Top Banner
10/1/2008 1 Communication Theory as Communication Theory as Applied to Wireless Sensor Networks muse Objectives Understand the constraints of WSN and how i ti th hi i fl d communication theory choices are influenced by them Understand the choice of digital over analog schemes Understand the choice of digital phase Understand the choice of digital phase modulation methods over frequency or amplitude schemes muse
35

Communication Theory as Wireless Sensor Networks

Nov 06, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Communication Theory as Wireless Sensor Networks

10/1/2008

1

Communication Theory asCommunication Theory as Applied to Wireless Sensor 

Networks

muse

Objectives

• Understand the constraints of WSN and how i ti th h i i fl dcommunication theory choices are influenced 

by them

• Understand the choice of digital over analog schemes

• Understand the choice of digital phaseUnderstand the choice of digital phase modulation methods over frequency or amplitude schemes

muse

Page 2: Communication Theory as Wireless Sensor Networks

10/1/2008

2

Objectives (cont.)

• Understand the cost/benefits of implementing source and channel coding for sensorsource and channel coding for sensor networks

• Understand fundamental MAC concepts• Grasp the importance of node synchronization• Synthesize through examples these concepts to understand impact on energy and bandwidth requirements

muse

Outline

• Sensor network constraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Page 3: Communication Theory as Wireless Sensor Networks

10/1/2008

3

WSN Communication Constraints

• Energy!

Communication constraints

Data Collection Costs

• Sensors

• Activation

• Conditioning

• A/D

Communication constraints

Page 4: Communication Theory as Wireless Sensor Networks

10/1/2008

4

Computation Costs

• Node life support

• Simple data processing

• Censoring and Aggregation

• Source/Channel coding

Communication constraints

Communication Costs

current ~= 1.0313 * rf_power + 20.618R2 = 0.9572

30

35

n (m

A)

Communication constraints

15

20

25

-10 -5 0 5 10

RF Transmit Power (dBm)

Cur

rent

Con

sum

ptio

n

Page 5: Communication Theory as Wireless Sensor Networks

10/1/2008

5

Putting it all together

Communication constraints

Outline

• Sensor network constraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Page 6: Communication Theory as Wireless Sensor Networks

10/1/2008

6

Modulation

• Review

• Motivation for Digital

Modulation

The Carrier

Modulation

Page 7: Communication Theory as Wireless Sensor Networks

10/1/2008

7

Amplitude Modulation (AM)

DSB‐SC (double sideband – suppressed carrier)

Modulation

Frequency representation for DSB‐SC (the math)

Modulation

Page 8: Communication Theory as Wireless Sensor Networks

10/1/2008

8

Frequency representation for DSB‐SC (the cartoon)

Modulation

Demodulation – coherent receiver

Modulation

Page 9: Communication Theory as Wireless Sensor Networks

10/1/2008

9

DSB‐LC (or AM as we know it)

Modulation

Frequency representationof DSB‐LC

Modulation

Page 10: Communication Theory as Wireless Sensor Networks

10/1/2008

10

Amplitude Modulation

Modulation

Frequency Modulation (FM)

Modulation

Page 11: Communication Theory as Wireless Sensor Networks

10/1/2008

11

Frequency Modulation

Modulation

Phase Modulation

Modulation

Page 12: Communication Theory as Wireless Sensor Networks

10/1/2008

12

SNR Performance

ModulationFig. Lathi

Digital Methods

Digital Modulation

Page 13: Communication Theory as Wireless Sensor Networks

10/1/2008

13

Quadrature Modulation

Digital Modulation

BPSK

Digital Modulation

Page 14: Communication Theory as Wireless Sensor Networks

10/1/2008

14

QPSK

Digital Modulation

Constellation Plots

Digital Modulation

Page 15: Communication Theory as Wireless Sensor Networks

10/1/2008

15

BER Performance vs. Modulation Method

Digital ModulationFig. Lathi

BER Performance vs. Number of Symbols

Digital ModulationFig. Lathi

Page 16: Communication Theory as Wireless Sensor Networks

10/1/2008

16

Outline

• Sensor network constraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Source Coding

• Motivation

• Lossless

• Lossy

Source Coding

Page 17: Communication Theory as Wireless Sensor Networks

10/1/2008

17

Lossless Compression

• Zip files

• Entropy coding (e.g., Huffman code)

Source Coding

Lossless Compression Approaches for Sensor Networks

• Constraints

• Run length coding

• Sending only changes in data

Source Coding

Page 18: Communication Theory as Wireless Sensor Networks

10/1/2008

18

Lossy Compression

• Rate distortion theory (general principles)

• JPEG

Source Coding

Example of Lossy Compression ‐JPEG

Page 19: Communication Theory as Wireless Sensor Networks

10/1/2008

19

Another comparison

Lossy Compression Approachesfor Sensor Networks

• Constraints

• Transformations / Mathematical Operations

• Predictive coding / Modeling

Source Coding

Page 20: Communication Theory as Wireless Sensor Networks

10/1/2008

20

Example Actions by Nodes

• Adaptive Sampling

• Censoring

Source Coding

In‐Network Processing

• Data Aggregation

Source Coding

Page 21: Communication Theory as Wireless Sensor Networks

10/1/2008

21

Outline

• Sensor network contraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Channel Coding (FEC)

• Motivation

• Block codes

• Convolution codes

Channel Coding

Page 22: Communication Theory as Wireless Sensor Networks

10/1/2008

22

Channel Coding Approachesfor Sensor Networks

• Coding constraints

• Block coding

Channel Coding

Example: Systematic Block Code

Channel Coding

Page 23: Communication Theory as Wireless Sensor Networks

10/1/2008

23

Alternative: Error Detection

• Motivation

• CRC

Channel Coding

Performance

• Benefits

• Costs

Channel CodingFig. Lathi

Page 24: Communication Theory as Wireless Sensor Networks

10/1/2008

24

Outline

• Sensor network contraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Sharing Spectrum

MACFig. Frolik (2007)

Page 25: Communication Theory as Wireless Sensor Networks

10/1/2008

25

MAC

• Motivation

• Contention‐based

• Contention‐free

MAC

ALOHA (ultimate in contention)

• Method

• Advantages

• Disadvantages

MAC

Page 26: Communication Theory as Wireless Sensor Networks

10/1/2008

26

CSMA (contentious but polite)

• Method

• Advantages

• Disadvantages

MAC

Throughput comparison

MAC

Page 27: Communication Theory as Wireless Sensor Networks

10/1/2008

27

Contention Free Approaches

• RTS/CTS

• Reservations

MAC

MAC for Sensor Networks: 802.15.4

• Beacon enabled mode for star networks

MAC

Page 28: Communication Theory as Wireless Sensor Networks

10/1/2008

28

Bandwidth details: 802.15.4

• 2.4 GHz band (2.40‐2.48 GHz)

• Sixteen channels spaced at 5 MHz (CH 11 – 26)

• Data rate – 250 kbps

• Direct sequence spread spectrum (DSSS) 

• 4 bits → symbol → 32 chip sequence

• Chip rate of 2 Mcps

• Modulation – O‐QPSK

• Total bandwidth requirement: ~3 MHzMAC

DSSS

• Motivation

• Operation

MAC

Page 29: Communication Theory as Wireless Sensor Networks

10/1/2008

29

Outline

• Sensor network contraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Synchronization

• Motivation

• Categories

Synchronization

Page 30: Communication Theory as Wireless Sensor Networks

10/1/2008

30

Node Scheduling

• Sleep

• Listening

• Transmitting

Synchronization

Sleep Scheduling for Sensor Networks: S‐MAC

Synchronization

Page 31: Communication Theory as Wireless Sensor Networks

10/1/2008

31

Synchronizing for Effective Communications

• Carrier

• Bit/Symbol

• Frame

Synchronization

Outline

• Sensor network contraints

• Digital modulation

• Source coding and Channel coding

• MAC

• Synchronization

• Synthesis: Energy and bandwidth requirements

Page 32: Communication Theory as Wireless Sensor Networks

10/1/2008

32

Putting the Pieces Together

Synthesis: Energy and Bandwidth

• M‐ary Signaling

• Channel Coding

Energy & Bandwidth

Page 33: Communication Theory as Wireless Sensor Networks

10/1/2008

33

Sensor Network Example 1: Single vs. Multihop

• Multihop

• Single hop

Energy & Bandwidth

Sensor Network Example 2: Polling vs. Pushing

• Polling

• Pushing

Energy & Bandwidth

Page 34: Communication Theory as Wireless Sensor Networks

10/1/2008

34

Conclusions

• A digital communications approach to WSN h d t i b t dhas advantages in robustness, energy, and bandwidth performance

• Source coding reduces overall system level energy requirements

• Simple channel coding schemes improve dataSimple channel coding schemes improve data reliability minimizing the need for retransmissions

muse

Conclusions ‐ 2

• MAC  and routing strategies should be chosen ith t d t k hit twith an eye towards network architecture –

cross‐layer design 

• Node synchronization must occur regularly due to clock drift between nodes

• Simple digital communication techniquesSimple digital communication techniques enable low‐energy, low‐bandwidth WSN system requirements

muse

Page 35: Communication Theory as Wireless Sensor Networks

10/1/2008

35

What to know more?

• B. Lathi, Modern Analog and Digital C i ti S t 3rd d O f d 1998Communication Systems, 3rd ed., Oxford, 1998.

• B. Krishnamachari, Networking Wireless Sensors,  Cambridge Press, 2005.

• J. Frolik, “Implementation Handheld, RF Test Equipment in the Classroom and the Field ”Equipment in the Classroom and the Field,IEEE Trans. Education, Vol. 50, No. 3, August 2007.