝐸𝐸𝑙𝑙−Ψ𝑖𝑖−1 − Ψ𝑖𝑖

    𝑙𝑙+Ψ𝑖𝑖 − Ψ𝑖𝑖+1

    𝑙𝑙− 𝜆𝜆1 sinΨ𝑖𝑖 + 𝜆𝜆2 cosΨ𝑖𝑖 = 0

    𝑖𝑖 = 1, … ,𝑁𝑁 − 11𝑙𝑙𝐸𝐸𝐸𝐸 Ψ1 − Ψ0

    𝑙𝑙− 𝑀𝑀0 − 𝜆𝜆1 sinΨ0 + 𝜆𝜆2 cosΨ0 = 0

    1𝑙𝑙𝐸𝐸𝐸𝐸 Ψ𝑁𝑁 − Ψ𝑁𝑁−1

    𝑙𝑙− 𝑀𝑀𝑁𝑁+1 − 𝜆𝜆1 sinΨ𝑁𝑁 + 𝜆𝜆2 cosΨ𝑁𝑁 = 0

    7

  • 𝐸𝐸𝐸𝐸𝑙𝑙

    −Ψ𝑖𝑖−1 − Ψ𝑖𝑖

    𝑙𝑙+Ψ𝑖𝑖 − Ψ𝑖𝑖+1

    𝑙𝑙− 𝜆𝜆1 sinΨ𝑖𝑖 + 𝜆𝜆2 cosΨ𝑖𝑖 = 0

    8

    𝜆𝜆1 and 𝜆𝜆2: Support reaction forces

  • Curve 1 Curve 2

    9

    Comparisons of shapes and reaction forces

    Discrete elastica

    Continuous beam

    Curve 1 𝜆𝜆1[kN] (x-dir.) 0.4342 0.4449𝜆𝜆2[kN] (z-dir.) 0.0000 0.0002

    Curve 2 𝜆𝜆1[kN] (x-dir.) 0.8940 0.9140𝜆𝜆2[kN] (z-dir.) 0.8212 0.8171

    Reaction forces

    ≃≃≃≃

  • • Plan:Square(10 m×10 m)

    • Curve A Boundary

    (Height difference = 2m)• Curve B, C In the diagonal planeTarget surface composed of primary beams

    (Discrete elastica)

    Gridshell (Large deformation analysis)

    Material: Glass fiber reinforced polymer(GFRP)

    Yield stress 200 MPaDiameter Thickness

    Primary 0.08 m 0.008 m

    Secondary 0.0475 m 0.003m

    Sectional area: Hollow cyrinder

    10

    2 m

  • 𝑡𝑡: Loading parameter 0.0 ≤ 𝑡𝑡 ≤ 2.00.0 ≤ 𝑡𝑡 ≤ 1.0: Upward virtual load (equivalent to self-weight)1.0 ≤ 𝑡𝑡 ≤ 2.0: Forced displacement & external moments

    11

    Forced disp.

    External moments

    Motion of large-deformation analysis

    Virtual load

  • Curve A Curve B

    • All member stress < Yielding stress 200 MPa• Discrete & continuous beams close

    Target shape(Discrete elastica)

    Continuous beam(Large deformationanalysis)

    Curve C Plan

    12

    Comparison

  • Conclusion1.Discrete elastica Equilibrium curved beams

    derived from optimization Target shape of primary beams

    of gridshell2.Span, height of a support, and external moments

    Shape parameters3.Verification (Primary beams)

    Target shape vs Large-deformation analysisVery close

    13

    Other studies of gridshell Combinatorial optimization for arranging slot+hinge joints Spatial discrete elastica (extended from Discrete elastica) Development of 3D elastic beam model for large-deformation

    analysis

    Discrete elastica�for shape design of gridshellsスライド番号 2スライド番号 3スライド番号 4スライド番号 5スライド番号 6スライド番号 7スライド番号 8スライド番号 9スライド番号 10スライド番号 11スライド番号 12スライド番号 13


Related Documents