Top Banner
The Future of Solar: Towards Resilient Smart Solar Cities Andreas K. Athienitis Scientific Director, NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) NSERC/Hydro Quebec Industrial Chair and Concordia Chair Concordia University www.solarbuildings.ca
27

The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Sep 25, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

The Future of Solar Towards Resilient Smart Solar Cities

Andreas K Athienitis

Scientific Director NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

NSERCHydro Quebec Industrial Chair and Concordia Chair Concordia University

wwwsolarbuildingsca

2

Canadian Energy amp Buildings Picture

bull Energy use in buildings in Canada

bull Close to one third of total secondary energy use

bull Close to one third of GHG emissions

bull Buildings consume about 53 of electricity production

bull Electrical Energy picture changes between provinces bull Quebec and BC - mainly hydro bull Ontario - fossil fuelsnuclear and recently introduced incentives

for renewables

bull Building industry is fragmented with pockets of excellence

Introduction to Energy and Buildings early technological developments

bull Building evolution as protected indoor environments with increasingly higher levels of indoor environment control

bull Increased levels of health wellbeing and productivity contributing to our modern way of life

bull One early invention was electrical air-conditioning unit (Carrier 1902) and the Heat Pump

bull Coal- oil- and gas-fired furnaces

Basic heat pump unit 1 watt of electricity produces about 4 watts of heat or coolness

Wikipedia

3

Example AC unit

Introduction The building itself - housing

bull Passive solar design ndash near-south facing windows (known since Roman times - but challenges remain)

bull Buildings used a lot of stone and bricks (until ~50 years ago) but have recently evolved to use more insulation and better windows ndash aided by incentive programs amp standards (R2000)

bull Canada has been a leader in energy efficient housing such as the Saskatchewan Conservation House (1977) and more recently the EQuilibrium Houses

Saskatchewan Conservation House (1977)

EcoTerraTM first EQuilibriumTM Demonstration House (2007) 4

Solar technology in 20th Century bull Active Solar Heating solar

collectors for water and space heating solar air collectors

bull Solar Photovoltaic Modules ndash space applications then off-grid and now grid-connected systems and building-integrated

Source IPCC 5

Residential energy use in Canada

0

5000

10000

15000

20000

25000

30000

35000

40000

Conventional R2000 AdvancedHouses

Ener

gy C

onsu

mpt

ion

(kW

h)

Space CoolingLightingAppliancesWater HeatingSpace Heating

A net-zero energy house produces from on-site renewables as much energy as it consumes in a year

Fact The annual solar energy incident on a roof of a typical house far exceeds its total energy consumption

6

Source NRCan

Chart1

Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Energy generation
Energy consumption and energy generation (kWh)
Net- zero energy house
1210782979151
56275177247
37856
3800
720

Sheet1

tempmodify according to the latest simulations

Sheet1

Annual heating load
Annual Cooling load
kWh

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Annual heating load Annual Cooling load Electricity generation
kWh kWh
Rectangle 25058802606608 13437970806145
Rotation of rectangle Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use
Heating Cooling Heating and cooling demand Heating + cooling consumption
60E 3099349757892 23113065281577 774837439473 5778266320394 39900810534781 54106562860497 13526640715124
45E 29391478364572 18439387733344 7347869591143 4609846933336 45704095331962 47830866097917 11957716524479
30E 27223260217425 15897531852876 6805815054356 3974382963219 47464991056227 43120792070302 10780198017575
20E 26021540064031 1432154226647 6505385016008 3580385566618 48246776834602 40343082330501 10085770582625
0 25058802606608 13437970806145 6264700651652 3359492701536 48870442641624 38496773412753 9624193353188
20W 2640882518295 1432154226647 6602206295737 3580385566618 48280206878435 4073036744942 10182591862355
30W 27269508246704 16846684084202 6817377061676 4211671021051 47518613061442 44116192330907 11029048082727 09723385035
45W 29619115780271 19382131792435 7404778945068 4845532948109 45777218857081 49001247572706 12250311893176 09367056319
60W 31957628985771 21150228280229 7989407246443 5287557070057 43401331161912 53107857266 132769643165 08880895858
L shape 26854456952211 1402624055218 16448456072335 38164116293427 54612572365762
Annual energy consumption- Annual energy consumption- V-E60 V-E30 L shape V-W30 V-W60
Beta= L shape variaitons Heating Cooling
V-E60 30242768609772 13825085054788 7560692152443 3456271263697 17963388127643 48175055845673 66138443973316 4406785366456 Heating 7560692152443 6692296728288 6713614238053 6743411128489 737782734643
V-E30 26769186913153 15984953997895 6692296728288 3996238499474 15806863130326 4597149100006 61778354130386 42754140911048 Cooling 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015
L shape 26854456952211 1402624055218 6713614238053 3506560138045 16448456072335 38164116293427 54612572365762 40880697504391 Annual energy generation 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319
V-W30 26973644513954 16016441540975 6743411128489 4004110385244 15823892065942 4597149100006 61795383066002 42990086054929
V-W60 29511309385718 1397043358406 737782734643 3492608396015 1766311745752 49670889441799 67334006899319 43481742969778
Obtuse 24539815037969 1450411927778 5352437326095
Basic units site I and II
Heating Cooling
Rectangle 25058802606608 13437970806145
L shape 26854456952211 1402624055218 10716576276 10437766799
L variant-V-30W 26973644513954 16016441540975 10764139427 11918794714
Obtuse angle 24539815037969 1450411927778 09792892112 10793385018
average use of energy over site I comparison between config
Site I Heating cooling COMPARISON TO isolated units
U1 U2 U3 heating cooling
Rectangle-3 Units 27104250651882 8906023855591 27985147543312 6784801302987 26178587382207 9883221683189 108 066 112 050 104 074 270893285258 8524682280589 35614010806389
L shape -3 units 2865156331 1046960726 3010798256 7395098382 2810227473 1057107578 107 075 112 053 105 075 289539402 9478593807333 38432534007333 107 111
Lshape 30W 27921312429088 13826836546494 2897423839952 101340184936 28536922834693 11021477033164 104 086 107 063 106 069 284774912211 11660777357753 40138268578853 105 137
average use of energy over site I Total use comparison between config comparison to site I
Site II U1 U2 U3 U4 U5
26013609598892 14637722319316 0 32105972549989 12570951282465 30476007242569 11067707353132 0 30455371932949 9517403533486 0 26303448797559 11603255475399 0 10381026583 10892807054 12812253264 09354798774 122 082 12153562327 07082470762 10496690209 08634678288 29070882024392 1187940799276 40950290017151 107 139
U1 U2 U3 U4 U5 0 107 124
Obtuse 274220154868 20478460752656 30799879310547 12390767281661 29686970096052 7518748581402 2980595567526 12355273540389 27417810468526 20089865253081 121 052 29026526207437 14566623081838 43593149289275 100 123
U1 U2 U3 U4 U5 0
L shape 27658559378618 19794018547919 32767646613068 11585982433237 30889617282878 10009892503048 32857718540798 11538190308054 27856029153286 19406666542664 09372189833 14168506961 12148023452 07233805589 115 071 12274455196 07218156718 09210806561 1403728546 30405914193729 14466950066984 44872864260714 105 122
COMPARISON of mid unit TO isolated units
Site I Sit II
Comparison to rect Rctangle 112 050 Rectangle 122 082 comparison between config
L shape 112 053 L variant 115 071 Site I Site II
L variant 107 063 Obtuse 121 052 Relative rectangular configuration
Shaded Lvariant up to 20 mor demand in heat ans 28 less in cooling load L shape 107 111 L variant 10459233458 12178174262
L30W 105 137 Obtuse angle 09984742184 12262078288
Site I Site II-
Site I Site II-
Annual generation Total use Annual generation Total use Rectangle L shape L variant rectangle L variant Obtuse
Rectangle 497783 356140 482763 40950290017151 rectangle Annual generation 497783 573111 617635 482763 641592 581850
L shape 573111 38432534007333 641592 43593149289275 L variant Total energy use 356140 38432534007333 40138268578853 40950290017151 43593149289275 44872864260714
L variant 617635 40138268578853 581850 44872864260714 Obtuse
Montreal Heating DD (below 18 Deg C) httpwwwtheweathernetworkcomstatisticsdegreedayscl7025250
january february march april may june july august september october november december
875 747 628 369 157 43 8 21 117 308 492 754
Total Heating DD
4519
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
97740885283248
Page 2: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

2

Canadian Energy amp Buildings Picture

bull Energy use in buildings in Canada

bull Close to one third of total secondary energy use

bull Close to one third of GHG emissions

bull Buildings consume about 53 of electricity production

bull Electrical Energy picture changes between provinces bull Quebec and BC - mainly hydro bull Ontario - fossil fuelsnuclear and recently introduced incentives

for renewables

bull Building industry is fragmented with pockets of excellence

Introduction to Energy and Buildings early technological developments

bull Building evolution as protected indoor environments with increasingly higher levels of indoor environment control

bull Increased levels of health wellbeing and productivity contributing to our modern way of life

bull One early invention was electrical air-conditioning unit (Carrier 1902) and the Heat Pump

bull Coal- oil- and gas-fired furnaces

Basic heat pump unit 1 watt of electricity produces about 4 watts of heat or coolness

Wikipedia

3

Example AC unit

Introduction The building itself - housing

bull Passive solar design ndash near-south facing windows (known since Roman times - but challenges remain)

bull Buildings used a lot of stone and bricks (until ~50 years ago) but have recently evolved to use more insulation and better windows ndash aided by incentive programs amp standards (R2000)

bull Canada has been a leader in energy efficient housing such as the Saskatchewan Conservation House (1977) and more recently the EQuilibrium Houses

Saskatchewan Conservation House (1977)

EcoTerraTM first EQuilibriumTM Demonstration House (2007) 4

Solar technology in 20th Century bull Active Solar Heating solar

collectors for water and space heating solar air collectors

bull Solar Photovoltaic Modules ndash space applications then off-grid and now grid-connected systems and building-integrated

Source IPCC 5

Residential energy use in Canada

0

5000

10000

15000

20000

25000

30000

35000

40000

Conventional R2000 AdvancedHouses

Ener

gy C

onsu

mpt

ion

(kW

h)

Space CoolingLightingAppliancesWater HeatingSpace Heating

A net-zero energy house produces from on-site renewables as much energy as it consumes in a year

Fact The annual solar energy incident on a roof of a typical house far exceeds its total energy consumption

6

Source NRCan

Chart1

Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Energy generation
Energy consumption and energy generation (kWh)
Net- zero energy house
1210782979151
56275177247
37856
3800
720

Sheet1

tempmodify according to the latest simulations

Sheet1

Annual heating load
Annual Cooling load
kWh

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Annual heating load Annual Cooling load Electricity generation
kWh kWh
Rectangle 25058802606608 13437970806145
Rotation of rectangle Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use
Heating Cooling Heating and cooling demand Heating + cooling consumption
60E 3099349757892 23113065281577 774837439473 5778266320394 39900810534781 54106562860497 13526640715124
45E 29391478364572 18439387733344 7347869591143 4609846933336 45704095331962 47830866097917 11957716524479
30E 27223260217425 15897531852876 6805815054356 3974382963219 47464991056227 43120792070302 10780198017575
20E 26021540064031 1432154226647 6505385016008 3580385566618 48246776834602 40343082330501 10085770582625
0 25058802606608 13437970806145 6264700651652 3359492701536 48870442641624 38496773412753 9624193353188
20W 2640882518295 1432154226647 6602206295737 3580385566618 48280206878435 4073036744942 10182591862355
30W 27269508246704 16846684084202 6817377061676 4211671021051 47518613061442 44116192330907 11029048082727 09723385035
45W 29619115780271 19382131792435 7404778945068 4845532948109 45777218857081 49001247572706 12250311893176 09367056319
60W 31957628985771 21150228280229 7989407246443 5287557070057 43401331161912 53107857266 132769643165 08880895858
L shape 26854456952211 1402624055218 16448456072335 38164116293427 54612572365762
Annual energy consumption- Annual energy consumption- V-E60 V-E30 L shape V-W30 V-W60
Beta= L shape variaitons Heating Cooling
V-E60 30242768609772 13825085054788 7560692152443 3456271263697 17963388127643 48175055845673 66138443973316 4406785366456 Heating 7560692152443 6692296728288 6713614238053 6743411128489 737782734643
V-E30 26769186913153 15984953997895 6692296728288 3996238499474 15806863130326 4597149100006 61778354130386 42754140911048 Cooling 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015
L shape 26854456952211 1402624055218 6713614238053 3506560138045 16448456072335 38164116293427 54612572365762 40880697504391 Annual energy generation 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319
V-W30 26973644513954 16016441540975 6743411128489 4004110385244 15823892065942 4597149100006 61795383066002 42990086054929
V-W60 29511309385718 1397043358406 737782734643 3492608396015 1766311745752 49670889441799 67334006899319 43481742969778
Obtuse 24539815037969 1450411927778 5352437326095
Basic units site I and II
Heating Cooling
Rectangle 25058802606608 13437970806145
L shape 26854456952211 1402624055218 10716576276 10437766799
L variant-V-30W 26973644513954 16016441540975 10764139427 11918794714
Obtuse angle 24539815037969 1450411927778 09792892112 10793385018
average use of energy over site I comparison between config
Site I Heating cooling COMPARISON TO isolated units
U1 U2 U3 heating cooling
Rectangle-3 Units 27104250651882 8906023855591 27985147543312 6784801302987 26178587382207 9883221683189 108 066 112 050 104 074 270893285258 8524682280589 35614010806389
L shape -3 units 2865156331 1046960726 3010798256 7395098382 2810227473 1057107578 107 075 112 053 105 075 289539402 9478593807333 38432534007333 107 111
Lshape 30W 27921312429088 13826836546494 2897423839952 101340184936 28536922834693 11021477033164 104 086 107 063 106 069 284774912211 11660777357753 40138268578853 105 137
average use of energy over site I Total use comparison between config comparison to site I
Site II U1 U2 U3 U4 U5
26013609598892 14637722319316 0 32105972549989 12570951282465 30476007242569 11067707353132 0 30455371932949 9517403533486 0 26303448797559 11603255475399 0 10381026583 10892807054 12812253264 09354798774 122 082 12153562327 07082470762 10496690209 08634678288 29070882024392 1187940799276 40950290017151 107 139
U1 U2 U3 U4 U5 0 107 124
Obtuse 274220154868 20478460752656 30799879310547 12390767281661 29686970096052 7518748581402 2980595567526 12355273540389 27417810468526 20089865253081 121 052 29026526207437 14566623081838 43593149289275 100 123
U1 U2 U3 U4 U5 0
L shape 27658559378618 19794018547919 32767646613068 11585982433237 30889617282878 10009892503048 32857718540798 11538190308054 27856029153286 19406666542664 09372189833 14168506961 12148023452 07233805589 115 071 12274455196 07218156718 09210806561 1403728546 30405914193729 14466950066984 44872864260714 105 122
COMPARISON of mid unit TO isolated units
Site I Sit II
Comparison to rect Rctangle 112 050 Rectangle 122 082 comparison between config
L shape 112 053 L variant 115 071 Site I Site II
L variant 107 063 Obtuse 121 052 Relative rectangular configuration
Shaded Lvariant up to 20 mor demand in heat ans 28 less in cooling load L shape 107 111 L variant 10459233458 12178174262
L30W 105 137 Obtuse angle 09984742184 12262078288
Site I Site II-
Site I Site II-
Annual generation Total use Annual generation Total use Rectangle L shape L variant rectangle L variant Obtuse
Rectangle 497783 356140 482763 40950290017151 rectangle Annual generation 497783 573111 617635 482763 641592 581850
L shape 573111 38432534007333 641592 43593149289275 L variant Total energy use 356140 38432534007333 40138268578853 40950290017151 43593149289275 44872864260714
L variant 617635 40138268578853 581850 44872864260714 Obtuse
Montreal Heating DD (below 18 Deg C) httpwwwtheweathernetworkcomstatisticsdegreedayscl7025250
january february march april may june july august september october november december
875 747 628 369 157 43 8 21 117 308 492 754
Total Heating DD
4519
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
97740885283248
Page 3: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Introduction to Energy and Buildings early technological developments

bull Building evolution as protected indoor environments with increasingly higher levels of indoor environment control

bull Increased levels of health wellbeing and productivity contributing to our modern way of life

bull One early invention was electrical air-conditioning unit (Carrier 1902) and the Heat Pump

bull Coal- oil- and gas-fired furnaces

Basic heat pump unit 1 watt of electricity produces about 4 watts of heat or coolness

Wikipedia

3

Example AC unit

Introduction The building itself - housing

bull Passive solar design ndash near-south facing windows (known since Roman times - but challenges remain)

bull Buildings used a lot of stone and bricks (until ~50 years ago) but have recently evolved to use more insulation and better windows ndash aided by incentive programs amp standards (R2000)

bull Canada has been a leader in energy efficient housing such as the Saskatchewan Conservation House (1977) and more recently the EQuilibrium Houses

Saskatchewan Conservation House (1977)

EcoTerraTM first EQuilibriumTM Demonstration House (2007) 4

Solar technology in 20th Century bull Active Solar Heating solar

collectors for water and space heating solar air collectors

bull Solar Photovoltaic Modules ndash space applications then off-grid and now grid-connected systems and building-integrated

Source IPCC 5

Residential energy use in Canada

0

5000

10000

15000

20000

25000

30000

35000

40000

Conventional R2000 AdvancedHouses

Ener

gy C

onsu

mpt

ion

(kW

h)

Space CoolingLightingAppliancesWater HeatingSpace Heating

A net-zero energy house produces from on-site renewables as much energy as it consumes in a year

Fact The annual solar energy incident on a roof of a typical house far exceeds its total energy consumption

6

Source NRCan

Chart1

Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Energy generation
Energy consumption and energy generation (kWh)
Net- zero energy house
1210782979151
56275177247
37856
3800
720

Sheet1

tempmodify according to the latest simulations

Sheet1

Annual heating load
Annual Cooling load
kWh

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Annual heating load Annual Cooling load Electricity generation
kWh kWh
Rectangle 25058802606608 13437970806145
Rotation of rectangle Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use
Heating Cooling Heating and cooling demand Heating + cooling consumption
60E 3099349757892 23113065281577 774837439473 5778266320394 39900810534781 54106562860497 13526640715124
45E 29391478364572 18439387733344 7347869591143 4609846933336 45704095331962 47830866097917 11957716524479
30E 27223260217425 15897531852876 6805815054356 3974382963219 47464991056227 43120792070302 10780198017575
20E 26021540064031 1432154226647 6505385016008 3580385566618 48246776834602 40343082330501 10085770582625
0 25058802606608 13437970806145 6264700651652 3359492701536 48870442641624 38496773412753 9624193353188
20W 2640882518295 1432154226647 6602206295737 3580385566618 48280206878435 4073036744942 10182591862355
30W 27269508246704 16846684084202 6817377061676 4211671021051 47518613061442 44116192330907 11029048082727 09723385035
45W 29619115780271 19382131792435 7404778945068 4845532948109 45777218857081 49001247572706 12250311893176 09367056319
60W 31957628985771 21150228280229 7989407246443 5287557070057 43401331161912 53107857266 132769643165 08880895858
L shape 26854456952211 1402624055218 16448456072335 38164116293427 54612572365762
Annual energy consumption- Annual energy consumption- V-E60 V-E30 L shape V-W30 V-W60
Beta= L shape variaitons Heating Cooling
V-E60 30242768609772 13825085054788 7560692152443 3456271263697 17963388127643 48175055845673 66138443973316 4406785366456 Heating 7560692152443 6692296728288 6713614238053 6743411128489 737782734643
V-E30 26769186913153 15984953997895 6692296728288 3996238499474 15806863130326 4597149100006 61778354130386 42754140911048 Cooling 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015
L shape 26854456952211 1402624055218 6713614238053 3506560138045 16448456072335 38164116293427 54612572365762 40880697504391 Annual energy generation 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319
V-W30 26973644513954 16016441540975 6743411128489 4004110385244 15823892065942 4597149100006 61795383066002 42990086054929
V-W60 29511309385718 1397043358406 737782734643 3492608396015 1766311745752 49670889441799 67334006899319 43481742969778
Obtuse 24539815037969 1450411927778 5352437326095
Basic units site I and II
Heating Cooling
Rectangle 25058802606608 13437970806145
L shape 26854456952211 1402624055218 10716576276 10437766799
L variant-V-30W 26973644513954 16016441540975 10764139427 11918794714
Obtuse angle 24539815037969 1450411927778 09792892112 10793385018
average use of energy over site I comparison between config
Site I Heating cooling COMPARISON TO isolated units
U1 U2 U3 heating cooling
Rectangle-3 Units 27104250651882 8906023855591 27985147543312 6784801302987 26178587382207 9883221683189 108 066 112 050 104 074 270893285258 8524682280589 35614010806389
L shape -3 units 2865156331 1046960726 3010798256 7395098382 2810227473 1057107578 107 075 112 053 105 075 289539402 9478593807333 38432534007333 107 111
Lshape 30W 27921312429088 13826836546494 2897423839952 101340184936 28536922834693 11021477033164 104 086 107 063 106 069 284774912211 11660777357753 40138268578853 105 137
average use of energy over site I Total use comparison between config comparison to site I
Site II U1 U2 U3 U4 U5
26013609598892 14637722319316 0 32105972549989 12570951282465 30476007242569 11067707353132 0 30455371932949 9517403533486 0 26303448797559 11603255475399 0 10381026583 10892807054 12812253264 09354798774 122 082 12153562327 07082470762 10496690209 08634678288 29070882024392 1187940799276 40950290017151 107 139
U1 U2 U3 U4 U5 0 107 124
Obtuse 274220154868 20478460752656 30799879310547 12390767281661 29686970096052 7518748581402 2980595567526 12355273540389 27417810468526 20089865253081 121 052 29026526207437 14566623081838 43593149289275 100 123
U1 U2 U3 U4 U5 0
L shape 27658559378618 19794018547919 32767646613068 11585982433237 30889617282878 10009892503048 32857718540798 11538190308054 27856029153286 19406666542664 09372189833 14168506961 12148023452 07233805589 115 071 12274455196 07218156718 09210806561 1403728546 30405914193729 14466950066984 44872864260714 105 122
COMPARISON of mid unit TO isolated units
Site I Sit II
Comparison to rect Rctangle 112 050 Rectangle 122 082 comparison between config
L shape 112 053 L variant 115 071 Site I Site II
L variant 107 063 Obtuse 121 052 Relative rectangular configuration
Shaded Lvariant up to 20 mor demand in heat ans 28 less in cooling load L shape 107 111 L variant 10459233458 12178174262
L30W 105 137 Obtuse angle 09984742184 12262078288
Site I Site II-
Site I Site II-
Annual generation Total use Annual generation Total use Rectangle L shape L variant rectangle L variant Obtuse
Rectangle 497783 356140 482763 40950290017151 rectangle Annual generation 497783 573111 617635 482763 641592 581850
L shape 573111 38432534007333 641592 43593149289275 L variant Total energy use 356140 38432534007333 40138268578853 40950290017151 43593149289275 44872864260714
L variant 617635 40138268578853 581850 44872864260714 Obtuse
Montreal Heating DD (below 18 Deg C) httpwwwtheweathernetworkcomstatisticsdegreedayscl7025250
january february march april may june july august september october november december
875 747 628 369 157 43 8 21 117 308 492 754
Total Heating DD
4519
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
97740885283248
Page 4: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Introduction The building itself - housing

bull Passive solar design ndash near-south facing windows (known since Roman times - but challenges remain)

bull Buildings used a lot of stone and bricks (until ~50 years ago) but have recently evolved to use more insulation and better windows ndash aided by incentive programs amp standards (R2000)

bull Canada has been a leader in energy efficient housing such as the Saskatchewan Conservation House (1977) and more recently the EQuilibrium Houses

Saskatchewan Conservation House (1977)

EcoTerraTM first EQuilibriumTM Demonstration House (2007) 4

Solar technology in 20th Century bull Active Solar Heating solar

collectors for water and space heating solar air collectors

bull Solar Photovoltaic Modules ndash space applications then off-grid and now grid-connected systems and building-integrated

Source IPCC 5

Residential energy use in Canada

0

5000

10000

15000

20000

25000

30000

35000

40000

Conventional R2000 AdvancedHouses

Ener

gy C

onsu

mpt

ion

(kW

h)

Space CoolingLightingAppliancesWater HeatingSpace Heating

A net-zero energy house produces from on-site renewables as much energy as it consumes in a year

Fact The annual solar energy incident on a roof of a typical house far exceeds its total energy consumption

6

Source NRCan

Chart1

Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Energy generation
Energy consumption and energy generation (kWh)
Net- zero energy house
1210782979151
56275177247
37856
3800
720

Sheet1

tempmodify according to the latest simulations

Sheet1

Annual heating load
Annual Cooling load
kWh

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Annual heating load Annual Cooling load Electricity generation
kWh kWh
Rectangle 25058802606608 13437970806145
Rotation of rectangle Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use
Heating Cooling Heating and cooling demand Heating + cooling consumption
60E 3099349757892 23113065281577 774837439473 5778266320394 39900810534781 54106562860497 13526640715124
45E 29391478364572 18439387733344 7347869591143 4609846933336 45704095331962 47830866097917 11957716524479
30E 27223260217425 15897531852876 6805815054356 3974382963219 47464991056227 43120792070302 10780198017575
20E 26021540064031 1432154226647 6505385016008 3580385566618 48246776834602 40343082330501 10085770582625
0 25058802606608 13437970806145 6264700651652 3359492701536 48870442641624 38496773412753 9624193353188
20W 2640882518295 1432154226647 6602206295737 3580385566618 48280206878435 4073036744942 10182591862355
30W 27269508246704 16846684084202 6817377061676 4211671021051 47518613061442 44116192330907 11029048082727 09723385035
45W 29619115780271 19382131792435 7404778945068 4845532948109 45777218857081 49001247572706 12250311893176 09367056319
60W 31957628985771 21150228280229 7989407246443 5287557070057 43401331161912 53107857266 132769643165 08880895858
L shape 26854456952211 1402624055218 16448456072335 38164116293427 54612572365762
Annual energy consumption- Annual energy consumption- V-E60 V-E30 L shape V-W30 V-W60
Beta= L shape variaitons Heating Cooling
V-E60 30242768609772 13825085054788 7560692152443 3456271263697 17963388127643 48175055845673 66138443973316 4406785366456 Heating 7560692152443 6692296728288 6713614238053 6743411128489 737782734643
V-E30 26769186913153 15984953997895 6692296728288 3996238499474 15806863130326 4597149100006 61778354130386 42754140911048 Cooling 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015
L shape 26854456952211 1402624055218 6713614238053 3506560138045 16448456072335 38164116293427 54612572365762 40880697504391 Annual energy generation 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319
V-W30 26973644513954 16016441540975 6743411128489 4004110385244 15823892065942 4597149100006 61795383066002 42990086054929
V-W60 29511309385718 1397043358406 737782734643 3492608396015 1766311745752 49670889441799 67334006899319 43481742969778
Obtuse 24539815037969 1450411927778 5352437326095
Basic units site I and II
Heating Cooling
Rectangle 25058802606608 13437970806145
L shape 26854456952211 1402624055218 10716576276 10437766799
L variant-V-30W 26973644513954 16016441540975 10764139427 11918794714
Obtuse angle 24539815037969 1450411927778 09792892112 10793385018
average use of energy over site I comparison between config
Site I Heating cooling COMPARISON TO isolated units
U1 U2 U3 heating cooling
Rectangle-3 Units 27104250651882 8906023855591 27985147543312 6784801302987 26178587382207 9883221683189 108 066 112 050 104 074 270893285258 8524682280589 35614010806389
L shape -3 units 2865156331 1046960726 3010798256 7395098382 2810227473 1057107578 107 075 112 053 105 075 289539402 9478593807333 38432534007333 107 111
Lshape 30W 27921312429088 13826836546494 2897423839952 101340184936 28536922834693 11021477033164 104 086 107 063 106 069 284774912211 11660777357753 40138268578853 105 137
average use of energy over site I Total use comparison between config comparison to site I
Site II U1 U2 U3 U4 U5
26013609598892 14637722319316 0 32105972549989 12570951282465 30476007242569 11067707353132 0 30455371932949 9517403533486 0 26303448797559 11603255475399 0 10381026583 10892807054 12812253264 09354798774 122 082 12153562327 07082470762 10496690209 08634678288 29070882024392 1187940799276 40950290017151 107 139
U1 U2 U3 U4 U5 0 107 124
Obtuse 274220154868 20478460752656 30799879310547 12390767281661 29686970096052 7518748581402 2980595567526 12355273540389 27417810468526 20089865253081 121 052 29026526207437 14566623081838 43593149289275 100 123
U1 U2 U3 U4 U5 0
L shape 27658559378618 19794018547919 32767646613068 11585982433237 30889617282878 10009892503048 32857718540798 11538190308054 27856029153286 19406666542664 09372189833 14168506961 12148023452 07233805589 115 071 12274455196 07218156718 09210806561 1403728546 30405914193729 14466950066984 44872864260714 105 122
COMPARISON of mid unit TO isolated units
Site I Sit II
Comparison to rect Rctangle 112 050 Rectangle 122 082 comparison between config
L shape 112 053 L variant 115 071 Site I Site II
L variant 107 063 Obtuse 121 052 Relative rectangular configuration
Shaded Lvariant up to 20 mor demand in heat ans 28 less in cooling load L shape 107 111 L variant 10459233458 12178174262
L30W 105 137 Obtuse angle 09984742184 12262078288
Site I Site II-
Site I Site II-
Annual generation Total use Annual generation Total use Rectangle L shape L variant rectangle L variant Obtuse
Rectangle 497783 356140 482763 40950290017151 rectangle Annual generation 497783 573111 617635 482763 641592 581850
L shape 573111 38432534007333 641592 43593149289275 L variant Total energy use 356140 38432534007333 40138268578853 40950290017151 43593149289275 44872864260714
L variant 617635 40138268578853 581850 44872864260714 Obtuse
Montreal Heating DD (below 18 Deg C) httpwwwtheweathernetworkcomstatisticsdegreedayscl7025250
january february march april may june july august september october november december
875 747 628 369 157 43 8 21 117 308 492 754
Total Heating DD
4519
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
97740885283248
Page 5: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Solar technology in 20th Century bull Active Solar Heating solar

collectors for water and space heating solar air collectors

bull Solar Photovoltaic Modules ndash space applications then off-grid and now grid-connected systems and building-integrated

Source IPCC 5

Residential energy use in Canada

0

5000

10000

15000

20000

25000

30000

35000

40000

Conventional R2000 AdvancedHouses

Ener

gy C

onsu

mpt

ion

(kW

h)

Space CoolingLightingAppliancesWater HeatingSpace Heating

A net-zero energy house produces from on-site renewables as much energy as it consumes in a year

Fact The annual solar energy incident on a roof of a typical house far exceeds its total energy consumption

6

Source NRCan

Chart1

Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Energy generation
Energy consumption and energy generation (kWh)
Net- zero energy house
1210782979151
56275177247
37856
3800
720

Sheet1

tempmodify according to the latest simulations

Sheet1

Annual heating load
Annual Cooling load
kWh

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Annual heating load Annual Cooling load Electricity generation
kWh kWh
Rectangle 25058802606608 13437970806145
Rotation of rectangle Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use
Heating Cooling Heating and cooling demand Heating + cooling consumption
60E 3099349757892 23113065281577 774837439473 5778266320394 39900810534781 54106562860497 13526640715124
45E 29391478364572 18439387733344 7347869591143 4609846933336 45704095331962 47830866097917 11957716524479
30E 27223260217425 15897531852876 6805815054356 3974382963219 47464991056227 43120792070302 10780198017575
20E 26021540064031 1432154226647 6505385016008 3580385566618 48246776834602 40343082330501 10085770582625
0 25058802606608 13437970806145 6264700651652 3359492701536 48870442641624 38496773412753 9624193353188
20W 2640882518295 1432154226647 6602206295737 3580385566618 48280206878435 4073036744942 10182591862355
30W 27269508246704 16846684084202 6817377061676 4211671021051 47518613061442 44116192330907 11029048082727 09723385035
45W 29619115780271 19382131792435 7404778945068 4845532948109 45777218857081 49001247572706 12250311893176 09367056319
60W 31957628985771 21150228280229 7989407246443 5287557070057 43401331161912 53107857266 132769643165 08880895858
L shape 26854456952211 1402624055218 16448456072335 38164116293427 54612572365762
Annual energy consumption- Annual energy consumption- V-E60 V-E30 L shape V-W30 V-W60
Beta= L shape variaitons Heating Cooling
V-E60 30242768609772 13825085054788 7560692152443 3456271263697 17963388127643 48175055845673 66138443973316 4406785366456 Heating 7560692152443 6692296728288 6713614238053 6743411128489 737782734643
V-E30 26769186913153 15984953997895 6692296728288 3996238499474 15806863130326 4597149100006 61778354130386 42754140911048 Cooling 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015
L shape 26854456952211 1402624055218 6713614238053 3506560138045 16448456072335 38164116293427 54612572365762 40880697504391 Annual energy generation 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319
V-W30 26973644513954 16016441540975 6743411128489 4004110385244 15823892065942 4597149100006 61795383066002 42990086054929
V-W60 29511309385718 1397043358406 737782734643 3492608396015 1766311745752 49670889441799 67334006899319 43481742969778
Obtuse 24539815037969 1450411927778 5352437326095
Basic units site I and II
Heating Cooling
Rectangle 25058802606608 13437970806145
L shape 26854456952211 1402624055218 10716576276 10437766799
L variant-V-30W 26973644513954 16016441540975 10764139427 11918794714
Obtuse angle 24539815037969 1450411927778 09792892112 10793385018
average use of energy over site I comparison between config
Site I Heating cooling COMPARISON TO isolated units
U1 U2 U3 heating cooling
Rectangle-3 Units 27104250651882 8906023855591 27985147543312 6784801302987 26178587382207 9883221683189 108 066 112 050 104 074 270893285258 8524682280589 35614010806389
L shape -3 units 2865156331 1046960726 3010798256 7395098382 2810227473 1057107578 107 075 112 053 105 075 289539402 9478593807333 38432534007333 107 111
Lshape 30W 27921312429088 13826836546494 2897423839952 101340184936 28536922834693 11021477033164 104 086 107 063 106 069 284774912211 11660777357753 40138268578853 105 137
average use of energy over site I Total use comparison between config comparison to site I
Site II U1 U2 U3 U4 U5
26013609598892 14637722319316 0 32105972549989 12570951282465 30476007242569 11067707353132 0 30455371932949 9517403533486 0 26303448797559 11603255475399 0 10381026583 10892807054 12812253264 09354798774 122 082 12153562327 07082470762 10496690209 08634678288 29070882024392 1187940799276 40950290017151 107 139
U1 U2 U3 U4 U5 0 107 124
Obtuse 274220154868 20478460752656 30799879310547 12390767281661 29686970096052 7518748581402 2980595567526 12355273540389 27417810468526 20089865253081 121 052 29026526207437 14566623081838 43593149289275 100 123
U1 U2 U3 U4 U5 0
L shape 27658559378618 19794018547919 32767646613068 11585982433237 30889617282878 10009892503048 32857718540798 11538190308054 27856029153286 19406666542664 09372189833 14168506961 12148023452 07233805589 115 071 12274455196 07218156718 09210806561 1403728546 30405914193729 14466950066984 44872864260714 105 122
COMPARISON of mid unit TO isolated units
Site I Sit II
Comparison to rect Rctangle 112 050 Rectangle 122 082 comparison between config
L shape 112 053 L variant 115 071 Site I Site II
L variant 107 063 Obtuse 121 052 Relative rectangular configuration
Shaded Lvariant up to 20 mor demand in heat ans 28 less in cooling load L shape 107 111 L variant 10459233458 12178174262
L30W 105 137 Obtuse angle 09984742184 12262078288
Site I Site II-
Site I Site II-
Annual generation Total use Annual generation Total use Rectangle L shape L variant rectangle L variant Obtuse
Rectangle 497783 356140 482763 40950290017151 rectangle Annual generation 497783 573111 617635 482763 641592 581850
L shape 573111 38432534007333 641592 43593149289275 L variant Total energy use 356140 38432534007333 40138268578853 40950290017151 43593149289275 44872864260714
L variant 617635 40138268578853 581850 44872864260714 Obtuse
Montreal Heating DD (below 18 Deg C) httpwwwtheweathernetworkcomstatisticsdegreedayscl7025250
january february march april may june july august september october november december
875 747 628 369 157 43 8 21 117 308 492 754
Total Heating DD
4519
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
97740885283248
Page 6: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Residential energy use in Canada

0

5000

10000

15000

20000

25000

30000

35000

40000

Conventional R2000 AdvancedHouses

Ener

gy C

onsu

mpt

ion

(kW

h)

Space CoolingLightingAppliancesWater HeatingSpace Heating

A net-zero energy house produces from on-site renewables as much energy as it consumes in a year

Fact The annual solar energy incident on a roof of a typical house far exceeds its total energy consumption

6

Source NRCan

Chart1

Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Energy generation
Energy consumption and energy generation (kWh)
Net- zero energy house
1210782979151
56275177247
37856
3800
720

Sheet1

tempmodify according to the latest simulations

Sheet1

Annual heating load
Annual Cooling load
kWh

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Annual heating load Annual Cooling load Electricity generation
kWh kWh
Rectangle 25058802606608 13437970806145
Rotation of rectangle Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use
Heating Cooling Heating and cooling demand Heating + cooling consumption
60E 3099349757892 23113065281577 774837439473 5778266320394 39900810534781 54106562860497 13526640715124
45E 29391478364572 18439387733344 7347869591143 4609846933336 45704095331962 47830866097917 11957716524479
30E 27223260217425 15897531852876 6805815054356 3974382963219 47464991056227 43120792070302 10780198017575
20E 26021540064031 1432154226647 6505385016008 3580385566618 48246776834602 40343082330501 10085770582625
0 25058802606608 13437970806145 6264700651652 3359492701536 48870442641624 38496773412753 9624193353188
20W 2640882518295 1432154226647 6602206295737 3580385566618 48280206878435 4073036744942 10182591862355
30W 27269508246704 16846684084202 6817377061676 4211671021051 47518613061442 44116192330907 11029048082727 09723385035
45W 29619115780271 19382131792435 7404778945068 4845532948109 45777218857081 49001247572706 12250311893176 09367056319
60W 31957628985771 21150228280229 7989407246443 5287557070057 43401331161912 53107857266 132769643165 08880895858
L shape 26854456952211 1402624055218 16448456072335 38164116293427 54612572365762
Annual energy consumption- Annual energy consumption- V-E60 V-E30 L shape V-W30 V-W60
Beta= L shape variaitons Heating Cooling
V-E60 30242768609772 13825085054788 7560692152443 3456271263697 17963388127643 48175055845673 66138443973316 4406785366456 Heating 7560692152443 6692296728288 6713614238053 6743411128489 737782734643
V-E30 26769186913153 15984953997895 6692296728288 3996238499474 15806863130326 4597149100006 61778354130386 42754140911048 Cooling 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015
L shape 26854456952211 1402624055218 6713614238053 3506560138045 16448456072335 38164116293427 54612572365762 40880697504391 Annual energy generation 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319
V-W30 26973644513954 16016441540975 6743411128489 4004110385244 15823892065942 4597149100006 61795383066002 42990086054929
V-W60 29511309385718 1397043358406 737782734643 3492608396015 1766311745752 49670889441799 67334006899319 43481742969778
Obtuse 24539815037969 1450411927778 5352437326095
Basic units site I and II
Heating Cooling
Rectangle 25058802606608 13437970806145
L shape 26854456952211 1402624055218 10716576276 10437766799
L variant-V-30W 26973644513954 16016441540975 10764139427 11918794714
Obtuse angle 24539815037969 1450411927778 09792892112 10793385018
average use of energy over site I comparison between config
Site I Heating cooling COMPARISON TO isolated units
U1 U2 U3 heating cooling
Rectangle-3 Units 27104250651882 8906023855591 27985147543312 6784801302987 26178587382207 9883221683189 108 066 112 050 104 074 270893285258 8524682280589 35614010806389
L shape -3 units 2865156331 1046960726 3010798256 7395098382 2810227473 1057107578 107 075 112 053 105 075 289539402 9478593807333 38432534007333 107 111
Lshape 30W 27921312429088 13826836546494 2897423839952 101340184936 28536922834693 11021477033164 104 086 107 063 106 069 284774912211 11660777357753 40138268578853 105 137
average use of energy over site I Total use comparison between config comparison to site I
Site II U1 U2 U3 U4 U5
26013609598892 14637722319316 0 32105972549989 12570951282465 30476007242569 11067707353132 0 30455371932949 9517403533486 0 26303448797559 11603255475399 0 10381026583 10892807054 12812253264 09354798774 122 082 12153562327 07082470762 10496690209 08634678288 29070882024392 1187940799276 40950290017151 107 139
U1 U2 U3 U4 U5 0 107 124
Obtuse 274220154868 20478460752656 30799879310547 12390767281661 29686970096052 7518748581402 2980595567526 12355273540389 27417810468526 20089865253081 121 052 29026526207437 14566623081838 43593149289275 100 123
U1 U2 U3 U4 U5 0
L shape 27658559378618 19794018547919 32767646613068 11585982433237 30889617282878 10009892503048 32857718540798 11538190308054 27856029153286 19406666542664 09372189833 14168506961 12148023452 07233805589 115 071 12274455196 07218156718 09210806561 1403728546 30405914193729 14466950066984 44872864260714 105 122
COMPARISON of mid unit TO isolated units
Site I Sit II
Comparison to rect Rctangle 112 050 Rectangle 122 082 comparison between config
L shape 112 053 L variant 115 071 Site I Site II
L variant 107 063 Obtuse 121 052 Relative rectangular configuration
Shaded Lvariant up to 20 mor demand in heat ans 28 less in cooling load L shape 107 111 L variant 10459233458 12178174262
L30W 105 137 Obtuse angle 09984742184 12262078288
Site I Site II-
Site I Site II-
Annual generation Total use Annual generation Total use Rectangle L shape L variant rectangle L variant Obtuse
Rectangle 497783 356140 482763 40950290017151 rectangle Annual generation 497783 573111 617635 482763 641592 581850
L shape 573111 38432534007333 641592 43593149289275 L variant Total energy use 356140 38432534007333 40138268578853 40950290017151 43593149289275 44872864260714
L variant 617635 40138268578853 581850 44872864260714 Obtuse
Montreal Heating DD (below 18 Deg C) httpwwwtheweathernetworkcomstatisticsdegreedayscl7025250
january february march april may june july august september october november december
875 747 628 369 157 43 8 21 117 308 492 754
Total Heating DD
4519
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
97740885283248
Page 7: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Chart1

Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Energy generation
Energy consumption and energy generation (kWh)
Net- zero energy house
1210782979151
56275177247
37856
3800
720

Sheet1

tempmodify according to the latest simulations

Sheet1

Annual heating load
Annual Cooling load
kWh

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Annual heating load Annual Cooling load Electricity generation
kWh kWh
Rectangle 25058802606608 13437970806145
Rotation of rectangle Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use
Heating Cooling Heating and cooling demand Heating + cooling consumption
60E 3099349757892 23113065281577 774837439473 5778266320394 39900810534781 54106562860497 13526640715124
45E 29391478364572 18439387733344 7347869591143 4609846933336 45704095331962 47830866097917 11957716524479
30E 27223260217425 15897531852876 6805815054356 3974382963219 47464991056227 43120792070302 10780198017575
20E 26021540064031 1432154226647 6505385016008 3580385566618 48246776834602 40343082330501 10085770582625
0 25058802606608 13437970806145 6264700651652 3359492701536 48870442641624 38496773412753 9624193353188
20W 2640882518295 1432154226647 6602206295737 3580385566618 48280206878435 4073036744942 10182591862355
30W 27269508246704 16846684084202 6817377061676 4211671021051 47518613061442 44116192330907 11029048082727 09723385035
45W 29619115780271 19382131792435 7404778945068 4845532948109 45777218857081 49001247572706 12250311893176 09367056319
60W 31957628985771 21150228280229 7989407246443 5287557070057 43401331161912 53107857266 132769643165 08880895858
L shape 26854456952211 1402624055218 16448456072335 38164116293427 54612572365762
Annual energy consumption- Annual energy consumption- V-E60 V-E30 L shape V-W30 V-W60
Beta= L shape variaitons Heating Cooling
V-E60 30242768609772 13825085054788 7560692152443 3456271263697 17963388127643 48175055845673 66138443973316 4406785366456 Heating 7560692152443 6692296728288 6713614238053 6743411128489 737782734643
V-E30 26769186913153 15984953997895 6692296728288 3996238499474 15806863130326 4597149100006 61778354130386 42754140911048 Cooling 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015
L shape 26854456952211 1402624055218 6713614238053 3506560138045 16448456072335 38164116293427 54612572365762 40880697504391 Annual energy generation 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319
V-W30 26973644513954 16016441540975 6743411128489 4004110385244 15823892065942 4597149100006 61795383066002 42990086054929
V-W60 29511309385718 1397043358406 737782734643 3492608396015 1766311745752 49670889441799 67334006899319 43481742969778
Obtuse 24539815037969 1450411927778 5352437326095
Basic units site I and II
Heating Cooling
Rectangle 25058802606608 13437970806145
L shape 26854456952211 1402624055218 10716576276 10437766799
L variant-V-30W 26973644513954 16016441540975 10764139427 11918794714
Obtuse angle 24539815037969 1450411927778 09792892112 10793385018
average use of energy over site I comparison between config
Site I Heating cooling COMPARISON TO isolated units
U1 U2 U3 heating cooling
Rectangle-3 Units 27104250651882 8906023855591 27985147543312 6784801302987 26178587382207 9883221683189 108 066 112 050 104 074 270893285258 8524682280589 35614010806389
L shape -3 units 2865156331 1046960726 3010798256 7395098382 2810227473 1057107578 107 075 112 053 105 075 289539402 9478593807333 38432534007333 107 111
Lshape 30W 27921312429088 13826836546494 2897423839952 101340184936 28536922834693 11021477033164 104 086 107 063 106 069 284774912211 11660777357753 40138268578853 105 137
average use of energy over site I Total use comparison between config comparison to site I
Site II U1 U2 U3 U4 U5
26013609598892 14637722319316 0 32105972549989 12570951282465 30476007242569 11067707353132 0 30455371932949 9517403533486 0 26303448797559 11603255475399 0 10381026583 10892807054 12812253264 09354798774 122 082 12153562327 07082470762 10496690209 08634678288 29070882024392 1187940799276 40950290017151 107 139
U1 U2 U3 U4 U5 0 107 124
Obtuse 274220154868 20478460752656 30799879310547 12390767281661 29686970096052 7518748581402 2980595567526 12355273540389 27417810468526 20089865253081 121 052 29026526207437 14566623081838 43593149289275 100 123
U1 U2 U3 U4 U5 0
L shape 27658559378618 19794018547919 32767646613068 11585982433237 30889617282878 10009892503048 32857718540798 11538190308054 27856029153286 19406666542664 09372189833 14168506961 12148023452 07233805589 115 071 12274455196 07218156718 09210806561 1403728546 30405914193729 14466950066984 44872864260714 105 122
COMPARISON of mid unit TO isolated units
Site I Sit II
Comparison to rect Rctangle 112 050 Rectangle 122 082 comparison between config
L shape 112 053 L variant 115 071 Site I Site II
L variant 107 063 Obtuse 121 052 Relative rectangular configuration
Shaded Lvariant up to 20 mor demand in heat ans 28 less in cooling load L shape 107 111 L variant 10459233458 12178174262
L30W 105 137 Obtuse angle 09984742184 12262078288
Site I Site II-
Site I Site II-
Annual generation Total use Annual generation Total use Rectangle L shape L variant rectangle L variant Obtuse
Rectangle 497783 356140 482763 40950290017151 rectangle Annual generation 497783 573111 617635 482763 641592 581850
L shape 573111 38432534007333 641592 43593149289275 L variant Total energy use 356140 38432534007333 40138268578853 40950290017151 43593149289275 44872864260714
L variant 617635 40138268578853 581850 44872864260714 Obtuse
Montreal Heating DD (below 18 Deg C) httpwwwtheweathernetworkcomstatisticsdegreedayscl7025250
january february march april may june july august september october november december
875 747 628 369 157 43 8 21 117 308 492 754
Total Heating DD
4519
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
97740885283248
Page 8: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Sheet1

tempmodify according to the latest simulations

Sheet1

Annual heating load
Annual Cooling load
kWh

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Annual heating load Annual Cooling load Electricity generation
kWh kWh
Rectangle 25058802606608 13437970806145
Rotation of rectangle Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use
Heating Cooling Heating and cooling demand Heating + cooling consumption
60E 3099349757892 23113065281577 774837439473 5778266320394 39900810534781 54106562860497 13526640715124
45E 29391478364572 18439387733344 7347869591143 4609846933336 45704095331962 47830866097917 11957716524479
30E 27223260217425 15897531852876 6805815054356 3974382963219 47464991056227 43120792070302 10780198017575
20E 26021540064031 1432154226647 6505385016008 3580385566618 48246776834602 40343082330501 10085770582625
0 25058802606608 13437970806145 6264700651652 3359492701536 48870442641624 38496773412753 9624193353188
20W 2640882518295 1432154226647 6602206295737 3580385566618 48280206878435 4073036744942 10182591862355
30W 27269508246704 16846684084202 6817377061676 4211671021051 47518613061442 44116192330907 11029048082727 09723385035
45W 29619115780271 19382131792435 7404778945068 4845532948109 45777218857081 49001247572706 12250311893176 09367056319
60W 31957628985771 21150228280229 7989407246443 5287557070057 43401331161912 53107857266 132769643165 08880895858
L shape 26854456952211 1402624055218 16448456072335 38164116293427 54612572365762
Annual energy consumption- Annual energy consumption- V-E60 V-E30 L shape V-W30 V-W60
Beta= L shape variaitons Heating Cooling
V-E60 30242768609772 13825085054788 7560692152443 3456271263697 17963388127643 48175055845673 66138443973316 4406785366456 Heating 7560692152443 6692296728288 6713614238053 6743411128489 737782734643
V-E30 26769186913153 15984953997895 6692296728288 3996238499474 15806863130326 4597149100006 61778354130386 42754140911048 Cooling 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015
L shape 26854456952211 1402624055218 6713614238053 3506560138045 16448456072335 38164116293427 54612572365762 40880697504391 Annual energy generation 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319
V-W30 26973644513954 16016441540975 6743411128489 4004110385244 15823892065942 4597149100006 61795383066002 42990086054929
V-W60 29511309385718 1397043358406 737782734643 3492608396015 1766311745752 49670889441799 67334006899319 43481742969778
Obtuse 24539815037969 1450411927778 5352437326095
Basic units site I and II
Heating Cooling
Rectangle 25058802606608 13437970806145
L shape 26854456952211 1402624055218 10716576276 10437766799
L variant-V-30W 26973644513954 16016441540975 10764139427 11918794714
Obtuse angle 24539815037969 1450411927778 09792892112 10793385018
average use of energy over site I comparison between config
Site I Heating cooling COMPARISON TO isolated units
U1 U2 U3 heating cooling
Rectangle-3 Units 27104250651882 8906023855591 27985147543312 6784801302987 26178587382207 9883221683189 108 066 112 050 104 074 270893285258 8524682280589 35614010806389
L shape -3 units 2865156331 1046960726 3010798256 7395098382 2810227473 1057107578 107 075 112 053 105 075 289539402 9478593807333 38432534007333 107 111
Lshape 30W 27921312429088 13826836546494 2897423839952 101340184936 28536922834693 11021477033164 104 086 107 063 106 069 284774912211 11660777357753 40138268578853 105 137
average use of energy over site I Total use comparison between config comparison to site I
Site II U1 U2 U3 U4 U5
26013609598892 14637722319316 0 32105972549989 12570951282465 30476007242569 11067707353132 0 30455371932949 9517403533486 0 26303448797559 11603255475399 0 10381026583 10892807054 12812253264 09354798774 122 082 12153562327 07082470762 10496690209 08634678288 29070882024392 1187940799276 40950290017151 107 139
U1 U2 U3 U4 U5 0 107 124
Obtuse 274220154868 20478460752656 30799879310547 12390767281661 29686970096052 7518748581402 2980595567526 12355273540389 27417810468526 20089865253081 121 052 29026526207437 14566623081838 43593149289275 100 123
U1 U2 U3 U4 U5 0
L shape 27658559378618 19794018547919 32767646613068 11585982433237 30889617282878 10009892503048 32857718540798 11538190308054 27856029153286 19406666542664 09372189833 14168506961 12148023452 07233805589 115 071 12274455196 07218156718 09210806561 1403728546 30405914193729 14466950066984 44872864260714 105 122
COMPARISON of mid unit TO isolated units
Site I Sit II
Comparison to rect Rctangle 112 050 Rectangle 122 082 comparison between config
L shape 112 053 L variant 115 071 Site I Site II
L variant 107 063 Obtuse 121 052 Relative rectangular configuration
Shaded Lvariant up to 20 mor demand in heat ans 28 less in cooling load L shape 107 111 L variant 10459233458 12178174262
L30W 105 137 Obtuse angle 09984742184 12262078288
Site I Site II-
Site I Site II-
Annual generation Total use Annual generation Total use Rectangle L shape L variant rectangle L variant Obtuse
Rectangle 497783 356140 482763 40950290017151 rectangle Annual generation 497783 573111 617635 482763 641592 581850
L shape 573111 38432534007333 641592 43593149289275 L variant Total energy use 356140 38432534007333 40138268578853 40950290017151 43593149289275 44872864260714
L variant 617635 40138268578853 581850 44872864260714 Obtuse
Montreal Heating DD (below 18 Deg C) httpwwwtheweathernetworkcomstatisticsdegreedayscl7025250
january february march april may june july august september october november december
875 747 628 369 157 43 8 21 117 308 492 754
Total Heating DD
4519
Page 9: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Sheet1

Annual heating load
Annual Cooling load
kWh

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 10: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

sites--corrected slab

Electricity generation
Heating and cooling demands
Heating + cooling consumption

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 11: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Sheet3

Electricity generation
Heating and cooling demand
kWh
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 12: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Annual heating load
Annual Cooling load
kWh
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 13: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Site I Annual generation
Site I Total use
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 14: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Rectangle
L shape
L variant
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 15: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Annual generation
Total energy use
kWh
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 16: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 17: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Annual energy consumption- Heating
Annual energy consumption- Cooling
kWh
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 18: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Electricity generation
Heating + cooling consumption
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 19: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Annual energy generation
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 20: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Isolated Shapes
Heating load (kWh) Cooling load (kWh) Total Comparison to rectangle
Rectangle 2421565958302 112550354494 3547069503242 Heating Cooling comparison of consumptionTotal
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use 60E 45E 30E 20E 0 20W 30W 45W 60W Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
Annual energy consumption- Annual energy consumption- Comparison between total production and total heatin cooling energy use Heating Cooling Annual energy generation Heating 7595962334511 7103621255783 6565664151677 6277592558373 1210782979151 6309081199655 6576641396018 7151899305899 7741956093737 Heating 6053914895755 6656339755655 6692296728288 6713614238053 6743411128489 6656339755655 6122022101864 26847074166685
Heating Cooling Annual energy generation Heating and cooling demand Annual heating + cooling consumption 60E 7595962334511 4827713265032 39900810534781 Cooling 4827713265032 3994990105752 3379094490654 30133495495 56275177247 3066346097358 3623492662041 4232672140563 4673351750581 Cooling 619026949717 760379678013 879172469884 77144323037 880904284754 768373847123 833988822995
60E 30383849338044 19310853060127 7595962334511 4827713265032 1062096918307 39900810534781 49694702398172 8658059252818 1254719048 1715752309 12974875929 45E 7103621255783 3994990105752 45704095331962 DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 DHW 37856 37856 37856 37856 37856 37856 37856
45E 28414485023132 15979960423007 7103621255783 3994990105752 878897823265 45704095331962 44394445446139 7982519079048 11733929826 1419805428 11962518577 30E 6565664151677 3379094490654 47464991056227 Appliances 2700 2700 2700 2700 3800 2700 2700 2700 2700 Appliances 2700 2700 2700 2700 2700 2700 2700
30E 26262656606708 13516377962615 6565664151677 3379094490654 743400787944 47464991056227 39779034569324 7309064939621 10845319541 12009182933 10953287334 20E 6277592558373 30133495495 48246776834602 Lightig 360 360 360 360 720 360 360 360 360 Lightig 360 360 360 360 360 360 360
20E 2511037023349 12053398197999 6277592558373 30133495495 66293690089 48246776834602 3716376843149 6940529459263 1036947606 1070933828 10401003965 0 6053914895755 281375886235 48870442641624 Annual energy generation 39900810534781 45704095331962 47464991056227 48246776834602 97740885283248 48280206878435 47518613061442 45777218857081 43401331161912 Rectangle V-ES60 V-ES30 L-ES shape V-WS30 V-WS60 O-S
0 2421565958302 112550354494 6053914895755 281375886235 619026949717 48870442641624 3547069503242 6672941845472 1 1 1 20W 6309081199655 3066346097358 48280206878435 80879675599543 79554611361535 78400758642331 77746942107872 10079134751621 77831427297013 78656134058059 Annual energy generation 488704 661384 617784 546126 617954 673340 535244
20W 2523632479862 12265384389433 6309081199655 3066346097358 674596141419 48280206878435 37501709188053 6983677341074 10421489744 10897686146 10465664924 30W 6576641396018 3623492662041 47518613061442 04933354423 05744996368 0605414946 06205617292 09697348799 06203176346 06041310526 Energy consumption 751289 758727 760275 759411 760803 758807 754120
30W 26306565584071 14493970648164 6576641396018 3623492662041 797168385649 47518613061442 40800536232235 7373809781667 10863452013 12877765435 11050313269 45W 7151899305899 4232672140563 45777218857081 Rectangle V-E60 V-E30 L shape V-W30 V-W60 Obtuse 065 087 081 072 081 089 071
45W 28607597223596 16930688562253 7151899305899 4232672140563 931187870924 45777218857081 4553828578585 8083087176823 11813676652 15042767869 12113228864 60W 7741956093737 4673351750581 43401331161912 Heating 6053914895755 7560692152443 6692296728288 6713614238053 6743411128489 737782734643 6134953759492 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N
60W 30967824374947 18693407002323 7741956093737 4673351750581 1028137385128 43401331161912 4966123137727 8770093478865 12788346429 16608927699 13142769234 Cooling 281375886235 3456271263697 3996238499474 3506560138045 4004110385244 3492608396015 3626029819445 Annual energy generation 488704 734611 578810 643446 584458 749532 636797
Annual energy generation 48870442641624 66138443973316 61778354130386 54612572365762 61795383066002 67334006899319 5352437326095 773237 779310 786399 775389 788119 780344 783689
L shape and Variants Comparison to rectangle 063 094 074 083 074 096 081
Heating load (kWh) Cooling load (kWh) Heating Cooling Total Site III Heating load (kWh) Cooling load (kWh) compariosn of enrgy production to gable roof
L shape 25880125170391 13795292103745 Total energy use 68456 appliances 2700
Beta= CORRECTED IN SCKECTUP THEY ARE THE OPPOSITE_East is named West) Electrcicity generatiom lightig 360 Gable roof 75608920061314
Beta= Lshape for site III 2584867825638 10483046075218 V-E60 282114712639762 968863229142487 11650094092 7052867815994 2422158072856 734611197750937 73461119775094 Rectangle 48870442641624 064303214
V-E60 2662535902262 11590519904023 10995099651 site III-V-W30 28211471263976 9688632291425 38215878926643 10995099651 10298074987 10773930111 V-E30 258025385793369 149331518941578 10655311077 6450634644834 3733287973539 578810305121178 57881030512118 Gable roof 7214261438939 2122391572995 8000 Site II V-ES60 66138443973316 08702426839
V-E30 25880125170391 13795292103745 10687350919 39675417274136 10687350919 12256995694 11185407345 L shape 258486782563798 104830460752184 1067436473 6462169564095 2620761518805 643446348885066 64344634888507 39936653011934 V-ES30 61778354130386 08128730807
L shape 25956787209408 11745955478202 10719008962 3770274268761 10719008962 10436178128 10629265272 V-W30 275326079281876 138909874761785 11369753458 6883151982047 3472746869045 584458202590617 58445820259062 20031723734 L-ES shape 54612572365762 07185864785
V-W30 2608043984222 13786937263038 10770072049 09914042089 09512187928 39867377105258 10770072049 12249572491 11239525211 V-W60 284134059196406 990035468751303 11733484204 710335147991 2475088671878 749531894817099 7495318948171 Shapes - in site III V-WS30 61795383066002 08130971456
V-W60 2662535902262 1172399113805 10995099651 08597749296 06271725179 3834935016067 10995099651 10416663005 10811558704 Rectangle V-EN60 V-EN30 L -ENshape V-WN30 V-WN60 O-N V-WS60 67334006899319 0885973775
Obtuse angle 244880884074554 15163433145367 10112501096 6122022101864 3790858286342 636796856822144 63679685682214 Heating 6053914895755 6656339755655 6450634644834 6462169564095 6883151982047 6656339755655 6122022101864 O-S 5352437326095 07042680692
Obtuse angle 24539815037969 1450411927778 Obtuse angle for site III 24488088407455 15163433145367 39043934315749 10133861914 12886782403 11007377859 Cooling 619026949717 532874776028 821323354179 576567534137 76400431119 544519507813 833988822995 Site III 0
DHW 37856 37856 37856 37856 37856 37856 37856 37856 37856 V-EN60 73461119775094 09665936813
Appliances 2700 2700 2700 2700 2700 2700 2700 2700 2700 V-EN30 57881030512118 07615925067
Lightig 360 360 360 360 360 360 360 360 360 L-EN shape 64344634888507 08466399327
Annual energy generation 48870442641624 73461119775094 57881030512118 64344634888507 58445820259062 7495318948171 63679685682214 V-WN30 58445820259062 07690239508
Site I 75128941845472 75645214531683 75727957999013 75494737098232 76103156293237 75656859263468 75412010924859 V-WN60 7495318948171 09862261774
Detached configurations Distance gtbetween units(using shadow length formula for March) 06504875677 09711271259 07643284203 08523062317 07679815543 09906991939 08444236522 O-N 63679685682214 08378906011
U1 U2 U3 Average Comparison to isolated units U1 U2 U3
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average Comparison to initial row Comparison to isolated units totalelectricity generation for neighbourhood
total energy consumption ratio generationuse
Rectangles 26311918498261 7066439662592 27221958914633 5243408343665 25368697107604 7986536256563 26300858173499 676546142094 10861095104 06011052965 25232848098706 8974172332781 25048149967129 8837821286661 24389906925366 10103859527801 24890301663734 9305284382414 09463684226 1375410161 10278597442 08267663327 149334811563108 Total energy use 68456 230167739695829 06488086113
L shape 27824975393726 8426108601846 2933840079455 5651626565018 27271705821283 8527840929364 2814502733652 7535192032076 11152585632 06143461789 26844811060812 10158819237336 27358188367695 8861192230548 26414529287654 10376976753876 26872509572053 979899607392 09547871193 1300430836 10648345108 0798914715 171933326489978 for site I neigh 205368 232128164526447 07406827467
L30W 27066315215087 11698804674712 0 28162733255726 8239975333264 0 27706923845836 9068719790651 2764532410555 9669166599542 10508906614 06671164744 26976052790225 11945182293678 27607856733563 1004210179118 27435857428137 10329693856321 27339922317309 10772325980393 09889528592 11140904306 10392813243 07432280803 185290563439387 233353868028819 07940325352
Atached configurations Comparison to detached( same units) Comparison of average (attacheddetached) total for neighbourhood total energy consumption ratio generationuse
Rectangles 20960263348669 6689361498393 16990285321822 4788731585608 201205691846 7571483268756 1935703928503 6349858784252 07993603981 05641793678 07966071858 09466381683 06241389672 09132860292 07931258393 09480309142 0735985083 09385699495 14859960496041 Total energy use 68456 224648173551962 06614770225
L shape 24567664122131 6321185890642 21824298574311 3170943984186 22931077066388 7400571919359 23107679920944 5630900598062 08902365202 04793905961 08829356998 07501904128 07438816699 05610674994 08408376512 0867813082 08210217615 07472803047 170954315720784 for site I neigh 205368 226921935389254 07533617913
L30W 23407014522716 12244735097279 23072701503207 4633032640752 22372914873937 11764287205746 2295087696662 9547351647926 08800034472 06924925722 08648024061 10466654874 08192635741 0562262926 080748462 12972379208 08301901934 09874017114 181484946209364 229741671460909 07899522322
Row study Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Average of each row Comparison to detached configuration of the same shape
Rectangles U1 U2 U3 U4 U5 U6 Row1 Row2 Row1 Row2
5m 3000889364 5270866016 3188283277 2959633001 2928736254 5903044 3943466991 2228170587 4467251715 7196348616 3869257862 2144542158 3039302965 4711181005667 40933255226667 16974492022 11555907967 0696357678 15563467533 02508992509
10m 28191571612841 6618374525226 30000223728033 4249395784447 27528235360769 7279015926936 31514467743965 4297142998139 3552772730292 2028711799841 3100165460808 4276544312227 28573343567214 6048928745537 32681283218322 3534133036736 10864034694 08940896074 12425937969 0522378714
20m 2678503113 7411983667 2794550275 5163582318 2611097015 806969709 2740047713 3419008028 2613794346 5692447004 2574328431 5748273727 2694716801 6881754358333 26427234966667 4953242919667 10245737167 101718921 10048050445 07321367474
L 30W
5m 2908879156 1130385453 3080530247 7461799131 3003761321 8335181186 3335184284 7711081301 370202035 4635047793 3436267285 5249312634 29977235746667 9033611615667 34911573063333 5865147242667 10843510328 09342699314 12628382626 06065824994
10m 28046749660526 11888759852669 29495056040553 8136100362972 28991057916549 8919902171233 29209864952603 8886108245221 30354754210858 6438019348617 31541811924282 5915436046399 28844287872543 9648254128958 30368810362581 7079854546746 10433694958 09978372003 10985152587 07322093868
20m 27425121871372 12279154157035 28473294118828 8584969500697 28221436393447 936340035665 26563589410344 9586381992923 27380186011442 7118793852532 27179476999143 6671137382944 28039950794549 10075841338127 2704108414031 7792104409466 1014274627 10420589235 09781431405 08058713571
L 30W-attached
5m 2587098141969 11469968504135 27051096184605 3610967719696 2511756786625 10845756329561 31026589060202 7334431734178 3232887960874 2013290186402 3054659879371 6317557486004 26013215156848 8642230851131 31300689154217 5221759802195 11334301166 09051966629 13638123371 05469328034
10m 24682481486332 12215964690617 25208143747807 4216003573691 23935209580951 11555147114886 26314731750619 8708370653771 26273247586199 277103946693 25946429101052 7717855485599 2460861160503 9329038459731 26178136145957 6399088535433 10722296861 09771336391 11406159418 0670247496
20m 23865904681297 12721904509347 23851891532483 4583959746615 22910371798601 12093580018953 22845799015065 9579994398059 22516018602522 3194372312181 22055376554767 8756833532047 23542722670793 9799814758305 22472398057451 7177066747429 10257874984 10264432609 09791520424 07517337804
Attached rectangles
5m 24420625246164 4750929223001 21555431248525 2189406500138 24059784317466 5305523062099 33723916685496 1751475333919 3299853496152 175103244281 32756890753532 1555198908272 23345280270718 4081952928412 33159780800183 1160592495491 11602693769 05391219638 17130605725 01827745364
10m 22734338950494 6176615257965 19746281727648 3575175632863 22264332130465 6873841565186 26345267076644 3839430343228 24805665501059 1238417052467 25772110337584 3632021661267 21581650936202 5541877485338 25641014305096 2903289685654 1072616323 07319407953 13246351329 04572211421
20m 21221579076571 7098121873967 17561413947666 458451396329 20478231396806 7804622907785 2064962023763 5455423752465 17525611703178 2493210549305 20323743405699 5257002013633 19753741473681 6495752915014 19499658448836 4401878771801 09817685222 08579234325 10073678191 06932246718
Site II
Detached configurations Average Total Distance gtbetween units(using shadow length formula for March) comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total generation per neighbourhood
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance Detached configurations
Rectangles 2510060465 1237333418 0 3114661205 1046480842 0 2959097066 8797929285 0 2955728525 7538236874 0 2543131698 9541322026 28165357918 9743126157 11126950434 41177393911 24968776528994 12949626602137 29821087951833 11812603997008 27512101923134 11901051908674 27421023955669 9968895286505 24643840738846 10922106826191 26873366219695 11510856924103 09541283408 11814336321 12219766535 07816882785 11361285382 10573979942 Heating Cooling Generation Total use
L variants 2668943435 1736132822 0 3184416311 9511312075 0 3008044062 8027789313 0 3196770933 9473597932 2689675581 1696768847 29495700644 12268343202 11551079389 51868118078 26611545335688 18055370157237 29910020147345 11591223050904 28366322890425 1014099643018 30350325194938 11407103940319 26771411897246 17690129435217 28401925093128 13776964602771 09629174582 11229686337 11588660945 06834513657 10928287334 08633607074 Total energy use 68456 352066973975 1217890769625 Detached rectangles 241381583522014 38966560509375 06194582749
Obtuse angle 2645760905 180254926 2991799652 1034132879 2888074365 5693358453 2890018916 102270875 2645563953 1763807384 28122435582 123850682366 11171198875 51698253683 26830818523052 18055370157237 0 29141734068034 12689428054931 0 28227009885063 12369717557164 0 26291456887462 19283202099755 0 25962039965479 17690129435217 27290611865818 16017569460861 09704213487 12932968277 11768932898 03925338963 11502535712 08528416873 attached trapezoid For all neighbourhood 34228 36869625805 153354290025 30WLshape 320796005895037 3944850548075 08132019249
351530444775 1548133529575 Obtuse 290925093065068 39291437977325 07404287245
Attached
Detached configurations attached turning L 3a 26070021694452 6099122996582 rectangle 217858608190313 374449144691034 05818109382
U1 U2 U3 U4 U5 attached -configuration4 b 34183176759444 13351319618436 L variants 31695344783122 389814496377881 08130878938
Energy use Energy use Energy use Energy use Energy use Average total use 28357842008755 11124833126818 Obtuse 277858958258351 381762675135573 07278316513
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling
Rectangles 62751511625 3093333545 77866530125 2616202105 7397742665 219948232125 73893213125 18845592185 6357829245 23853305065 70413394795 243578153925 352066973975 1217890769625
L variants 66723585875 4340332055 79610407775 237782801875 7520110155 200694732825 79919273325 2368399483 67241889525 42419221175 7373925161 30670858005 36869625805 153354290025
Obtuse angle 66144022625 450637315 747949913 25853321975 72201859125 142333961325 722504729 2556771875 66139098825 440951846 70306088955 309626705915 351530444775 1548133529575
Attached configurations Average Average Total use (five units only) comparison of the mid unit to the isolated- effect of adjancy Attacheddetached
U1 U2 U3 U4 U5 U6
Rectangles 22478415125078 8804848739831 19628311288371 3202294599062 19773684827575 2076980567572 19316600552114 3290675620168 23083074984671 7021692459695 20856017355562 4879298397266 26070021694452 6099122996582 08165660225 01845378966 07404847265 05007939258
L variants 26216751042648 18772920234509 28161855285929 10859590653831 27096122711636 5220961795455 27096122711636 7149273513839 28161855285929 1140253227611 25786574588374 1488453959306 27628988998782 8658089559809 34183176759444 13351319618436 10389442385 03786890225 09367124156 0705726064
Obtuse angle 26216751042648 187729202345093 236777391873278 850212500247675 199405708517927 451321493851443 202417301123062 35159036329032 233545768409457 919516869886684 263051300561706 181098188599666 218036542480931 64316030681903 28357842008755 11124833126818 08125803239 03111678036 07753117323 05193029982
comparison of configurations
only attached units are used -in all configurationsvery important
Site II Comparison attached todetached
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132 07404847265 05007939258
Obtuse angle 127 135 Lvariant 079 074 09367124156 0705726064
rect configuration 07753117323 05193029982
Detached
L variants to rectangle 105 126 Obtuse angle to rectangle 100 127
Obtuse angle 105 099 Obtuse angle 095 101
comparison of sites
Attached Detached
Rectangles 10774383958 07684105368 107 144
L variants 12038315154 09068577213 107 127
site III new distance (larger distaNCE BETWEEN UNITS
Detached configurations Average comparison of average for distance comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration Total heatind and cooling Total energy use per neighb
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Average ooriginal distance Increased distance
Rectangles 332881633626148 919196145969443 270985791506589 171285470203975 274369858651843 125796825595479 263890219147342 117328613365205 31500824796835 788318246668225 291427150180055 117032469685685 298577014385198 115279886175199 277702681530876 153707970585223 268851973243265 115945239460444 263731979475348 10938031003279 281936786465588 926046442907781 278160087020055 117383610108887 09544755417 10030003675 11330265761 11176937306 10653372684 09453045724 Total energy use 68456 241381583522014 29653748984842 10346921955611 382280670940453 06314250284
L variants 328094545556025 111342630694545 30069120284354 772894167560056 249065917004495 983296435141346 281922567228958 97005251955392 307270773095579 122392528087622 293409001145719 10127189420154 326875577603271 112264480573783 294472663957596 914485376310831 246212713371269 111493479275294 281174406391763 100323981468276 308549732288002 123572100181163 29145701872238 10782051582592 09933472306 10646637616 09635537823 09379873255 09525156796 10635599469 For all neighbourhood 34228 320796005895037 29158845072126 10726751356292 382165596428419 08394162345
Obtuse angle 332097850445738 206732700974022 270598075292836 195496134682653 230894161642216 106919585888113 267663217953995 146847022990871 322779561204609 228051259761555 284806573307879 176809340859443 317016548391693 263155434756045 269183442670483 253598681634119 232011685849478 15892825211779 266253919237719 20610134621508 32179937580033 273664197249418 281252994389941 23108958239449 09875228339 13069987212 09428835677 07051146324 09474471098 10481020399 290925093065068 28835869781164 17213764240364 388329634021528 07491704665
Attached
26525030720823 255864352025 1044420928 3783106444825 07011441816
Detached configurations 318634122402685 358914119075 102582515235 388429663431 08203135661
U1 U2 U3 U4 U5 330941961338477 27985995255971 17752745553126 388018740809096 08529020033
Energy use Energy use Energy use Energy use Energy use Average Total heatind and cooling Ratio of energy generation to energy use for all the neighbourhood
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling SiteI Site II Site III
Rectangles 8322040840654 2297990364924 6774644787665 4282136755099 6859246466296 3144920639887 6597255478684 293321533413 7875206199209 1970795616671 7285678754501 2925811742142 29653748984842 10346921955611 Detached Attached Detached Attached Detached Attached
L variants 8202363638901 2783565767364 7517280071089 19322354189 6226647925112 2458241087853 7048064180724 2425131298885 7681769327389 3059813202191 7335225028643 2531797355038 29158845072126 10726751356292 Rectangle 065 066 rectangle 062 058 063 070
Obtuse angle 8302446261143 5168317524351 6764951882321 4887403367066 5772354041055 2672989647203 669158044885 3671175574772 8069489030115 5701281494039 7120164332697 4420233521486 28835869781164 17213764240364 L shape 074 075 L varaints 081 081 084 082
Attached configurations Average Average Total use comparison of the mid unit to the isolated- effect of adjancy Total electricity genration neighbourhood-for each configuration L varaints 079 079 Obtuse 074 073 075 085
U1 U2 U3 U4 U5 U6
Rectangles 2469416503 1217357961 1848656628 5574394712 1765909243 4977918407 1804325252 5620072161 2346266455 1343087223 20469148162 8355367424 255864352025 1044420928 07292426774 0442283672 265250330720823 Ratio of energy generation to energy use for all the neighbourhood
L variants 3515375762 1191166416 3219191704 5058685589 2282080563 7683972159 2355179601 7274020315 2984737133 9104663871 3142340996 1315648257 21682378002 58242683868 358914119075 102582515235 08089193724 0793091525 318634122402685 Site II Site III
Obtuse angle 327926275349595 228117728183437 244449253905458 169305019707305 165562858247138 950993253813807 160490757055693 847007780040739 221010665680937 132886970848823 321070716768558 235513239418052 197878383722306 120498023485396 27985995255971 17752745553126 06760954775 06271622295 330941961338477 Detached Attached Detached Attached
Total energy use Total energy generation Total energy use Total energy generation Total energy generation Total energy use Total energy generation
comparison of configurations rectangle 38966560509375 241381583522014 062 374449144691034 217858608190313 058 382280670940453 241381583522014 063 3783106444825 26525030720823 070
L varaints 3944850548075 320796005895037 081 389814496377881 31695344783122 081 382165596428419 320796005895037 084 388429663431 318634122402685 082
Site III only attached units are used -in all configurationsvery important Comparison attached todetached Obtuse 39291437977325 290925093065068 074 381762675135573 277858958258351 073 388329634021528 290925093065068 075 388018740809096 330941961338477 085
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716 07023761564 07139358373
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472 07389813509 05751120222
rect configuration 06947816598 06815139002
Detached
L variants to rectangle 101 087 Obtuse angle to rectangle 098 151
Obtuse angle 103 057 L variant 097 175
rect configuration
comparison of sites
Attached Detached
Rectangles 106 132 111 173
L variants 094 061 106 105
Comparisons of site II and site III-
Energy Use for heating
Site II Site III
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5
Rectangles 62751511625 77866530125 7397742665 73893213125 6357829245 8322040840654 6774644787665 6859246466296 6597255478684 7875206199209
L variants 66723585875 79610407775 7520110155 79919273325 67241889525 8202363638901 7517280071089 6226647925112 7048064180724 7681769327389
Obtuse angle 66144022625 747949913 72201859125 722504729 66139098825 8302446261143 6764951882321 5772354041055 669158044885 8069489030115
U1 U2 U3 U4 U4
Site II Site III Site II Site III Site II Site III Site II Site III Site II Site III
Rectangles 62751511625 8322040840654 77866530125 6774644787665 7397742665 6859246466296 6597255478684 73893213125 6357829245 7875206199209
L variants 66723585875 8202363638901 79610407775 7517280071089 7520110155 6226647925112 7048064180724 79919273325 67241889525 7681769327389
Obtuse angle 66144022625 8302446261143 747949913 6764951882321 72201859125 5772354041055 669158044885 722504729 66139098825 8069489030115
Study of effect of Density on energy performance
Comparison of mid units in all sites to isolated units
Detached units Attached units
Site I Site II Site III Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 109 112 105 122 116 118 113 096 094 Heating 080 089 088 082 104 081 073 081 068
Cooling 060 061 067 078 068 039 112 094 071 Cooling 056 048 069 018 038 031 044 079 063
Comparison of attached and detached units (attached to detached)
Site I Site II Site III
Rectangles L shape L30W Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating 074 080 084 07404847265 09367124156 07753117323 07023761564 07389813509 06947816598
Cooling 094 078 104 05007939258 0705726064 05193029982 07139358373 05751120222 06815139002
Row study
Row1 Row2 Rectangles L 30W
Heating Cooling Heating Cooling 5m 10m 20m 5m 10m 20m
Rectangles 5m 116 070 156 025 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 109 089 124 052
20m 102 102 100 073 Heating 116 109 102 108 104 101
Cooling 070 089 102 093 100 104
L 30W 5m 108 093 126 061 Heating 156 124 100 126 110 098
10m 104 100 110 073 Cooling 025 052 073 061 073 081
20m 101 104 098 081 Attached rectangles L 30W-attached
5m 10m 20m 5m 10m 20m
L 30W-attached 5m 113 091 136 055 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10m 107 098 114 067 Heating 116 107 098 113 107 103
20m 103 103 098 075 Cooling 054 073 086 091 098 103
Attached rectangles
5m 116 054 171 018 Heating 171 132 101 136 114 098
10m 107 073 132 046 Cooling 018 046 069 055 067 075
20m 098 086 101 069
Study of effect of distances between units 0(attached) D and 2D
Site I Site Ii Site III
Average Average Average
Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh) Heating load (kWh) Cooling load (kWh)
A D 2D A D 2D A D 2D
Rectangles 1935703928503 6349858784252 26300858173499 676546142094 24890301663734 9305284382414 Rectangle 20856017355562 4879298397266 28165357918 9743126157 26873366219695 11510856924103 Rectangle 20469148162 8355367424 29142715018006 11703246968569 27816008702006 11738361010889
L shape 23107679920944 5630900598062 2814502733652 7535192032076 26872509572053 979899607392 L variants 27086546937692 11381636344468 29495700644 12268343202 28401925093128 13776964602771 L variants 29164842931667 9031581444 29340900114572 10127189420154 29145701872238 10782051582592
L30W 2295087696662 9547351647926 2764532410555 9669166599542 27339922317309 10772325980393 Obtuse angle 23289416348532 10435 28122435582 123850682366 27290611865818 16017569460861 Obtuse angle 24008508783456 15760384359051 28480657330788 17680934085944 28125299438994 23108958239449
Average Average Average
Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh) Heating consumption (kWh) Cooling consumption (kWh)
A D 2D A D 2D A D 2D
Rectangle 4839259821257 1587464696063 6575214543375 1691365355235 6222575415933 2326321095604 Rectangle 521400433889 1219824599316 70413394795 243578153925 6718341554924 2877714231026 Rectangle 51172870405 2088841856 7285678754501 2925811742142 6954002175501 2934590252722
L variants 5776919980236 1407725149516 703625683413 1883798008019 6718127393013 244974901848 L variants 6771636734423 2845409086117 7373925161 30670858005 7100481273282 3444241150693 L variants 7291210732917 2257895361 7335225028643 2531797355038 728642546806 2695512895648
Obtuse angle 5737719241655 2386837911981 6911331026387 2417291649886 6834980579327 2693081495098 Obtuse angle 5822354087133 260875 70306088955 309626705915 6822652966455 4004392365215 Obtuse angle 6002127195864 3940096089763 7120164332697 4420233521486 7031324859749 5777239559862
A D 2D A D 2D
Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle Rectangle L variants Obtuse angle
Heating consumption (kWh) A 5214004338 6771636734423 5822354087133 70413394795 7373925161 70306088955 6718341554924 7100481273282 6822652966455 Heating consumption (kWh) 51172870405 7291210732917 6002127195864 7285678754501 7335225028643 7120164332697 6954002175501 728642546806 7031324859749
Cooling consumption (kWh) 1219824599316 2845409086117 260875 243578153925 30670858005 309626705915 2877714231026 3444241150693 4004392365215 Cooling consumption (kWh) 2088841856 2257895361 3940096089763 2925811742142 2531797355038 4420233521486 2934590252722 2695512895648 5777239559862
Rectangle
A D 2D
Site I Site II Site III Site I Site II Site III Site I Site II Site III
Heating consumption (kWh) 4839259821257 521400433889 51172870405 6575214543375 70413394795 7285678754501 6222575415933 6718341554924 6954002175501
Cooling consumption (kWh) 1587464696063 1219824599316 2088841856 1691365355235 243578153925 2925811742142 2326321095604 2877714231026 2934590252722
Comparison of site II and II configurations of these of site I
Attached Detached
Site II Site III Site II Site III
Trapezoid L variants Rectangles L variants Trapezoid L variants Rectangles L variants
Heating 108 118 106 127 107 107 111 106
Cooling 077 119 132 095 144 127 173 105
Comparison of comnfigurations in each site
Site II Site III
Attached L variants to Obtuse angle to Attached L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
132 127 105 079 106 10957426271 097 09126230698
177 135 132 074 06970690924 0483349703 14421630716 207
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to Detached
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant Electricity generation L variant relative to Obtuse-angle relative to
heating 105 105 100 095 101 103 098 097 Shape Rectangle Obtuse-angle Rectangle L variants
Cooling 126 099 127 101 087 057 151 175 Sites Site II Site III Site II Site III Site II Site III Site II Site III
Annual(m2) 104 102 106 102 105 101 104 099 SDD (m2 ) 102 092 098 089 104 104 102 112
Annual (total area ) 133 11 121 091 134 1 134 1 WDD (m2 ) 104 107 097 104 107 104 103 097
Annual(m2) 104
Annual (total area ) 133
Density study
Effect of distance between units
Dite I
Rectangles
L shape
L30W
Configurations-energy production
SiteII Site III
detachedl30W over the 2 othersm2 turning L detached over the two otherm2 detachedl30W over the 2 othersm2 detached turning L over the 2 othersm2
|SDD WDD Annual Annual total area |SDD WDD Annual Annula total area |SDDm2 WDDm2 Annual annual-total area Annual- turning L over others
102 104 104 133 104 107 106 12052497495 092 107 105 134 104 104 104 13421662646
098 097 098 110 102 103 102 09068850226 089 104 101 100 112 097 099 10023794531
attached30W over the 2 othersm2 attached30W over the 2 othersm2 detached turning L over the 2 othersm2
108 103 105 147 092 091 093 13176804387 102 103 103 127 103 109 104 12318402554
117 113 113 112 085 089 089 08968120061 098 095 099 103 102 106 101 09695654175
Comparison of the balance of attached units
Site III only attached units are used -in all configurationsvery important
Attached
L variants to rectangle 10592711446 06970690924 Obtuse angle to rectangle 09667152837 14421630716
Obtuse angle 10957426271 0483349703 L variant 09126230698 20688954472
Site II
Attached
L variants to rectangle 132 177 Obtuse angle to rectangle 105 132
Obtuse angle 127 135 Lvariant 079 074
Site II Site III
L variants to Obtuse angle to L variants to Obtuse angle to
rectangle Obtuse angle rectangle L variant rectangle Obtuse angle rectangle L variant
Heating 132 127 105 079 106 110 097 091
Cooling 177 135 132 074 070 048 144 207
Annual electricity generation(m2) 105 113 093 089 103 099 104 101
Annual electricity generation(total area ) 147 112 132 090 127 103 123 097
Page 21: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating load (kWh)
Cooling load (kWh)
kwh
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Page 22: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating load (kWh)
Cooling load (kWh)
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Page 23: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Annual energy generation
Annual heating + cooling consumption
kWh
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Page 24: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Annual energy consumption- Heating
Annual energy consumption- Cooling
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Page 25: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Rectangles
L variants
Obtuse angle
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Page 26: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
DHW
Appliances
Lightig
Electricity generation
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption Energy Consumption
Page 27: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Page 28: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Page 29: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Rectangles 5m
Rectangles 10m
Rectangles 20m
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Page 30: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
0713935837 Heating
0713935837 Cooling
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
0
Page 31: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
0713935837 Heating
0713935837 Cooling
Attached rectangles
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 32: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 33: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating consumption (kWh)
Cooling consumption (kWh)
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 34: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating consumption (kWh)
Cooling consumption (kWh)
Rectangle configuration
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 35: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 36: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Comparison of site II and II configurations of these of site I Heating
Comparison of site II and II configurations of these of site I Cooling
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 37: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 38: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 39: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Heating
Cooling
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 40: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 41: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
kWh
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 42: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 43: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
DHW
Appliances
Lightig
Annual energy generation
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 44: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
heating
Cooling
Annual(m2)
Annual (total area )
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 45: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Annual energy generation
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 46: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Annual electricity generation(m2)
Annual electricity generation(total area )
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 47: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Generation
Total use
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 48: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Annual energy generation
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 49: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Annual energy generation
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 50: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity
Heating
Cooling
Annual energy generation
DHW
Appliances
Lightig

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 51: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 52: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Commercial and Institutional Buildings

bull Electric lighting transformation in building design that moved towards smaller window areas until the 1950s

bull Followed by evolution to air-conditioned and heated ldquoglass towersrdquo with large window areas more daylight ndash but higher cooling and heating requirements

bull Currently renewed interest in daylighting and naturalhybrid ventilation

7

Preacutesentateur
Commentaires de preacutesentation
A few minor edits to reduce text

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 53: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Major international trends in high performance buildings

bull Adoption by engineering societies and developed countries of net-zero energy as a long term goal (ASHRAE Vision 2020)

bull Measures to reduce and shift peak electricity demand from buildings thus reducing the need to build new power plants integrate with smart grids

bull Steps to efficiently integrate new energy technologies such as controlled shading devices and solar systems

8

Preacutesentateur
Commentaires de preacutesentation
ASHRAE Vision 2020 net-zero energy buildings European Community targets - see sakellariou13Last 100 years HVAC13Drop in price of PV etc - BIPV13Smart buildings - linked to a samrt grid EV in Quebec13

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 54: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Smart Net-Zero Energy Solar Buildings (NZEBs)

bull Net-zero annual energy balance many possible definitions depending on boundary House Community Net-zero energy cost

bull Net-zero is an objective target that promotes an integrated approach to energy efficiency and renewables path to net-zero is important

bull Why smart NZEBs must be comfortable and optimally interact with a smart grid

bull NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) builds on the previous NSERC Solar Buildings Research Network (SBRN)

9

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 55: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Smart Net-zero Energy Buildings strategic Research Network (SNEBRN) 10

Optimal combination of solar and energy efficiency technologies and techniques provides different

pathways to reach net-zero Solar energy electricity + daylight + heat

Integrated approach to energy efficiency and passive design

Integrated design amp operation thermal and electrical storage

Solar optimization requires optimal design of building form

Smart (solar) NZEB concept

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 56: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Optimization of buildings for solar collection

0 10 20 30 40 50 60 70 80 904

45

5

55

6

65

Slope (degrees)

Dai

ly in

cide

nt so

lar r

adia

tion

(kW

hsq

m)

Slopes 40-50 degrees desirable Aspect ratio higher than 1 around 13

Two roof forms for the same floor plan Solar energy on

roof

Important design variables Roof slope and aspect ratio LW

Also window area

Aw

Optimize surfaces Ar and faccedilade Aw simultaneously

Ar

11

Slope (degrees) Slope (degrees) Inci

dent

sola

r rad

iatio

n kW

hm

2

Slope = latitude

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 57: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Vancouver

Edmonton Calgary

Toronto

Halifax Montreal

Ottawa

NSERC Smart Net-zero Energy Buildings strategic Research Network (SNEBRN)

Lat 53 N Degree-days 5212

PV potential of Canada and SNEBRN 30 researchers from 15 Universities NRCan Hydro Quebec Gaz-Metro building industry leaders

12

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 58: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Electricity demand and generation typical profile for NZEB on cold clear day

13

NZEBs need to be designed to ensure a predictable impact on the grid and to reduce and shift peak demand

Ontario has a summer (due to cooling) peak demand 27 GWe

Quebec has a winter peak demand 38 GWe on Jan 24 2011 730 am with To = -33 C in Montreal

Peak heating demand can be reduced through predictive control

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 59: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Building-Integrated Photovoltaics (BIPV) Integration into roofs or facades ndash opaque or

semitransparent PV in windows PV panels could perform dual function as

roof shingles standard glazing and curtain wall

technology employed with wires through framing

integration with HVAC

functional integration architectural and aesthetic

Queenrsquos U (retrofit)

Not just adding solar technologies on buildings

Univ of Calgary

PV

14

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 60: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

EcoTerraTM EQuilibrium House NSERC Solar Buildings Research Network Demonstration

Project 28-kW Building-integrated PV-thermal system Passive solar design Optimized triple glazed windows and thermal mass Ground-source heat pump

Partners Alouette Homes Concordia U NRCan CMHC Hydro Quebec Regulvar Prefabricated home designed to have close to net-zero annual energy consumption

15

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 61: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Photovoltaics (PV) declining in price

-33

PV price has dropped by ~ 90 from 2000 to 2011 Now feasible to use PV as building faccedilade and roof element on surfaces facing East-South-West (depends on location) 16

Efficiency of commercial PV modules approaching 20

Source NRCan

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 62: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Chart1

PV cost (CADW)
107
94
71
62
55
43
54
45
39
33
23
15

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
Page 63: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Sheet1

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Standard module price (wgt avg) 107 94 71 62 55 43 54 45 39 33 23 15
Year Standard module price (wgt avg)
2000 107
2001 94
2002 71
2003 62
2004 55
2005 43
2006 54
2007 45
2008 39
2009 33
2010 23
2011 15
Page 64: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Sheet1

POV cost (CADMWH

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 65: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Sheet2

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 66: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Sheet3

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 67: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

BIPV ndash integration in EcoTerra bull Building integration integration with

the roof (envelope) and with HVAC

bull BIPVT ndash (photovoltaicthermal systems) heat also recovered from the PV panels raising overall solar energy utilization efficiency

bull Heat recovery may be open loop with outdoor air or closed loop with a circulating liquid possibly use a heat pump

EcoTerraTM

Open loop air BIPVT

17

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 68: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Assembly of EcoTerra Modules (in ~ 5 h)

Prefabricationpre-engineering can reduce cost of BIPV through integration Built quality is enhanced

18

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 69: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Passive design and integration with active systems

Near net-zero house a higher efficiency PV system covering same area would result in net-zero Study of occupancy factors indicated importance of controls IEA Task 40 case study (SNEBRNNRCan)

Geothermal heat pump

EcoTerra energy system 19

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 70: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project

Funded by NRCan TEAM Program through CanmetENERGY Varennes

Back faccedilade of new building (JMSB-Concordia)

Partners Concordia University Conserval Day4 Energy Schneider -Xantrex

20

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 71: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

JMSB BIPVT SYSTEM ndash First of its kind

bull Building surface ~ area 288 m2 generates both solar electricity (up to 25 kilowatts) and solar heat (gt75 kW of ventilation air heating)

bull System forms the exterior wall layer of the building it is not an add-on (building-integrated)

bull Mechanical room is directly behind the BIPVT faccedilade ndash easy to connect with HVAC

bull Total peak efficiency over 55

Mechanical room

BIPVT

21

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 72: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Just 288 sqm was covered Imagine possible generation with 3000 sqm BIPVT

PV panels are same width as the curtain wall spandrel sections could accommodate more PV

Shades could be automatically controlled

More RampD needed to make design of such systems routine 22

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 73: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Solar Community Design

Heating load is not significantly affected by the layout of streets provided solar access is respected

Some house shapes (eg L-shape) are more beneficial in a specific site layout

Electricity generation 85-110 of the total energy use of the neighborhood

23

Living area Living area

Height

asymp2 times Height

Seasonal thermal storage (eg Okotoks)

BIPV Systems

BIPV Systems

District heating

Solar collectors

Design C Hachem

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 74: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Ice-storm of 98 in Quebec - The ice-storm of 1998 the costliest natural disaster to occur to date in Canadarsquos history

-70 mm of freezing rain fell and power was cut sometimes for up to 3 weeks

- Many residents left their homes which sustained high additional damages due to bursting water pipes and other associated damages

Production of solar electricity may provide emergency power for a home

Costliest natural disaster economic loss $64 billion 47 million people had to leave their homes for up to three weeks

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 75: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

Note difference in south facing window areas

No snow on BIPVT roof

40 degrees slope

Normal roof collects snow

Athienitis house Domus award finalist

25

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 76: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

London UK Amsterdam NL

Example BIPV on bridges - retrofit

Train and bus stations Solar Bridges - cover with

semitransparent photovoltaics

bull Use of transparent photovoltaics generate electricity provide daylight passive solar heating power PHEVEV charging stations

bull Heat bridge and protect from snow and ice bull Emergency power (eg in case of a an ice storm) bull Export electricity to grid (significant revenue) bull BIPVT application

STPV ndash Turin train station

Semitransparent photovoltaics

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation
Page 77: The Future of Solar: Towards Resilient Smart Solar Cities · 2016. 9. 30. · JMSB BIPV/T SYSTEM – First of its kind • Building surface ~ area 288 m 2 generates both solar electricity

The path towards Smart Solar Cities ndash an opportunity for innovation

bull Buildings undergoing a transformation with solar and energy efficiency technologies

bull Canada needs to be a leader ndash construction is the engine of economic growth built environment is key to high quality of life

bull NZEBs will lead to many novel products exports jobs bull Challenges

ndash full integration of solar into buildings and infrastructure ndash fragmentation of building industry need systems approach ndash transformative changes to building design and operation ndash training of engineers and architects ndash ambitious RampD programs from basic research to full scale demos

with a research component ndash incentive measures with multiple benefits such as production of

renewable energy at times of peak demand 27

  • The Future of SolarTowards Resilient Smart Solar Cities
  • Diapositive numeacutero 2
  • Introduction to Energy and Buildings early technological developments
  • Introduction The building itself - housing
  • Solar technology in 20th Century
  • Residential energy use in Canada
  • Commercial and Institutional Buildings
  • Major international trends in high performance buildings
  • Smart Net-Zero Energy Solar Buildings (NZEBs)
  • Smart (solar) NZEB concept
  • Optimization of buildings for solar collection
  • Diapositive numeacutero 12
  • Electricity demand and generationtypical profile for NZEB on cold clear day
  • Building-Integrated Photovoltaics (BIPV) Integration
  • EcoTerraTM EQuilibrium HouseNSERC Solar Buildings Research Network Demonstration Project
  • Photovoltaics (PV) declining in price
  • BIPV ndash integration in EcoTerra
  • Assembly of EcoTerra Modules (in ~ 5 h)
  • Passive design and integration with active systems
  • John Molson School of Business Building (JMSB) BIPVT A NSERC Solar Buildings Research Network Demo Project
  • JMSB BIPVT SYSTEM ndash First of its kind
  • Diapositive numeacutero 22
  • Solar Community Design
  • Ice-storm of 98 in Quebec
  • No snow on BIPVT roof
  • Train and bus stations Solar Bridges - cover with semitransparent photovoltaics
  • The path towards Smart Solar Cities ndash an opportunity for innovation