Top Banner
Discrete elastica for shape design of gridshells Yusuke Sakai (Kyoto University) Makoto Ohsaki (Kyoto University) 1 Y. Sakai and M. Ohsaki, Discrete elastica for shape design of gridshells, Eng. Struct., Vol. 169, pp. 55-67, 2018.
13

Discrete elastica model for shape design of gridshellsfor shape design of gridshells Yusuke Sakai (Kyoto University) Makoto Ohsaki (Kyoto University) 1 Y. Sakai and M. Ohsaki, Discrete

Jun 28, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Discrete elasticafor shape design of gridshells

    Yusuke Sakai (Kyoto University)Makoto Ohsaki (Kyoto University)

    1

    Y. Sakai and M. Ohsaki, Discrete elastica for shape design of gridshells,Eng. Struct., Vol. 169, pp. 55-67, 2018.

  • Problem of the generating process

    2

    Desired shape

    Initial shape

    Generated shape

    Large deformation analysis

    Unknown:Forced disp., Load, External moment etc…

    Trial & Error

    Interaction forces Too large

    Inappropriate shape

    Engineer

    Designer

  • [1] Ohsaki M, Seki K, Miyazu Y. Optimization of locations of slot connections of gridshells modeled using elastica. Proc IASS Symposium 2016, Tokyo. Int Assoc Shell and Spatial Struct 2016;Paper No. CS5A-1012.

    Solution & BackgroundTarget shape of a curved beam

    Elastica: Shape of a buckled beam-column Reduce the interaction forces [1]

    3

    Continuous elastica

    min. π‘ˆπ‘ˆ = οΏ½12πΈπΈπΈπΈπœ…πœ…2 + 𝛽𝛽 𝑑𝑑𝑑𝑑 ,

    πœ…πœ… 𝑑𝑑 =πœ•πœ•Ξ¨(𝑑𝑑)πœ•πœ•π‘‘π‘‘

    𝑑𝑑: arc-length parameter, 𝐸𝐸𝐸𝐸: bending stiffness, πœ…πœ… 𝑑𝑑 : curvature, 𝛽𝛽: penalty parameter for the total length

  • 1. Initial shape (straight) Equilibrium shape2. Span & Height of a support Only a few parameters3. Uniaxial bending Planar model

    4

    [2] A. M. Bruckstein, R. J. Holt and A. N. Netravali, Discrete elastica, Appl. Anal., Vol. 78, pp. 453-485, 2001.

    [3] Y. SAKAI and M. OHSAKI, Discrete elastica for shape design of gridshell, Eng. Struct., Vol. 169, pp. 55-67, 2018.

    Ψ𝑖𝑖

    𝑙𝑙: Length of each segment,𝚿𝚿 = Ξ¨0, … ,Ψ𝑁𝑁 𝑇𝑇:Deflection angles between

    each segment and π‘₯π‘₯ axis

    𝑙𝑙

    π‘₯π‘₯

    π‘₯π‘₯

    Discrete elastica

    Rotationalspring

  • 𝑃𝑃𝑖𝑖 𝑖𝑖 = 0, … ,𝑁𝑁 + 1 : Nodes𝑙𝑙: Length of each segment𝚿𝚿 = Ξ¨0, … ,Ψ𝑁𝑁 : Deflection angle of a segment from π‘₯π‘₯-axis

    Equivalence of strain energyStiffness of rotational spring

    Ψ𝑖𝑖

    Ξ¨π‘–π‘–βˆ’1πœƒπœƒπ‘–π‘– = Ξ¨π‘–π‘–βˆ’1 βˆ’ Ψ𝑖𝑖

    Curvature: πœ…πœ… = πœƒπœƒπ‘–π‘–π‘™π‘™

    Strain energy: 𝑆𝑆 = 12πΈπΈπΈπΈπœ…πœ…2𝑙𝑙 = 1

    2𝐸𝐸𝐸𝐸 πœƒπœƒπ‘–π‘–

    𝑙𝑙

    2𝑙𝑙 = 𝐸𝐸𝐸𝐸

    2π‘™π‘™πœƒπœƒπ‘–π‘–2

    𝐸𝐸𝐸𝐸/𝑙𝑙

    π‘₯π‘₯

    𝑙𝑙

    5

  • External workDiscretized form of π‘ˆπ‘ˆ = ∫ 12 πΈπΈπΈπΈπœ…πœ…

    2 + 𝛽𝛽 𝑑𝑑𝑑𝑑

    𝛽𝛽 = 1000

    Optimization problem (Minimize total potential energy)

    ( ) ( )21, , 10 0 1

    0

    0

    min. ,2

    subject to cos ,

    sin

    N

    i il i

    N NN

    iiN

    ii

    EIl ll

    M M

    l L

    l H

    Ξ²βˆ’=

    +

    =

    =

    Ξ  = Ξ¨ βˆ’Ξ¨ + βˆ’ Ξ¨ βˆ’ Ξ¨

    Ξ¨ =

    Ξ¨ =

    βˆ‘

    βˆ‘

    βˆ‘

    Ψ ΦΨ

    : Span length

    : Height of a support

    6

    Stationary conditions = Equilibrium of segments Lagrange multipliers = Reaction forces

  • Lagrangian (πœ†πœ†1 and πœ†πœ†2 are Lagrange multipliers)

    β„’ 𝚿𝚿, 𝑙𝑙, πœ†πœ†1, πœ†πœ†2 = Ξ  + πœ†πœ†1 �𝑖𝑖=1

    𝑁𝑁

    𝑙𝑙 cosΨ𝑖𝑖 βˆ’ 𝐿𝐿 + πœ†πœ†2 �𝑖𝑖=1

    𝑁𝑁

    𝑙𝑙 sinΨ𝑖𝑖 βˆ’ 𝐻𝐻

    Stationary conditions: Derivatives with respect to 𝚿𝚿 = Ξ¨0, … ,Ψ𝑁𝑁 𝑇𝑇

    πΈπΈπΈπΈπ‘™π‘™βˆ’Ξ¨π‘–π‘–βˆ’1 βˆ’ Ψ𝑖𝑖

    𝑙𝑙+Ψ𝑖𝑖 βˆ’ Ψ𝑖𝑖+1

    π‘™π‘™βˆ’ πœ†πœ†1 sinΨ𝑖𝑖 + πœ†πœ†2 cosΨ𝑖𝑖 = 0

    𝑖𝑖 = 1, … ,𝑁𝑁 βˆ’ 11𝑙𝑙𝐸𝐸𝐸𝐸 Ξ¨1 βˆ’ Ξ¨0

    π‘™π‘™βˆ’ 𝑀𝑀0 βˆ’ πœ†πœ†1 sinΞ¨0 + πœ†πœ†2 cosΞ¨0 = 0

    1𝑙𝑙𝐸𝐸𝐸𝐸 Ψ𝑁𝑁 βˆ’ Ξ¨π‘π‘βˆ’1

    π‘™π‘™βˆ’ 𝑀𝑀𝑁𝑁+1 βˆ’ πœ†πœ†1 sinΨ𝑁𝑁 + πœ†πœ†2 cosΨ𝑁𝑁 = 0

    7

  • 𝐸𝐸𝐸𝐸𝑙𝑙

    βˆ’Ξ¨π‘–π‘–βˆ’1 βˆ’ Ψ𝑖𝑖

    𝑙𝑙+Ψ𝑖𝑖 βˆ’ Ψ𝑖𝑖+1

    π‘™π‘™βˆ’ πœ†πœ†1 sinΨ𝑖𝑖 + πœ†πœ†2 cosΨ𝑖𝑖 = 0

    8

    πœ†πœ†1 and πœ†πœ†2: Support reaction forces

  • Curve 1 Curve 2

    9

    Comparisons of shapes and reaction forces

    Discrete elastica

    Continuous beam

    Curve 1 πœ†πœ†1[kN] (x-dir.) 0.4342 0.4449πœ†πœ†2[kN] (z-dir.) 0.0000 0.0002

    Curve 2 πœ†πœ†1[kN] (x-dir.) 0.8940 0.9140πœ†πœ†2[kN] (z-dir.) 0.8212 0.8171

    Reaction forces

    ≃≃≃≃

  • β€’ Plan:Square(10 mΓ—10 mοΌ‰

    β€’ Curve A Boundary

    (Height difference = 2m)β€’ Curve B, C In the diagonal planeTarget surface composed of primary beams

    (Discrete elastica)

    Gridshell (Large deformation analysis)

    Material: Glass fiber reinforced polymer(GFRPοΌ‰

    Yield stress 200 MPaDiameter Thickness

    Primary 0.08 m 0.008 m

    Secondary 0.0475 m 0.003m

    Sectional area: Hollow cyrinder

    10

    2 m

  • 𝑑𝑑: Loading parameter 0.0 ≀ 𝑑𝑑 ≀ 2.00.0 ≀ 𝑑𝑑 ≀ 1.0: Upward virtual load (equivalent to self-weight)1.0 ≀ 𝑑𝑑 ≀ 2.0: Forced displacement & external moments

    11

    Forced disp.

    External moments

    Motion of large-deformation analysis

    Virtual load

  • Curve A Curve B

    β€’ All member stress < Yielding stress 200 MPaβ€’ Discrete & continuous beams close

    Target shape(Discrete elastica)

    Continuous beam(Large deformationanalysis)

    Curve C Plan

    12

    Comparison

  • Conclusion1.Discrete elastica Equilibrium curved beams

    derived from optimization Target shape of primary beams

    of gridshell2.Span, height of a support, and external moments

    Shape parameters3.Verification (Primary beams)

    Target shape vs Large-deformation analysisVery close

    13

    Other studies of gridshell Combinatorial optimization for arranging slot+hinge joints Spatial discrete elastica (extended from Discrete elastica) Development of 3D elastic beam model for large-deformation

    analysis

    Discrete elasticaοΏ½for shape design of gridshellsスラむドη•ͺ号 2スラむドη•ͺ号 3スラむドη•ͺ号 4スラむドη•ͺ号 5スラむドη•ͺ号 6スラむドη•ͺ号 7スラむドη•ͺ号 8スラむドη•ͺ号 9スラむドη•ͺ号 10スラむドη•ͺ号 11スラむドη•ͺ号 12スラむドη•ͺ号 13