YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Communication Theory as Wireless Sensor Networks

10/1/2008

1

Communication Theory asCommunication Theory as Applied to Wireless Sensor 

Networks

muse

Objectives

• Understand the constraints of WSN and how i ti th h i i fl dcommunication theory choices are influenced 

by them

• Understand the choice of digital over analog schemes

• Understand the choice of digital phaseUnderstand the choice of digital phase modulation methods over frequency or amplitude schemes

muse

Page 2: Communication Theory as Wireless Sensor Networks

10/1/2008

2

Objectives (cont.)

• Understand the cost/benefits of implementing source and channel coding for sensorsource and channel coding for sensor networks

• Understand fundamental MAC concepts• Grasp the importance of node synchronization• Synthesize through examples these concepts to understand impact on energy and bandwidth requirements

muse

Outline

• Sensor network constraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Page 3: Communication Theory as Wireless Sensor Networks

10/1/2008

3

WSN Communication Constraints

• Energy!

Communication constraints

Data Collection Costs

• Sensors

• Activation

• Conditioning

• A/D

Communication constraints

Page 4: Communication Theory as Wireless Sensor Networks

10/1/2008

4

Computation Costs

• Node life support

• Simple data processing

• Censoring and Aggregation

• Source/Channel coding

Communication constraints

Communication Costs

current ~= 1.0313 * rf_power + 20.618R2 = 0.9572

30

35

n (m

A)

Communication constraints

15

20

25

-10 -5 0 5 10

RF Transmit Power (dBm)

Cur

rent

Con

sum

ptio

n

Page 5: Communication Theory as Wireless Sensor Networks

10/1/2008

5

Putting it all together

Communication constraints

Outline

• Sensor network constraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Page 6: Communication Theory as Wireless Sensor Networks

10/1/2008

6

Modulation

• Review

• Motivation for Digital

Modulation

The Carrier

Modulation

Page 7: Communication Theory as Wireless Sensor Networks

10/1/2008

7

Amplitude Modulation (AM)

DSB‐SC (double sideband – suppressed carrier)

Modulation

Frequency representation for DSB‐SC (the math)

Modulation

Page 8: Communication Theory as Wireless Sensor Networks

10/1/2008

8

Frequency representation for DSB‐SC (the cartoon)

Modulation

Demodulation – coherent receiver

Modulation

Page 9: Communication Theory as Wireless Sensor Networks

10/1/2008

9

DSB‐LC (or AM as we know it)

Modulation

Frequency representationof DSB‐LC

Modulation

Page 10: Communication Theory as Wireless Sensor Networks

10/1/2008

10

Amplitude Modulation

Modulation

Frequency Modulation (FM)

Modulation

Page 11: Communication Theory as Wireless Sensor Networks

10/1/2008

11

Frequency Modulation

Modulation

Phase Modulation

Modulation

Page 12: Communication Theory as Wireless Sensor Networks

10/1/2008

12

SNR Performance

ModulationFig. Lathi

Digital Methods

Digital Modulation

Page 13: Communication Theory as Wireless Sensor Networks

10/1/2008

13

Quadrature Modulation

Digital Modulation

BPSK

Digital Modulation

Page 14: Communication Theory as Wireless Sensor Networks

10/1/2008

14

QPSK

Digital Modulation

Constellation Plots

Digital Modulation

Page 15: Communication Theory as Wireless Sensor Networks

10/1/2008

15

BER Performance vs. Modulation Method

Digital ModulationFig. Lathi

BER Performance vs. Number of Symbols

Digital ModulationFig. Lathi

Page 16: Communication Theory as Wireless Sensor Networks

10/1/2008

16

Outline

• Sensor network constraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Source Coding

• Motivation

• Lossless

• Lossy

Source Coding

Page 17: Communication Theory as Wireless Sensor Networks

10/1/2008

17

Lossless Compression

• Zip files

• Entropy coding (e.g., Huffman code)

Source Coding

Lossless Compression Approaches for Sensor Networks

• Constraints

• Run length coding

• Sending only changes in data

Source Coding

Page 18: Communication Theory as Wireless Sensor Networks

10/1/2008

18

Lossy Compression

• Rate distortion theory (general principles)

• JPEG

Source Coding

Example of Lossy Compression ‐JPEG

Page 19: Communication Theory as Wireless Sensor Networks

10/1/2008

19

Another comparison

Lossy Compression Approachesfor Sensor Networks

• Constraints

• Transformations / Mathematical Operations

• Predictive coding / Modeling

Source Coding

Page 20: Communication Theory as Wireless Sensor Networks

10/1/2008

20

Example Actions by Nodes

• Adaptive Sampling

• Censoring

Source Coding

In‐Network Processing

• Data Aggregation

Source Coding

Page 21: Communication Theory as Wireless Sensor Networks

10/1/2008

21

Outline

• Sensor network contraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Channel Coding (FEC)

• Motivation

• Block codes

• Convolution codes

Channel Coding

Page 22: Communication Theory as Wireless Sensor Networks

10/1/2008

22

Channel Coding Approachesfor Sensor Networks

• Coding constraints

• Block coding

Channel Coding

Example: Systematic Block Code

Channel Coding

Page 23: Communication Theory as Wireless Sensor Networks

10/1/2008

23

Alternative: Error Detection

• Motivation

• CRC

Channel Coding

Performance

• Benefits

• Costs

Channel CodingFig. Lathi

Page 24: Communication Theory as Wireless Sensor Networks

10/1/2008

24

Outline

• Sensor network contraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Sharing Spectrum

MACFig. Frolik (2007)

Page 25: Communication Theory as Wireless Sensor Networks

10/1/2008

25

MAC

• Motivation

• Contention‐based

• Contention‐free

MAC

ALOHA (ultimate in contention)

• Method

• Advantages

• Disadvantages

MAC

Page 26: Communication Theory as Wireless Sensor Networks

10/1/2008

26

CSMA (contentious but polite)

• Method

• Advantages

• Disadvantages

MAC

Throughput comparison

MAC

Page 27: Communication Theory as Wireless Sensor Networks

10/1/2008

27

Contention Free Approaches

• RTS/CTS

• Reservations

MAC

MAC for Sensor Networks: 802.15.4

• Beacon enabled mode for star networks

MAC

Page 28: Communication Theory as Wireless Sensor Networks

10/1/2008

28

Bandwidth details: 802.15.4

• 2.4 GHz band (2.40‐2.48 GHz)

• Sixteen channels spaced at 5 MHz (CH 11 – 26)

• Data rate – 250 kbps

• Direct sequence spread spectrum (DSSS) 

• 4 bits → symbol → 32 chip sequence

• Chip rate of 2 Mcps

• Modulation – O‐QPSK

• Total bandwidth requirement: ~3 MHzMAC

DSSS

• Motivation

• Operation

MAC

Page 29: Communication Theory as Wireless Sensor Networks

10/1/2008

29

Outline

• Sensor network contraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Synchronization

• Motivation

• Categories

Synchronization

Page 30: Communication Theory as Wireless Sensor Networks

10/1/2008

30

Node Scheduling

• Sleep

• Listening

• Transmitting

Synchronization

Sleep Scheduling for Sensor Networks: S‐MAC

Synchronization

Page 31: Communication Theory as Wireless Sensor Networks

10/1/2008

31

Synchronizing for Effective Communications

• Carrier

• Bit/Symbol

• Frame

Synchronization

Outline

• Sensor network contraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Page 32: Communication Theory as Wireless Sensor Networks

10/1/2008

32

Putting the Pieces Together

Synthesis: Energy and Bandwidth

• M‐ary Signaling

• Channel Coding

Energy & Bandwidth

Page 33: Communication Theory as Wireless Sensor Networks

10/1/2008

33

Sensor Network Example 1: Single vs. Multihop

• Multihop

• Single hop

Energy & Bandwidth

Sensor Network Example 2: Polling vs. Pushing

• Polling

• Pushing

Energy & Bandwidth

Page 34: Communication Theory as Wireless Sensor Networks

10/1/2008

34

Conclusions

• A digital communications approach to WSN h d t i b t dhas advantages in robustness, energy, and bandwidth performance

• Source coding reduces overall system level energy requirements

• Simple channel coding schemes improve dataSimple channel coding schemes improve data reliability minimizing the need for retransmissions

muse

Conclusions ‐ 2

• MAC  and routing strategies should be chosen ith t d t k hit twith an eye towards network architecture –

cross‐layer design 

• Node synchronization must occur regularly due to clock drift between nodes

• Simple digital communication techniquesSimple digital communication techniques enable low‐energy, low‐bandwidth WSN system requirements

muse

Page 35: Communication Theory as Wireless Sensor Networks

10/1/2008

35

What to know more?

• B. Lathi, Modern Analog and Digital C i ti S t 3rd d O f d 1998Communication Systems, 3rd ed., Oxford, 1998.

• B. Krishnamachari, Networking Wireless Sensors,  Cambridge Press, 2005.

• J. Frolik, “Implementation Handheld, RF Test Equipment in the Classroom and the Field ”Equipment in the Classroom and the Field,IEEE Trans. Education, Vol. 50, No. 3, August 2007.