Top Banner
VIBRACIONES MECANICAS
19

Vibraciones mecanicas

Apr 12, 2017

Download

Education

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Vibraciones mecanicas

VIBRACIONES MECANICAS

Page 2: Vibraciones mecanicas

VIBRACION Se dice que un cuerpo vibra cuando

experimenta cambios alternativos, de tal modo que sus puntos oscilen sincrónicamente en torno a sus posiciones de equilibrio, sin que el campo cambie de lugar.

Page 3: Vibraciones mecanicas

Este intercambio de energía puede ser producido por: 

Como otro concepto de vibración, se puede decir que es un intercambio de energía cinética en cuerpos con rigidez y masas finitas, el cual surge de una entrada de energía dependiente del tiempo.

Desequilibrio en

máquinas rotatorias

Entrada de Energía Acústica

*Circulación de

Fluidos o masas

Energía Electromagnética

*

Page 4: Vibraciones mecanicas

El sistema ideal más sencillo consiste de una masa única, un resorte único y un amortiguador como se muestra en la figura. Este sistema se define como un sistema de un grado de libertad.

𝑚𝑥´ ´+𝑐 𝑥 ´+𝑘𝑥= 𝑓 (𝑡)

Page 5: Vibraciones mecanicas

Cualquier sistema de un solo grado de libertad puede describirse por medio de la misma forma de ecuación diferencial escrita anteriormente, si la fuerza del resorte es proporcional al desplazamiento y la fuerza de rozamiento es proporcional a la velocidad. Para el sistema general de un solo grado de libertad podemos escribir:

𝑚𝑒 𝑥´ ´+𝑐𝑒𝑥 ´+𝑘𝑒𝑥= 𝑓 (𝑡)

Donde me ,ce, ke son la masa equivalente, la constante de amortiguamiento equivalente y la constante del resorte equivalente, respectivamente. El desplazamiento X puede ser lineal o angular.

Page 6: Vibraciones mecanicas

CLASIFICACION DE LAS VIBRACIONES

Las vibraciones son libres cuando no existen fuerzas o acciones exteriores directamente aplicadas al sistema a lo largo del tiempo.

Las vibraciones son forzadas cuando existen acciones o excitaciones directamente aplicadas al sistema a lo largo del tiempo, además de las fuerzas o momentos internos.

Page 7: Vibraciones mecanicas

Las vibraciones mecánicas pueden clasificarse desde diferentes puntos de vistas dependiendo de: a) la excitación, b) la disipación de energía, c) la linealidad de los elementos y d) de las características de la señal.

Page 8: Vibraciones mecanicas

Una Vibración libre es cuando un sistema vibra debido a una excitación del tipo instantánea, mientras que la vibración forzada se debe a una excitación del tipo permanente.

Esta importante clasificación nos dice que un sistema vibra libremente si solo existen condiciones iniciales del movimiento, ya sea que suministremos la energía por medio de un impulso (energía cinética) o debido a que posee energía potencial, por ejemplo deformación inicial de un resorte.

Page 9: Vibraciones mecanicas

El amortiguamiento es un sinónimo de la perdida de energía de sistemas vibratorios y se manifiesta con la disminución del desplazamiento de vibración. Este hecho puede aparecer como parte del comportamiento interno de un material por ejemplo la fricción, o bien, o como un elemento físico llamado precisamente amortiguador.

Por lo tanto, la vibración amortiguada es aquella en la que la frecuencia de oscilación de un sistema se ve afectada por la disipación de la energía, pero cuando la disipación de energía no afecta considerablemente a la frecuencia de oscilación entonces la vibración es del tipo no amortiguada.

Page 10: Vibraciones mecanicas

Si el comportamiento de cada uno de los parámetros de los componentes básicos de un sistema es del tipo lineal la vibración resultante es lineal, en caso contrario será del tipo no lineal. En la realidad todo elemento se comporta como un elemento no lineal pero si bajo ciertas condiciones se puede considerar como un elemento lineal, entonces el análisis se facilita considerablemente.

Por ejemplo, un resorte helicoidal en donde según la ley de Hooke el comportamiento fuerza-deformación es lineal aunque en la realidad los resortes helicoidales tienen un comportamiento no lineal pero este que puede ser aproximado a un elemento lineal y facilitar su estudio sin afectar considerablemente el comportamiento real.

Page 11: Vibraciones mecanicas

VIBRACIONES FORZADAS NO

AMORTIGUADAS

Page 12: Vibraciones mecanicas

Para mantener un sistema oscilando es necesario suministrar energía al sistema, cuando esto se lleva a cabo se dice que la vibración es forzada.

Si se introduce energía en el sistema a un ritmo mayor del que se disipa, la energía aumenta con el tiempo, lo que se manifiesta por un aumento de la amplitud del movimiento. Si la energía se proporciona al mismo ritmo que se disipa, la amplitud permanece constante con el tiempo.

 La ecuación diferencial del movimiento, teniendo en cuenta que la fuerza es de tipo periódico, es: 

𝑚𝑥′ ′+𝑘𝑥=𝐹=𝐹 0 cos𝜔𝑡

Page 13: Vibraciones mecanicas

La ecuación característica es 𝑚𝑟2+𝑘=0

las raíces de esta ecuación son imaginarias conjugadas

la solución general de la homogénea es

.

Page 14: Vibraciones mecanicas

La solución particular de la completa es . Así, la solución general tiene por expresión:

𝑥=𝑎 cos (𝑤𝑛𝑡+𝜑 )+

𝐹𝑜

𝑘

1− 𝑤2

𝑤𝑛2

Page 15: Vibraciones mecanicas

En todo sistema no amortiguado y forzado armónicamente, el movimiento resultante se compone de la suma de dos armónicos, uno de frecuencia natural y otro de frecuencia de la fuerza exterior .

La amplitud del primero depende de las condiciones iniciales y se anula para unos valores particulares, la amplitud del segundo depende de la proximidad de ambas frecuencias a través de la expresión denominada factor de resonancia:

𝜌=1

1−𝑤2

𝑤02

=𝐴𝑥𝑐𝑠𝑡

Page 16: Vibraciones mecanicas

BATIMIENTO

Fenómeno producido cuando la frecuencia natural del sistema toma un valor muy próximo a la frecuencia de la fuerza exterior , es decir, en el caso particular en que . Para perturbación inicial nula se obtiene:

 

𝑥=𝐹𝑜𝑤0

𝑘∆𝜔 sin ∆𝜔2

𝑡 sin𝑤0 𝑡

Page 17: Vibraciones mecanicas

RESONANCIA

Una característica muy significativa del movimiento oscilatorio tiene lugar cuando la fuerza excitadora de las vibraciones tiene unas frecuencias particulares, para cada sistema dado, produciéndose cambios de configuración de los sistemas mecánicos que alcanzan amplitudes notables, y generalmente, ocasionan un fallo estructural del material sometido a esfuerzos de rotura: efectos resonantes.

Este riesgo se produce incluso con fuerzas excitadoras muy pequeñas ya que depende de las características del material sometido a vibración.

Page 18: Vibraciones mecanicas

Cuando la frecuencia de la fuerza exterior es igual a la frecuencia natural del sistema , es decir, cuando , se produce la resonancia, la ecuación que rige dicho fenómeno es:

𝑥=𝐹0𝜔2𝑘 𝑡 sin𝜔𝑛𝑡

Expresión que corresponde a un movimiento armónico de frecuencia y cuya amplitud tiende a infinito cuando .

Page 19: Vibraciones mecanicas

GRACIAS