Top Banner
Tensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield, UK
53

Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Feb 01, 2018

Download

Documents

dolien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

TensileMembraneActionofCompositeSlabsinFire

ArethecurrentmethodsreallyOK?

IanBurgess

UniversityofSheffield,UK

Page 2: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Cardington

Maxbeamtemperature~1150°Ccf.Codecriticaltemperature~ 680°C

2

Page 3: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Thebasisofallcurrentsimplifiedmethods:Hayes(1968)

3

Page 4: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Small-deflectionyield-linemechanism– slabonly

L=al

l

nL

gHoggingrotationsaboutedgesof

panel

Saggingrotationsaboutinternalyield

lines

Yield-linepatternisoptimized

forminimumconcreteslab

failureload.

4

Large-deflectionfailurecrack

sometimesobservedintests

andusedbyHayes.

Page 5: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Equilibrium1– nothrough-depthYLcracks- Hayes

kbKT0

bKT0

Rationale: Superpositionofrebar

tensionandconcretecompression

force/unitlength.

Tension

Compression

5

T0l/2

E

Criterion: Cracksfrom

intersection.Moment

equilibriumaboutE.Findsbandk.

Page 6: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Equilibrium2– somethrough-depthYLcracks- Hayes

kKT0

KT0

Tension

6

Rationale: Superpositionofrebar

tensionandconcretecompression

force/unitlength.

Compression

Bothb andk areconstant foreachofthe2cases.No

variationwithdeflection.

Page 7: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

1 12

2

“Membraneforce”enhancements:

e1m Momentofmembraneforcesabout11/totalresistance

momentaboutx-axisatinitialYL.

e2m Momentofmembraneforcesabout22/totalresistance

momentabouty-axisatinitialYL.

Thesestartatzeroforzerodeflection

Resistancemomentenhancement(reduction)

e1b Proportionalchangeofresistancemomentaboutx-axisdue

tomembranecompression.

e2b Proportionalchangeofresistancemomentabouty-axisdue

tomembranecompression.

Partialenhancementfactors– bothcases- Hayes

7

Page 8: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

8

Bending“enhancements”- Hayes

Wood’sequationforreductionofmomentcapacityofarectangularRCcross-

sectionduetoaxialcompression:

2

0 0 0

1M N NA BM T T

= +1.Long-spanreinforcement:

2

0 0 0

1 ' 'M N NA BM KT KT

= +2.Short-spanreinforcement:

Theseareintegratedinx- andy- directionsrespectivelyforthebending

momentsacrosstheyieldlinesforPortions1and2.

T0

T0

T0

T0N

Page 9: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

9

!" = !"$ + !"&!' = !'$ + !'&

! = !" −!" − !'1 + 2+,'

Thesearenearlyalwaysunequal

(WHY?).Puttogetheras

Overallenhancementfactor

x

y

z

V

V

Verticalshear

resultantsacross

yieldlines

Thesedon’tincludeanyverticalshearbetween

thefacets.Iftheseareincludedthereisonly

oneenhancementfactor.

(TonyGillies2015)

Newenhancement

Factorequivalentto ! = !" −!" − !'

1 + 2+n,'

Forminganoverallenhancementfactor- Hayes

Page 10: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

10

Anyproblemssofar?

• Themembranetractiondistributionisanassumption.

Itcorrespondstounfractured meshandeither:

• Nothrough-depthcracksalongyieldlines.

• Partialthrough-depthcracksalongyieldlines.

• Bothofthesedistributionsapplyonlytothecasewherea

lateralthrough-depthcrackhasformedacrosstheshort

spanthroughtheYLintersection.

• Distributionisfixedforeachcase.Enhancementfactor

startsbelow1.0– actuallyatzero.

• Internalforcesdon’tdependondeflection.

Page 11: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Structuralfireresistancemethodsforcompositefloors

11

BREMethod(Bailey2000)• AmendedversionofHayes’s

method.

• FireSafeDesign(SCIP288)checkedusingBRE-Baileydesign

method.

NewZealandSPM(Clifton2006)FRACOF(2011)• BasedonaEuropeanproject.

• AlmostidenticaltoBREmethod.

Afewchangestosafetyfactors,

extradeflectioncheck.

Page 12: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

TypicaldesignstrategyforTMA

• Protectmemberson

columngridlines.

• Leaveintermediate

secondarybeams

unprotected.

• Designindividualpanels

withoutcontinuity.

12

Page 13: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

BRE/FRACOFmethod

13

• Unprotectedcomposite

beamsathightemperature

carrysomeoftheloadas

simplysupported.

• Concreteslabcarriesremainingloadintensile

membraneaction.Needs

enoughdeflection.

+

Page 14: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Small-deflectionyield-linemechanism– slabonly

BRE/FRACOF

L=al

l

nL

gHoggingrotationsaboutedgesofpanel

Saggingrotationsaboutinternalyield

lines

Theanalysisisbasedonthe

optimalyield-line patternfor

theconcreteslabwithout

consideringthesteelbeams.

14

Tensilecrackacross

shortmid-span

Large-deflectionfailurecrack

observedintestsandusedin

Bailey/BRE,FRACOFandNZ

SPM.

Page 15: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Forceequilibrium– nothrough-depthYLcracks– BREetc

kbKT0

bKT0

15

E

Criterion: Crackacross

mid-long-span.Moment

equilibriumaboutE.

Findsb andk.

(Ultimatestrength

ofreinforcement

acrossFracture)1.1T0l/2

Thisistheonlymechanism–

noseparationofconcrete

alongtheyieldlines.

Page 16: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8

Enhancementfactor

d/d1

BRE1.0 Gillies1.0

BRE1.5 Gillies1.5

BRE2.0 Gillies2.0

BRE3.0 Gillies3.0

16

TMAenhancementcalculations– BRE/FRACOF

SimilarlytoHayes:• Horizontalforceequilibrium

assumingmid-spancrack.(But

onlythelinearmembrane

tractiondistribution).

• Separate“membrane”

enhancementse1mande2m by

momentsaboutlongandshort

edges.

• Add“bending”enhancements

e1bande2b tomakee1ande2.• Overallenhancementfactor

! = !" −./0.1"2'341

• …orGillies! = !" −./0.1

"2'3641

• Cutoff atenhancement1.0for

aspectratios>1.0.

Page 17: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

17

78 =9.;<=>?=

@A1

B�

7D =E F' − F" G'

16ℎ

wE wq

Limitingdeflection(centralcracking) criterion

+

Page 18: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Backtobasics

18

Page 19: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Increasingdeflectionofyield-linemechanism

Yield-linemechanismisaplasticbendingmechanismat

smalldeflections.Yieldlines

areessentiallydiscretecracks.

Asdeflectionsstarttoincreasetheyield-linepatternincreases

therotationsofitsflatfacets,

withtherebaryieldinguntilit

fractures.

Sotheinitiallarge-deflectionmechanismisthisone.

“MechanismB”

19

Page 20: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

h

x

µtt

s

yx

zf

qy

x

DxDy

TOPSURFACEOFSLABCRACK OPENING AT REBAR LEVEL

x

Asdeflectionsstarttoincreasetheyield-linepatternincreasestherotationsofitsflatfacets,and

rebaryieldsacrosscracksuntilitfractures.

Geometryofyield-linecrack opening

20

Page 21: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

ForceequilibriumofMechanismB

S

C1T1T2 C2

M1 M2

M3

Shapeofconcretecompressionblocksisdictatedbycompatibilityandequilibrium:• Initiallytensionandcompressionateverypointofyield-

lines.

• Asdeflectionincreasesconcretecompressionblocks

concentratetowardsslabcorners,rebarfractureswhen

itsstrainexceedsitsductility.

• Notensionwithincompressionblocks

21

Page 22: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Shapeofconcretecompressionblocksisdictatedbycompatibilityandequilibrium:• Initiallytensionandcompressionateverypointofyield-

lines.

• Asdeflectionincreasesconcretecompressionblocks

concentratetowardsslabcorners,rebarfractureswhen

itsstrainexceedsitsductility.

• Notensionwithincompressionblocks

Changeofstressblocks– ductiley-reinforcement

Compression

Tension

z

y

x

y

a1

22

Page 23: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Shapeofconcretecompressionblocksisdictatedbycompatibilityandequilibrium:• Initiallytensionandcompressionateverypointofyield-

lines.

• Asdeflectionincreasesconcretecompressionblocks

concentratetowardsslabcorners,rebarfractureswhen

itsstrainexceedsitsductility.

• Notensionwithincompressionblocks

Changeofstressblocks – ductiley-reinforcement

Compression

Tension

z

y

x

y

a1

23

Page 24: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Shapeofconcretecompressionblocksisdictatedbycompatibilityandequilibrium:• Initiallytensionandcompressionateverypointofyield-

lines.

• Asdeflectionincreasesconcretecompressionblocks

concentratetowardsslabcorners,rebarfractureswhen

itsstrainexceedsitsductility.

• Notensionwithincompressionblocks

Changeofstressblocks – ductiley-reinforcement

Compression

Tension

z

y

x

y

a1

24

Page 25: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Shapeofconcretecompressionblocksisdictatedbycompatibilityandequilibrium:• Initiallytensionandcompressionateverypointofyield-

lines.

• Asdeflectionincreasesconcretecompressionblocks

concentratetowardsslabcorners,rebarfractureswhen

itsstrainexceedsitsductility.

• Notensionwithincompressionblocks

Changeofstressblocks – ductiley-reinforcement

Compression

Tension

z

y

x

y

b1

25

Page 26: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Shapeofconcretecompressionblocksisdictatedbycompatibilityandequilibrium:• Initiallytensionandcompressionateverypointofyield-

lines.

• Asdeflectionincreasesconcretecompressionblocks

concentratetowardsslabcorners,rebarfractureswhen

itsstrainexceedsitsductility.

• Notensionwithincompressionblocks

Changeofstressblocks – ductiley-reinforcement

Compression

Tension

z

y

x

y

b1

26

Page 27: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Shapeofconcretecompressionblocksisdictatedbycompatibilityandequilibrium:• Initiallytensionandcompressionateverypointofyield-

lines.

• Asdeflectionincreasesconcretecompressionblocks

concentratetowardsslabcorners,rebarfractureswhen

itsstrainexceedsitsductility.

• Notensionwithincompressionblocks

Changeofstressblocks – ductiley-reinforcement

Compression

Tension

z

y

x

y

b2

27

Page 28: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Shapeofconcretecompressionblocksisdictatedbycompatibilityandequilibrium:• Initiallytensionandcompressionateverypointofyield-

lines.

• Asdeflectionincreasesconcretecompressionblocks

concentratetowardsslabcorners,rebarfractureswhen

itsstrainexceedsitsductility.

• Notensionwithincompressionblocks

Changeofstressblocks – ductiley-reinforcement

Compression

Tension

z

y

x

y

c

28

Page 29: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Withdifferentrebar

ductility,meshcan

eitherfractureabruptly

orprogressivelyatany

stage.

Changeofstressblocks– possibilitieswithlessductility

Tension

z

y

x

y

Unfractured

MidYLfractured

Diagonalsunzipping

29

Page 30: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Withdifferentrebar

ductility,meshcan

eitherfractureabruptly

orprogressivelyatany

stage.

Changeofstressblocks– possibilitieswithlessductility

Tension

x

y

Unfractured

MidYLfractured

Diagonalsunzipping

z

y

30

Page 31: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Withdifferentrebar

ductility,meshcan

eitherfractureabruptly

orprogressivelyatany

stage.

Changeofstressblocks– possibilitieswithlessductility

x

y

Unfractured

MidYLfractured

Diagonalsunzipping

z

y

Tension

31

Page 32: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

a1x

b1x

b1x'

b1x**

b1x***

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8

Enhancementfactor

d/d1

Garstontestcomparison

• A142mesh(142mm2 permetre,580MPa

steelat200mmspacinginxandy

directions)at69mmeffectivedepth;

• Meshductility12%.

• Slabaspectratio1.4706(6.360mx

9.353).

• 120mmthick,52MPaconcrete;

• Edgesverticallysupported.

32

Page 33: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8

Enhancementfactor

d/d1

1.0 BRE1.0

1.4706 BRE1.4706

2.0 BRE2.0

3.0 BRE3.0

Garstoncomparisonfordifferentaspectratios

33

Page 34: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

Bendingstress(MPa)

d/d1

StressQ

StressR

StressS

Garston– applytensilestrengthtochangemechanism

Q R

S

EC2tensile

strengthforC52

[0.3fc0.67]

34

Page 35: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

b

DyDx

Dxy x

y

2

1

1

20x

xu z

v

=

=

22

2

2

2

2

2

2

y

x

y

u yyv x z

x Gap

y Gap

xy z

yx z

=

= +

=

=

+ +

+ +42

4

2

2

4

2 2 2 2

y

y

lu

lv x z

ly Gap x z

=

= +

= + +

32

3 2 2

2 2

y

xy

u yyrlv z

x Gap y

=

= +

=

3' 2 xu y= +

Newmechanism– centralthrough-depthcrack

35

Page 36: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Changeofstressblocks – ductiley-reinforcement

z

y

x

y

36

Page 37: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Changeofstressblocks – ductiley-reinforcement

z

y

x

y

37

Page 38: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Changeofstressblocks – ductiley-reinforcement

z

y

x

y

38

Page 39: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

Enhancementfactor

d/d1

Frombasicmechanismtocentrallycracked

39

Page 40: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Withattachedsteelbeams…

…theyield-linemechanismchanges.

40

Page 41: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

l

rlnxl

gx

Forcesonthex-alignedmechanism

SC1Cy2

Tx1

Ty1

Ty2

Tb, t°

Tb, t°

A B

Unprotectedbeamsat

hightemperature

41

Page 42: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

SC1

Cx2

Tx1

Ty1

Tx2

Tb, t°

Tb, t°

A

B

nyl

rl

l

gy

Forcesonthey-alignedmechanism

Unprotectedbeamsat

hightemperature42

Page 43: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Combinationsofcompressionblockandrebarfracture

CompressionblockReinforcementmeshfracturelevel(x-alignedmechanism)

None Centraly Diag.xCentral+

Diag.y

Central+

Diag.x

Central+

Diag.x,y

Full abovemesh a1 a1’ a1* a1** a1*’ a1***

belowmesh a2 a2’ a2* a2** a2*’ a2***

Triangular abovemesh b1 b1’ b1* b1** b1*’ b1***

belowmesh b2 b2’ b2* b2** b2*’ b2***

Trapezoidal c1 c1’ c1* c1** c1*’ c1***

y

x

43

Page 44: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Exampleofapplication:9mx6mcompositeslab

9m

6m

• 130mmthickslab,30MPa

concrete;

• A142mesh(142mm2 per

metre,500MPasteelat

200mmspacinginxandy

directions)at60mmeffective

depth;

• Mesheffectiveductility(over

200mmlength)1%:fracture

crack-width2mm;

• Onecentraldownstandsteel

beam,305x165UKB40,Grade

S275- unprotectedagainst

fire;

• Edgesverticallysupported.

305

60

130

16510

6

44

Page 45: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

ny

0.6

0.4

0.2

0 2 4 6 8 10 12

0.8

n xorn y

Loadcapacity(kN/m2)

nx

Initialyield-lineparameterfordifferentloadcapacities

nx

ny

45

Page 46: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

x

Criticaltemperature(°C) 900

600

300

0

Loadcapacity(kN/m2)

2 4 6 8 10 12

1200

y-mechanism

x-mechanism

Criticaltemperaturevariationwithloadcapacity

46

Page 47: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

x

y

1200

1000

800

600

400

200

0 20 40 60 80 100

1400Unprotectedbeamtemperature(°C)

Slabdeflection(mm)

10

8

6

5

3

2.0

2.772.4

2.2

(Nofailureofnon-compositeslab)

(Ambient-temperaturefailureofcompositeslab)

4

Enhancementofcriticalsteeltemperaturewithdeflection

47

Page 48: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

800

700

0 20 40 60 80 100

900

Unprotectedbeamtemperature(°C)

Slabdeflection(mm)

3kN/m2

Enhancementofcriticalsteeltemperaturewithdeflection

a1y

b1y’

b1y

b1y***b1y’*

48

Page 49: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

MaximumsteeltemperatureenhancementsTemperatureenhancement(°C)

120

80

40

0 2 4 6 8 10

160

y-mechanismx-mechanism

b1y’

B1y*

b1y’*

b1y’*

Loadcapacity(kN/m2)

b1x’

B1x**

49

Page 50: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

MaximumtensilestressatsectionA

5

Stress(M

Pa)

3

2

1

0 20 40 60 80 100

Slabdeflection(mm)

A

5kN/m2

A

B

50

Page 51: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Insummary…

Existingsimplifiedmethods:Forconcreteslabs:

• Fixedmembranetractiondistribution– independentofslab

deflection.

• Membranetractiondistributiononlyvalidwhileconcretehas

compressionalongwholeyieldlines.

• Assumescentralcrackfullyformed.Rebaratultimatestrength

(+10%)

• Enhancementfactorstartsbelow1.0.

Forcompositeslabsinfire:

• Yield-linepatternbasedonnon-compositeslab.

• Superposeshigh-temperaturecompositebeamcapacityand

deflection-controlledslabenhancement.

• Criterionformid-spanthrough-depthcrackismeaningless.

51

Page 52: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Insummary…

Thenewapproach:Forallslabs:

• Basedonthekinematicsofdeflectingflatfacetsofthesmall-deflection

yieldlinemechanism,togetherwithin-planeequilibriumofthe

concreteandsteelforces.

• Allowsconcretestressblockstomoveandmeshtofractureacross

yieldlines.

Forcompositeslabsinfire:

• Keepsloadconstant,allowsbeamstemperaturetoincreaseuntilyield

linemechanismforms.

• Enhancementofsteelbeamtemperaturewithdeflection.

Biggestproblemstobesolved:• Fractureductilityofrebaracrossdiscretecracks- yieldlinesor

through-depthmid-spancrack.

• Concretetensilestresstoinitiatethemid-span(orintersection)crack.

52

Page 53: Tensile Membrane Action of Composite Slabs in Fire · PDF fileTensile Membrane Action of Composite Slabs in Fire Are the current methods really OK? Ian Burgess University of Sheffield,

Thankyou

53