Top Banner
C-A-2016 © 2015 SIMPSON STRONG-TIE COMPANY INC. 20 Adhesive Anchors Simpson Strong-Tie ® Anchoring & Fastening Systems for Concrete and Masonry Features • Passed the demanding ICC-ES AC308 adverse-condition tests pertaining to reduced and elevated temperatures and long-term sustained loads • Code listed under the IBC/IRC for cracked and uncracked concrete per IAPMO UES ER-263 and City of L.A. RR25960 • Code listed under the IBC/IRC for masonry per IAPMO UES ER-281 and City of L.A. RR25966 • 10:1 two-component high-strength, acrylic-based anchoring adhesive • Suitable for use under static and seismic loading conditions in cracked and uncracked concrete as well as masonry • Easy hole-cleaning procedure – no power-brushing required • Suitable for use in dry or water-saturated concrete • For best results, store between 14°F and 80°F • Cures in substrate temperatures as low as 14°F (–10°C) in 24 hours or less • Available in 9.4 oz., 12.5 oz. and 30 oz. cartridges for application versatility • Volatile Orgainic Compound (VOC) – 30 g/L • Manufactured in the USA using global materials Applications • Threaded rod anchoring and rebar doweling into concrete and masonry • Suitable for horizontal, vertical and overhead applications Codes: IAPMO UES ER-263 (concrete); IAPMO UES ER-281 (masonry); City of L.A. RR25960 (concrete), RR25966 (masonry); FL-16230.1; NSF/ANSI Standard 61 (43.2 in. 2 / 1,000 gal.) Chemical Resistance See pages 320–321. Installation and Application Instructions (See also pages 124–127.) • Surfaces to receive adhesive must be clean. • Base material temperature must be 14°F or above at the time of installation. For best results, material should be 14–80°F at time of application. • To warm cold material, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water to facilitate warming. • Mixed material in nozzle can harden in 3–4 minutes at temperatures of 70°F and above. Design Example See page 328. Suggested Specifications See www.strongtie.com for more information. AT-XP ® High-Strength Acrylic Adhesive AT-XP ® Adhesive Formulated for high-strength anchorage of threaded rod and rebar into cracked and uncracked concrete and masonry under a wide range of conditions, AT-XP ® adhesive dispenses easily in cold or warm environments and in below-freezing temperatures with no need to warm the cartridge. When mixed properly, this low-odor formula is a dark teal color for easy post-installation identiication. Cracked Concrete CODE LISTED
18

Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

Apr 06, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

20

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

Features

• Passed the demanding ICC-ES AC308 adverse-condition

tests pertaining to reduced and elevated temperatures and

long-term sustained loads

• Code listed under the IBC/IRC for cracked and uncracked concrete

per IAPMO UES ER-263 and City of L.A. RR25960

• Code listed under the IBC/IRC for masonry

per IAPMO UES ER-281 and City of L.A. RR25966

• 10:1 two-component high-strength, acrylic-based

anchoring adhesive

• Suitable for use under static and seismic loading conditions in

cracked and uncracked concrete as well as masonry

• Easy hole-cleaning procedure – no power-brushing required

• Suitable for use in dry or water-saturated concrete

• For best results, store between 14°F and 80°F

• Cures in substrate temperatures as low as 14°F (–10°C)

in 24 hours or less

• Available in 9.4 oz., 12.5 oz. and 30 oz. cartridges for

application versatility

• Volatile Orgainic Compound (VOC) – 30 g/L

• Manufactured in the USA using global materials

Applications

• Threaded rod anchoring and rebar doweling into concrete

and masonry

• Suitable for horizontal, vertical and overhead applications

Codes: IAPMO UES ER-263 (concrete); IAPMO UES

ER-281 (masonry); City of L.A. RR25960 (concrete),

RR25966 (masonry); FL-16230.1; NSF/ANSI Standard 61

(43.2 in.2/ 1,000 gal.)

Chemical Resistance

See pages 320–321.

Installation and Application Instructions

(See also pages 124–127.)

• Surfaces to receive adhesive must be clean.

• Base material temperature must be 14°F or above at the time of

installation. For best results, material should be 14–80°F at time

of application.

• To warm cold material, store cartridges in a warm, uniformly heated

area or storage container. Do not immerse cartridges in water to

facilitate warming.

• Mixed material in nozzle can harden in 3–4 minutes at temperatures of

70°F and above.

Design Example

See page 328.

Suggested Specifications

See www.strongtie.com for more information.

AT-XP® High-Strength Acrylic Adhesive

AT-XP® Adhesive

Formulated for high-strength anchorage of threaded rod and rebar into cracked and uncracked concrete and

masonry under a wide range of conditions, AT-XP® adhesive dispenses easily in cold or warm environments

and in below-freezing temperatures with no need to warm the cartridge. When mixed properly, this low-odor

formula is a dark teal color for easy post-installation identiication.

CrackedConcrete CODE LISTED

Page 2: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

21

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

AT-XP® High-Strength Acrylic Adhesive

Cure Schedule

Base Material Temperature

Cure Time (hrs.)

°F °C

14 -10 24

32 0 8

50 10 3

68 20 1

86 30 30 min.

100 38 20 min.

For water-saturated concrete, the cure times must be doubled.

AT-XP® Adhesive Cartridge System

Model No.Capacity ounces

(cubic in.)Cartridge Type Carton Qty. Dispensing Tool Mixing Nozzle

AT-XP109.4

(16.9)Coaxial 6 CDT10S

AMN19QAT-XP1312.5(22.5)

Side-by-side 10 ADT813S

AT-XP3030(54)

Side-by-side 5ADT30S

ADTA30P orADTA30CKT

1. Cartridge estimation guidelines are available at www.strongtie.com/apps.

2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available on pages 128 through 135 or at www.strongtie.com.

3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication or improper use of mixing nozzle may impair AT-XP adhesive performance.

4. One AMN19Q mixing nozzle and one nozzle extension are supplied with each cartridge.

Page 3: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

22

Ad

he

siv

e A

nchors SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete1

Characteristic Symbol UnitsNominal Anchor Diameter (in.) / Rebar Size

8 / #3 2 / #4 8 / #5 4 / #6 8 / #7 1 / #8 1 4 / #10

Installation Information

Drill Bit Diameter for Threaded Rod dhole in. 7⁄16 9⁄16 11⁄16 13⁄16 1 1 8 1 8

Drill Bit Diameter for Rebar dhole in. 2 8 4 8 1 1 8 1 8

Maximum Tightening Torque Tinst ft.-lb. 10 20 30 45 60 80 125

Permitted Embedment Depth Range2Minimum hef in. 2 8 2 4 3 8 3 zz2 3 4 4 5

Maximum hef in. 7 2 10 12 2 15 17 2 20 25

Minimum Concrete Thickness hmin in. hef + 5do

Critical Edge Distance2 cac in. See foonote 2

Minimum Edge Distance cmin in. 1 4 2 4

Minimum Anchor Spacing smin in. 3 6

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.

2. cac = hef (τk,uncr /1160)0.4 x [3.1 – 0.7(h/hef)], where:

[h/hef] ≤ 2.4

τk,uncr = the characteristic bond strength in uncracked concrete, given in the tables that follow ≤ kuncr ((hef x f 'c)

0.5/(∏ x da))

h = the member thickness (inches)

hef = the embedment depth (inches)

*

Page 4: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

23

Ad

he

siv

e A

nchorsSD

SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete1

Characteristic Symbol UnitsNominal Anchor Diameter (in.)

8 2 8 4 8 1 1 4

Steel Strength in Tension

Threaded Rod

Minimum Tensile Stress Area Ase in.2 0.078 0.142 0.226 0.334 0.462 0.606 0.969

Tension Resistance of Steel — ASTM F1554, Grade 36

Nsa lb.

4,525 8,235 13,110 19,370 26,795 35,150 56,200

Tension Resistance of Steel — ASTM A193, Grade B7 9,750 17,750 28,250 41,750 57,750 75,750 121,125

Tension Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)

8,580 15,620 24,860 36,740 50,820 66,660 106,590

Tension Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)

4,445 8,095 12,880 19,040 26,335 34,540 55,235

Strength Reduction Factor — Steel Failure φ — 0.756

Concrete Breakout Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)

Effectiveness Factor — Uncracked Concrete kuncr — 24

Effectiveness Factor — Cracked Concrete kcr — 17

Strength Reduction Factor — Breakout Failure φ — 0.658

Bond Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)

Uncracked Concrete 2,3,4

Characteristic Bond Strength τk,uncr psi 1,390 1,590 1,715 1,770 1,750 1,655 1,250

Permitted Embedment Depth RangeMinimum

hef in.2 8 2 4 3 8 3 2 3 4 4 5

Maximum 7 2 10 12 2 15 17 2 20 25

Cracked Concrete 2,3,4

Characteristic Bond Strength9,10,11 τk,cr psi 1,085 1,035 980 950 815 800 700

Permitted Embedment Depth RangeMinimum

hef in.3 3 3 8 3 2 3 4 4 5

Maximum 7 2 10 12 2 15 17 2 20 25

Bond Strength in Tension — Bond Strength Reduction Factors for Continuous Special Inspection

Strength Reduction Factor — Dry Concrete φdry — 0.657 0.557

Strength Reduction Factor — Water-Saturated Concrete φsat — 0.457

Additional Factor for Water-Saturated Concrete Κsat — 0.545 0.775 0.965

Bond Strength in Tension — Bond Strength Reduction Factors for Periodic Special Inspection

Strength Reduction Factor — Dry Concrete φdry — 0.557 0.457

Strength Reduction Factor — Water-Saturated Concrete φsat — 0.457

Additional Factor for Water-Saturated Concrete Κsat — 0.465 0.655 0.815

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.

2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term concrete temperatures are constant temperatures over a signiicant time period.

5. In water-saturated concrete, multiply τk,uncr and τk,cr by Ksat.

6. The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

7. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

8. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition A are met, refer to Section D.400.3 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 2", 8", 4" and 1" anchors must be multiplied by αN,seis = 0.85.

10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1 4" anchors must be multiplied by αN,seis = 0.75.

11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 8" anchors must be multiplied by αN,seis = 0.59.

IBC*

Page 5: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

24

Ad

he

siv

e A

nchors

SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

IBC*

AT-XP® Tension Strength Design Data for Rebar in Normal-Weight Concrete1

Characteristic Symbol UnitsRebar Size

#3 #4 #5 #6 #7 #8 #10

Steel Strength in Tension

Rebar

Minimum Tensile Stress Area Ase in.2 0.11 0.2 0.31 0.44 0.6 0.79 1.27

Tension Resistance of Steel — Rebar (ASTM A615 Grade 60)

Nsa lb.

9,900 18,000 27,900 39,600 54,000 71,100 114,300

Tension Resistance of Steel — Rebar (ASTM A706 Grade 60)

8,800 16,000 24,800 35,200 48,000 63,200 101,600

Strength Reduction Factor — Steel Failure φ — 0.756

Concrete Breakout Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)

Effectiveness Factor — Uncracked Concrete kuncr — 24

Effectiveness Factor — Cracked Concrete kcr 17

Strength Reduction Factor — Breakout Failure φ — 0.658

Bond Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)

Uncracked Concrete 2,3,4

Characteristic Bond Strength τk,uncr psi 1,010 990 970 955 935 915 875

Permitted Embedment Depth Range

Minimumhef in.

2 8 2 4 3 8 3 2 3 4 4 5

Maximum 7 2 10 12 2 15 17 2 20 25

Cracked Concrete 2,3,4

Characteristic Bond Strength τk,cr psi 340 770 780 790 795 795 820

Permitted Embedment Depth Range

Minimumhef in.

3 3 3 8 3 2 3 4 4 5

Maximum 7 2 10 12 2 15 17 2 20 25

Bond Strength in Tension — Bond Strength Reduction Factors for Continuous Special Inspection

Strength Reduction Factor — Dry Concrete φdry — 0.657 0.557

Strength Reduction Factor — Water-Saturated Concrete φsat — 0.457

Additional Factor for Water-Saturated Concrete Κsat — 0.545 0.775 0.965

Bond Strength in Tension — Bond Strength Reduction Factors for Periodic Special Inspection

Strength Reduction Factor — Dry Concrete φdry — 0.557 0.457

Strength Reduction Factor — Water-Saturated Concrete φsat — 0.457

Additional Factor for Water-Saturated Concrete Κsat — 0.465 0.655 0.815

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.

2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term concrete temperatures are constant temperatures over a signiicant time period.

5. In water-saturated concrete, multiply τk,uncr and τk,cr by Ksat.

6. The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

7. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

8. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition A are met, refer to Section D.4.3 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

Page 6: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

25

Ad

he

siv

e A

nchors

SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete1

Characteristic Symbol UnitsNominal Anchor Diameter (in.)

8 2 8 4 8 1 1 4

Steel Strength in Shear

Threaded Rod

Minimum Shear Stress Area Ase in.2 0.078 0.142 0.226 0.334 0.462 0.606 0.969

Shear Resistance of Steel — ASTM F1554, Grade 36

Vsa lb.

2,260 4,940 7,865 11,625 16,080 21,090 33,720

Shear Resistance of Steel — ASTM A193, Grade B7 4,875 10,650 16,950 25,050 34,650 45,450 72,675

Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)

4,290 9,370 14,910 22,040 30,490 40,000 63,955

Shear Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)

2,225 4,855 7,730 11,425 15,800 20,725 33,140

Reduction for Seismic Shear — ASTM F1554, Grade 36

αV,seis5 —

0.85

Reduction for Seismic Shear — ASTM A193, Grade B7 0.85

Reduction for Seismic Shear — Type 410 Stainless (ASTM A193, Grade B6)

0.85 0.75 0.85

Reduction for Seismic Shear — Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)

0.85 0.75 0.85

Strength Reduction Factor — Steel Failure φ — 0.652

Concrete Breakout Strength in Shear

Outside Diameter of Anchor do in. 0.375 0.5 0.625 0.75 0.875 1 1.25

Load-Bearing Length of Anchor in Shear ℓe in. hei

Strength Reduction Factor — Breakout Failure φ — 0.703

Concrete Pryout Strength in Shear

Coeficient for Pryout Strength kcp — 1.0 for hef < 2.50"; 2.0 for hef ≥ 2.50"

Strength Reduction Factor — Pryout Failure φ — 0.704

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.

2. The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

3. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition A are met, refer to Section D.4.3 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

4. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

5. The values of Vsa are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, Vsa must be multiplied by αV,seis for the corresponding anchor steel type.

IBC*

Page 7: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

26

Ad

he

siv

e A

nchors SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Shear Strength Design Data for Rebar in Normal-Weight Concrete1

Characteristic Symbol UnitsRebar Size

#3 #4 #5 #6 #7 #8 #10

Steel Strength in Shear

Rebar

Minimum Shear Stress Area Ase in.2 0.11 0.2 0.31 0.44 0.6 0.79 1.27

Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)

Vsa lb.

4,950 10,800 16,740 23,760 32,400 42,660 68,580

Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)

4,400 9,600 14,880 21,120 28,800 37,920 60,960

Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)

αV,seis5 —

0.56 0.80

Reduction for Seismic Shear — Rebar (ASTM A706 Grade 60)

0.56 0.80

Strength Reduction Factor — Steel Failure φ 0.652

Concrete Breakout Strength in Shear

Outside Diameter of Anchor do in. 0.375 0.5 0.625 0.75 0.875 1 1.25

Load-Bearing Length of Anchor in Shear ℓe in. hef

Strength Reduction Factor — Breakout Failure φ — 0.703

Concrete Pryout Strength in Shear

Coeficient for Pryout Strength kcp — 1.0 for hef < 2.50"; 2.0 for hef ≥ 2.50"

Strength Reduction Factor — Pryout Failure φ — 0.704

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.

2. The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

3. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition A are met, refer to Section D.4.3 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

4. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of φ.

5. The values of Vsa are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, Vsa must be multiplied by αV,seis for the corresponding anchor steel type.

IBC*

Page 8: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

27

Ad

he

siv

e A

nchors

SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

Threaded Rod Dia. (in.)

Tension Design Strength of Threaded Rod Steel (lb.)

ASTM F1554GR 36

ASTM F1554GR 55

ASTM F1554GR 105

ASTM A193B6

ASTM A193B7

ASTM A193B8/B8M

8 3,370 4,360 7,270 6,395 7,270 3,310 2 6,175 7,990 13,315 11,715 13,315 6,070 8 9,835 12,715 21,190 18,645 21,190 9,6604 14,530 18,790 31,315 27,555 31,315 14,2808 20,095 25,990 43,315 38,115 43,315 19,7501 26,365 34,090 56,815 49,995 56,815 25,905

1 4 42,150 54,505 90,845 79,945 90,845 41,425

AT-XP® Tension Design Strengths for Threaded Rod Anchors in Normal-Weight Concrete (f'c = 2,500 psi)

Rod Dia. (in.)

Nominal Embed. Depth (in.)

Minimum Dimensions for Uncracked

(in.)

Minimum Dimensions for Cracked

(in.)

Tension Design Strength Based on Concrete or Bond (lb.)

Edge Distances = cac on all sidesEdge Distances = 1 4" on one side

and cac on three sidesSDC A-B6 SDC C-F7,8 SDC A-B6 SDC C-F7,8

ha cac ha cac Uncracked Cracked Uncracked Cracked Uncracked Cracked Uncracked Cracked

8

2 8 4 4 4 4 — — 2,140 — 1,605 — 1,115 — 835 —5 4 4 4 1,250 935

3 4 8 6 8 4 8 4 4 2,700 2,110 2,025 1,580 1,050 1,230 790 9257 4 4 8 1,450 1,090

4 2 6 8 10 4 6 8 5 4 4,055 3,165 3,040 2,375 975 1,845 735 1,38510 8 6 8 1,450 1,090

6 7 8 14 8 7 8 6 5,405 4,220 4,055 3,165 945 2,250 710 1,68514 2 9 4 1,450 1,090

7 2 9 8 18 9 8 6 4 6,755 5,275 5,065 3,955 925 2,585 695 1,93518 11 2 1,450 1,090

2

2 4 5 4 6 8 — — 3,555 — 2,410 — 1,720 — 1,225 —6 8 6 8 1,920 1,225

3 5 2 6 8 5 2 6 8 4,055 2,680 2,625 1,710 1,800 1,365 1,335 8707 4 6 8 2,095 1,335

6 8 2 14 8 8 2 7 8,240 5,365 5,255 3,420 1,755 2,700 1,120 1,74014 2 9 4 2,605 1,660

8 10 2 19 8 10 2 8 2 10,990 7,155 7,005 4,560 1,695 3,425 1,080 2,32019 4 13 2,605 1,660

10 12 2 25 4 12 2 9 4 13,735 8,940 8,755 5,700 1,665 4,070 1,060 2,89524 16 8 2,605 1,660

8

3 8 6 4 7 8 6 4 7 8 4,310 3,050 3,230 1,995 2,180 1,485 1,635 9507 2 7 8 2,405 1,735

5 8 8 10 2 8 8 7 8 8,720 5,285 5,905 3,370 2,965 2,485 2,065 1,58512 7 8 4,095 2,770

7 2 10 8 18 8 10 8 9 8 13,890 7,935 8,855 5,060 2,780 3,705 1,770 2,37518 12 8 4,130 2,630

12 2 15 8 32 8 15 8 12 2 23,150 13,230 14,760 8,435 2,610 5,620 1,665 3,96030 20 8 4,090 2,605

4

3 2 7 4 9 8 7 4 8 8 5,105 3,620 3,830 2,340 2,680 1,695 2,010 1,0808 2 9 8 2,725 2,045

6 9 4 12 8 9 4 9 8 11,465 7,380 8,600 4,705 3,855 3,300 2,890 2,10514 2 9 8 5,190 3,895

9 12 4 21 4 12 4 11 4 20,645 11,080 13,160 7,065 4,145 4,895 2,640 3,16021 8 14 8 6,155 3,925

15 18 4 39 8 18 4 15 4 34,405 18,465 21,935 11,775 3,705 7,660 2,360 5,26536 25 4 5,800 3,700

8

3 4 8 8 11 8 8 8 10 2 5,665 4,010 4,250 1,825 2,945 1,825 1,900 8059 11 8 2,945 1,900

7 11 8 13 4 11 8 11 8 14,445 8,625 8,195 3,815 4,840 3,735 2,855 1,65516 8 11 8 6,320 3,550

10 2 14 8 24 14 8 12 2 26,540 12,940 12,295 5,725 5,540 5,605 2,450 2,480

25 4 16 4 8,225 3,640

17 2 21 8 46 21 8 17 2 46,300 21,565 20,490 9,540 4,820 8,840 2,135 4,13042 29 8 7,555 3,345

1

4 9 12 8 9 12 8 6,240 4,420 4,680 2,885 3,175 1,920 2,380 1,2259 8 12 8 3,175 2,380

8 13 15 8 13 12 8 17,650 9,050 11,935 5,770 5,915 3,840 4,070 2,45019 4 12 8 7,520 5,065

12 17 26 4 17 12 4 28,075 13,570 17,900 8,650 5,480 5,760 3,495 3,67028 8 18 8,135 5,185

20 25 51 8 25 18 4 46,795 22,620 29,830 14,420 4,750 9,365 3,025 6,12048 32 4 7,440 4,745

1 4

5 11 4 13 8 11 4 13 8 8,720 6,175 6,215 3,480 — — — —12 13 8

10 16 4 18 4 16 4 13 8 22,090 12,370 12,425 6,960 — — — —24 15

15 21 4 32 21 4 15 4 33,135 18,555 18,640 10,435 — — — —36 22 2

25 31 4 57 8 31 4 22 55,225 30,925 31,065 17,395 — — — —60 37 2

IBC*

1. Tension design strength must be the lesser of the concrete, bond or threaded rod steel design strength.

2. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 180°F and long-term temperature of 110°F.

3. Tabulated values are for a single anchor with no inluence of another anchor.

4. Interpolation between embedment depths is not permitted.

5. Strength reduction factor, φ, is based on using a load combination from ACI 318-11 Section 9.2.

6. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

7. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. Design strengths in Bold indicate that the anchor ductility requirements of D.3.3.4.3 (a)1 to 3 are satisied when using ASTM F1554 Grade 36 threaded rod. Any other ductility requirements must be satisied.

8. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Page 9: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

28

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (f'c = 2,500 psi) — Static Load

Rod Dia. (in.)

Nominal Embed. Depth (in.)

Minimum Dimensions for Uncracked

(in.)

Minimum Dimensions for Cracked

(in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge distances = cac on all sidesEdge Distances = 1 4" on one

side and cac on three sides

ha cac ha cac Uncracked Cracked Uncracked Cracked

8

2 84 4 4 4 — — 1,530 —

795—

5 4 4 4 895

3 4 8 6 84 8 4 4 1,930 1,505

750880

7 4 4 8 1,035

4 26 8 10 4

6 8 5 4 2,895 2,260695

1,32010 8 6 8 1,035

6 7 8 14 87 8 6 3,860 3,015

6751,605

14 2 9 4 1,035

7 29 8 18

9 8 6 4 4,825 3,770660

1,84518 11 2 1,035

2

2 45 4 6 8 — — 2,540 —

1,230—

6 8 6 8 1,370

3 5 2 6 85 2 6 8 2,895 1,915

1,285975

7 4 6 8 1,495

6 8 2 14 88 2 7 5,885 3,830

1,2551,930

14 2 9 4 1,860

8 10 2 19 810 2 8 2 7,850 5,110

1,2102,445

19 4 13 1,860

10 12 2 25 412 2 9 4 9,810 6,385

1,1902,905

24 16 8 1,860

8

3 86 4 7 8

6 4 7 8 3,080 2,1801,555

1,0607 2 7 8 1,720

5 8 8 10 28 8 7 8 6,230 3,775

2,1201,775

12 7 8 2,925

7 210 8 18 8

10 8 9 8 9,920 5,6701,985

2,64518 12 8 2,950

12 215 8 32 8

15 8 12 2 16,535 9,4501,865

4,01530 20 8 2,920

4

3 27 4 9 8

7 4 8 8 3,645 2,5851,915

1,2108 2 9 8 1,945

6 9 4 12 89 4 9 8 8,190 5,270

2,7552,355

14 2 9 8 3,705

9 12 4 21 412 4 11 4 14,745 7,915

2,9603,495

21 8 14 8 4,395

15 18 4 39 818 4 15 4 24,575 13,190

2,6455,470

36 25 4 4,145

8

3 48 8 11 8

8 8 10 2 4,045 2,8652,105

1,3059 11 8 2,105

7 11 8 13 411 8 11 8 10,320 6,160

3,4552,670

16 8 11 8 4,515

10 214 8 24

14 8 12 2 18,955 9,2453,955

4,00525 4 16 4 5,875

17 221 8 46

21 8 17 2 33,070 15,4053,445

6,31542 29 8 5,395

1

4 9 12 8 9 12 8 4,455 3,155

2,2701,370

9 8 12 8 2,270

8 13 15 8 13 12 8 12,605 6,465

4,2252,745

19 4 12 8 5,370

12 17 26 4 17 12 4 20,055 9,695

3,9154,115

28 8 18 5,810

20 25 51 8 25 18 4 33,425 16,155

3,3956,690

48 32 4 5,315

1 4

5 11 4 13 811 4 13 8 6,230 4,410 — —

12 13 8

10 16 4 18 416 4 13 8 15,780 8,835 — —

24 15

15 21 4 32 21 4 15 4 23,670 13,255 — —

36 22 2

25 31 4 57 831 4 22 39,445 22,090 — —

60 37 2

Threaded Rod Dia. (in.)

Allowable Tension Load of Threaded Rod Steel (lb.)

ASTM F1554GR 36

ASTM F1554GR 55

ASTM F1554GR 105

ASTM A193B6

ASTM A193B7

ASTM A193B8/B8M

8 2,405 3,115 5,195 4,570 5,195 2,365

2 4,410 5,705 9,510 8,370 9,510 4,335

8 7,025 9,080 15,135 13,320 15,135 6,900

4 10,380 13,420 22,370 19,680 22,370 10,200

8 14,355 18,565 30,940 27,225 30,940 14,105

1 18,830 24,350 40,580 35,710 40,580 18,505

1 4 30,105 38,930 64,890 57,105 64,890 29,590

IBC*

1. Allowable tension load must be the lesser of the concrete, bond or threaded rod steel load.

2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 180°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

3. Tabulated values are for a single anchor with no inluence of another anchor.

4. Interpolation between embedment depths is not permitted.

Page 10: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

29

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (f'c = 2,500 psi) — Wind Load

Rod Dia. (in.)

Nominal Embed. Depth

(in.)

Minimum Dimensions for Uncracked

(in.)

Minimum Dimensions for Cracked

(in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge distances = cac on all sides

Edge Distances = 1 4" on one side and cac on three sides

ha cac ha cac Uncracked Cracked Uncracked Cracked

8

2 84 4 4 4 — — 1,285 —

670—

5 4 4 4 750

3 4 8 6 84 8 4 4 1,620 1,265

630740

7 4 4 8 870

4 26 8 10 4

6 8 5 4 2,435 1,900585

1,10510 8 6 8 870

6 7 8 14 87 8 6 3,245 2,530

5651,350

14 2 9 4 870

7 29 8 18

9 8 6 4 4,055 3,165555

1,55018 11 2 870

2

2 45 4 6 8 — — 2,135 —

1,030—

6 8 6 8 1,150

3 5 2 6 85 2 6 8 2,435 1,610

1,080820

7 4 6 8 1,255

6 8 2 14 88 2 7 4,945 3,220

1,0551,620

14 2 9 4 1,565

8 10 2 19 810 2 8 2 6,595 4,295

1,0152,055

19 4 13 1,565

10 12 2 25 412 2 9 4 8,240 5,365

1,0002,440

24 16 8 1,565

8

3 86 4 7 8

6 4 7 8 2,585 1,8301,310

8907 2 7 8 1,445

5 8 8 10 28 8 7 8 5,230 3,170

1,7801,490

12 7 8 2,455

7 210 8 18 8

10 8 9 8 8,335 4,7601,670

2,22518 12 8 2,480

12 215 8 32 8

15 8 12 2 13,890 7,9401,565

3,37030 20 8 2,455

4

3 27 4 9 8

7 4 8 8 3,065 2,1701,610

1,0158 2 9 8 1,635

6 9 4 12 89 4 9 8 6,880 4,430

2,3151,980

14 2 9 8 3,115

9 12 4 21 412 4 11 4 12,385 6,650

2,4852,935

21 8 14 8 3,695

15 18 4 39 818 4 15 4 20,645 11,080

2,2254,595

36 25 4 3,480

8

3 48 8 11 8

8 8 10 2 3,400 2,4051,765

1,0959 11 8 1,765

7 11 8 13 411 8 11 8 8,665 5,175

2,9052,240

16 8 11 8 3,790

10 214 8 24

14 8 12 2 15,925 7,7653,325

3,36525 4 16 4 4,935

17 221 8 46

21 8 17 2 27,780 12,9402,890

5,30542 29 8 4,535

1

4 9 12 8 9 12 8 3,745 2,650

1,9051,150

9 8 12 8 1,905

8 13 15 8 13 12 8 10,590 5,430

3,5502,305

19 4 12 8 4,510

12 17 26 4 17 12 4 16,845 8,140

3,2903,455

28 8 18 4,880

20 25 51 8 25 18 4 28,075 13,570

2,8505,620

48 32 4 4,465

1 4

5 11 4 13 811 4 13 8 5,230 3,705 — —

12 13 8

10 16 4 18 416 4 13 8 13,255 7,420 — —

24 15

15 21 4 32 21 4 15 4 19,880 11,135 — —

36 22 2

25 31 4 57 831 4 22 33,135 18,555 — —

60 37 2

Threaded Rod Dia. (in.)

Allowable Tension Load of Threaded Rod Steel (lb.)

ASTM F1554GR 36

ASTM F1554GR 55

ASTM F1554GR 105

ASTM A193B6

ASTM A193B7

ASTM A193B8/B8M

8 2,020 2,615 4,360 3,835 4,360 1,985

2 3,705 4,795 7,990 7,030 7,990 3,640

8 5,900 7,630 12,715 11,185 12,715 5,795

4 8,720 11,275 18,790 16,535 18,790 8,570

8 12,055 15,595 25,990 22,870 25,990 11,850

1 15,820 20,455 34,090 29,995 34,090 15,545

1 4 25,290 32,705 54,505 47,965 54,505 24,855

IBC*

1. Allowable tension load must be the lesser of the concrete, bond or threaded rod steel load.

2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 180°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1⁄0.6 = 1.67. The conversion factor α is bazsed on the load combination assuming 100% wind load.

3. Tabulated values are for a single anchor with no inluence of another anchor.

4. Interpolation between embedment depths is not permitted.

Page 11: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

30

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

AT-XP® Design Information — Concrete

* See page 12 for an explanation of the load table icons.

AT-XP® Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (f'c = 2,500 psi) — Seismic Load

Nom. Insert Dia. (in.)

Embed. Depth,

hef (in.)

Minimum Dimensions for Uncracked (in.)

Minimum Dimensions for Cracked (in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge Distances = cac on all sidesEdge Distances = 1 4" on one side

and cac on three sidesSDC A-B5 SDC C-F6,7 SDC A-B5 SDC C-F6,7

ha cac ha cac Uncracked Cracked Uncracked Cracked Uncracked Cracked Uncracked Cracked

8

2 8 4 4 4 4 — — 1,500 — 1,125 — 780 — 585 —5 4 4 4 875 655

3 4 8 6 8 4 8 4 4 1,890 1,475 1,420 1,105 735 860 555 6507 4 4 8 1,015 765

4 2 6 8 10 4 6 8 5 4 2,840 2,215 2,130 1,665 685 1,290 515 97010 8 6 8 1,015 765

6 7 8 14 8 7 8 6 3,785 2,955 2,840 2,215 660 1,575 495 1,18014 2 9 4 1,015 765

7 2 9 8 18 9 8 6 4 4,730 3,695 3,545 2,770 650 1,810 485 1,35518 11 2 1,015 765

2

2 4 5 4 6 8 — — 2,490 — 1,685 — 1,205 — 860 —6 8 6 8 1,345 860

3 5 2 6 8 5 2 6 8 2,840 1,875 1,840 1,195 1,260 955 935 6107 4 6 8 1,465 935

6 8 2 14 8 8 2 7 5,770 3,755 3,680 2,395 1,230 1,890 785 1,22014 2 9 4 1,825 1,160

8 10 2 19 8 10 2 8 2 7,695 5,010 4,905 3,190 1,185 2,400 755 1,62519 4 13 1,825 1,160

10 12 2 25 4 12 2 9 4 9,615 6,260 6,130 3,990 1,165 2,850 740 2,02524 16 8 1,825 1,160

8

3 8 6 4 7 8 6 4 7 8 3,015 2,135 2,260 1,395 1,525 1,040 1,145 6657 2 7 8 1,685 1,215

5 8 8 10 2 8 8 7 8 6,105 3,700 4,135 2,360 2,075 1,740 1,445 1,11012 7 8 2,865 1,940

7 2 10 8 18 8 10 8 9 8 9,725 5,555 6,200 3,540 1,945 2,595 1,240 1,66518 12 8 2,890 1,840

12 2 15 8 32 8 15 8 12 2 16,205 9,260 10,330 5,905 1,825 3,935 1,165 2,77030 20 8 2,865 1,825

4

3 2 7 4 9 8 7 4 8 8 3,575 2,535 2,680 1,640 1,875 1,185 1,405 7558 2 9 8 1,910 1,430

6 9 4 12 8 9 4 9 8 8,025 5,165 6,020 3,295 2,700 2,310 2,025 1,47514 2 9 8 3,635 2,725

9 12 4 21 4 12 4 11 4 14,450 7,755 9,210 4,945 2,900 3,425 1,850 2,21021 8 14 8 4,310 2,750

15 18 4 39 8 18 4 15 4 24,085 12,925 15,355 8,245 2,595 5,360 1,650 3,68536 25 4 4,060 2,590

8

3 4 8 8 11 8 8 8 10 2 3,965 2,805 2,975 1,280 2,060 1,280 1,330 5659 11 8 2,060 1,330

7 11 8 13 4 11 8 11 8 10,110 6,040 5,735 2,670 3,390 2,615 2,000 1,16016 8 11 8 4,425 2,485

10 2 14 8 24 14 8 12 2 18,580 9,060 8,605 4,010 3,880 3,925 1,715 1,735

25 4 16 4 5,760 2,550

17 2 21 8 46 21 8 17 2 32,410 15,095 14,345 6,680 3,375 6,190 1,495 2,89042 29 8 5,290 2,340

1

4 9 12 8 9 12 8 4,370 3,095 3,275 2,020 2,225 1,345 1,665 8609 8 12 8 2,225 1,665

8 13 15 8 13 12 8 12,355 6,335 8,355 4,040 4,140 2,690 2,850 1,71519 4 12 8 5,265 3,545

12 17 26 4 17 12 4 19,655 9,500 12,530 6,055 3,835 4,030 2,445 2,57028 8 18 5,695 3,630

20 25 51 8 25 18 4 32,755 15,835 20,880 10,095 3,325 6,555 2,120 4,28548 32 4 5,210 3,320

1 4

5 11 4 13 8 11 4 13 8 6,105 4,325 4,350 2,435 — — — —12 13 8

10 16 4 18 4 16 4 13 8 15,465 8,660 8,700 4,870 — — — —24 15

15 21 4 32 21 4 15 4 23,195 12,990 13,050 7,305 — — — —36 22 2

25 31 4 57 8 31 4 22 38,660 21,650 21,745 12,175 — — — —60 37 2

Threaded Rod Dia. (in.)

Allowable Tension Load of Threaded Rod Steel (lb.)

ASTM F1554GR 36

ASTM F1554GR 55

ASTM F1554GR 105

ASTM A193B6

ASTM A193B7

ASTM A193B8/B8M

8 2,360 3,050 5,090 4,475 5,090 2,315 2 4,325 5,595 9,320 8,200 9,320 4,250 8 6,885 8,900 14,835 13,050 14,835 6,760 4 10,170 13,155 21,920 19,290 21,920 9,995 8 14,065 18,195 30,320 26,680 30,320 13,825 1 18,455 23,865 39,770 34,995 39,770 18,135

1 4 29,505 38,155 63,590 55,960 63,590 29,000

IBC*

1. Allowable tension load must be the lesser of the concrete, bond or threaded rod steel load.

2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 180°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1⁄0.7 = 1.43. The conversion factor α is based on the load combination assuming 100% seismic load.

3. Tabulated values are for a single anchor with no inluence of another anchor.

4. Interpolation between embedment depths is not permitted.

5. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

6. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. Design strengths in Bold indicate that the anchor ductility requirements of D.3.3.4.3 (a)1 to 3 are satisied when using ASTM F1554 Grade 36 threaded rod. Any other ductility requirements must be satisied.

7. Allowable tension loads in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Page 12: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

31

Ad

he

siv

e A

nchors

SD

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Tension Design Strengths for Rebar in Normal-Weight Concrete (f'c = 2,500 psi)

Rebar Size

Nominal Embed. Depth (in.)

Minimum Dimensions for Uncracked (in.)

Minimum Dimensions for Cracked (in.)

Tension Design Strength Based on Concrete or Bond (lb.)

Edge Distances = cac on all sidesEdge Distances = 1 4" on one side and cac on

three sides

SDC A-B6 SDC C-F7,8 SDC A-B6 SDC C-F7,8

ha cac ha cac Uncracked Cracked Uncracked Cracked Uncracked Cracked Uncracked Cracked

#3

2 84 4 4 4 — — 1,555 — 1,165 —

845—

635—

5 4 3 8 980 735

3 4 8 5 84 8 3 8 1,965 660 1,470 495

795415

600310

7 4 4 2 1,100 825

4 26 8 9

6 8 3 8 2,945 990 2,210 745740

625555

47010 8 6 4 1,100 825

6 7 8 12 27 8 3 8 3,925 1,320 2,945 990

715830

540625

14 2 9 1,100 825

7 29 8 15 8

9 8 3 8 4,910 1,650 3,680 1,240705

1,040525

78018 11 4 1,100 825

#4

2 45 4 4 4 — — 2,350 — 1,765 —

1,305—

980—

6 8 4 4 1,305 980

3 5 2 5 85 2 4 4 2,565 1,995 1,925 1,495

1,3201,105

990830

7 4 4 4 1,425 1,070

6 8 2 11 88 2 5 8 5,130 3,990 3,850 2,995

1,1402,085

8551,565

14 2 9 1,690 1,265

8 10 2 16 210 2 6 8 6,840 5,320 5,130 3,990

1,1002,640

8251,980

19 4 12 1,690 1,265

10 12 2 21 12 2 8 8,555 6,650 6,415 4,990

1,0803,175

8102,380

24 15 1,690 1,265

#5

3 86 4 5 8

6 4 5 8 3,275 2,630 2,455 1,9751,675

1,3501,260

1,0107 2 5 8 1,675 1,260

5 8 8 9 48 8 5 8 5,240 4,210 3,930 3,160

1,7252,160

1,2951,620

12 7 2 2,385 1,785

7 210 8 14 4

10 8 7 8 7,855 6,320 5,890 4,7401,605

2,9951,205

2,24518 11 4 2,385 1,785

12 215 8 26

15 8 10 4 13,095 10,530 9,820 7,8951,520

4,6151,140

3,46030 18 4 2,385 1,785

#6

3 27 4 7

7 4 7 4,330 3,585 3,250 2,6852,100

1,7351,575

1,3008 2 7 2,100 1,575

6 9 4 11 9 4 7 2 7,425 6,145 5,570 4,605

2,3102,935

1,7302,200

14 2 9 3,190 2,395

9 12 4 17 812 4 9 8 11,140 9,215 8,355 6,910

2,1504,135

1,6103,105

21 8 13 2 3,190 2,395

15 18 4 31 18 4 13 8 18,565 15,355 13,925 11,515

2,0356,455

1,5254,845

36 22 2 3,190 2,395

#7

3 48 8 8 8

8 8 7 4 5,300 4,010 3,975 3,0102,470

1,9501,850

1,4659 8 8 2,470 1,850

7 11 8 12 811 8 9 4 9,895 8,415 7,420 6,310

2,9503,805

2,2102,855

16 8 10 2 4,075 3,055

10 214 8 20 8

14 8 12 8 14,845 12,620 11,130 9,4652,745

5,4002,060

4,05025 4 15 4 4,075 3,055

17 221 8 35 4

21 8 17 24,740 21,035 18,555 15,7752,600

8,4951,950

6,37042 26 4 4,075 3,055

#8

4 9 9 8 9 9 8 5,175 4,420 3,880 3,315

2,3352,030

1,7501,520

9 8 9 8 2,335 1,750

8 13 14 8 13 9 4 10,350 8,990 7,760 6,745

2,9854,060

2,2403,045

19 4 12 4,125 3,095

12 17 23 8 17 12 8 15,525 13,485 11,640 10,115

2,7805,695

2,0854,270

28 8 18 4,125 3,095

20 25 40 2 25 17 4 25,870 22,480 19,405 16,860

2,6309,015

1,9756,760

48 30 4,125 3,095

#10

5 11 4 11 411 4 10 2 7,730 6,175 5,800 4,635 — — — —

12 11 4

10 16 4 17 816 4 13 4 15,465 14,490 11,595 10,870 — — — —

24 15

15 21 4 28 821 4 17 8 23,195 21,735 17,395 16,300 — — — —

36 22 2

25 31 4 49 431 4 24 2 38,655 36,225 28,990 27,170 — — — —

60 37 2

Rebar SizeTension Design Strength of Rebar Steel (lb.)

ASTM A615GR 60

ASTM A706GR 60

#3 6,435 5,720

#4 11,700 10,400

#5 18,135 16,120

#6 25,740 22,880

#7 35,100 31,200

#8 46,215 41,080

#10 74,100 66,040

IBC*

1. Tension design strength must be the lesser of the concrete, bond or rebar steel design strength.

2. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 180°F and long-term temperature of 110°F.

3. Tabulated values are for a single anchor with no inluence of another anchor.

4. Interpolation between embedment depths is not permitted.

5. Strength reduction factor, φ, is based on using a load combination from ACI 318-11 Section 9.2.

6. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

7. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

8. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Page 13: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

32

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Allowable Tension Loads for Rebar in Normal-Weight Concrete (f'c = 2,500 psi) — Static Load

Rebar SizeNominal

Embed. Depth (in.)

Minimum Dimensions for Uncracked (in.)

Minimum Dimensions for Cracked (in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge Distances = cac on all sides

Edge Distances = 1 4" on one side and cac on three sides

ha cac ha cac Uncracked Cracked Uncracked Cracked

#3

2 84 4 4 4 — — 1,110 —

605—

5 4 3 8 700

3 4 8 5 84 8 3 8 1,405 470

570295

7 4 4 2 785

4 26 8 9

6 8 3 8 2,105 705530

44510 8 6 4 785

6 7 8 12 27 8 3 8 2,805 945

510595

14 2 9 785

7 29 8 15 8

9 8 3 8 3,505 1,180505

74518 11 4 785

#4

2 45 4 4 4 — — 1,680 —

930—

6 8 4 4 930

3 5 2 5 85 2 4 4 1,830 1,425

945790

7 4 4 4 1,020

6 8 2 11 88 2 5 8 3,665 2,850

8151,490

14 2 9 1,205

8 10 2 16 210 2 6 8 4,885 3,800

7851,885

19 4 12 1,205

10 12 2 21 12 2 8 6,110 4,750

7702,270

24 15 1,205

#5

3 86 4 5 8

6 4 5 8 2,340 1,8801,195

9657 2 5 8 1,195

5 8 8 9 48 8 5 8 3,745 3,005

1,2301,545

12 7 2 1,705

7 210 8 14 4

10 8 7 8 5,610 4,5151,145

2,14018 11 4 1,705

12 215 8 26

15 8 10 4 9,355 7,5201,085

3,29530 18 4 1,705

#6

3 27 4 7

7 4 7 3,095 2,5601,500

1,2408 2 7 1,500

6 9 4 11 9 4 7 2 5,305 4,390

1,6502,095

14 2 9 2,280

9 12 4 17 812 4 9 8 7,955 6,580

1,5352,955

21 8 13 2 2,280

15 18 4 31 18 4 13 8 13,260 10,970

1,4554,610

36 22 2 2,280

#7

3 48 8 8 8

8 8 7 4 3,785 2,8651,765

1,3959 8 8 1,765

7 11 8 12 811 8 9 4 7,070 6,010

2,1052,720

16 8 10 2 2,910

10 214 8 20 8

14 8 12 8 10,605 9,0151,960

3,85525 4 15 4 2,910

17 221 8 35 4

21 8 17 17,670 15,0251,855

6,07042 26 4 2,910

#8

4 9 9 8 9 9 8 3,695 3,155

1,6701,450

9 8 9 8 1,670

8 13 14 8 13 9 4 7,395 6,420

2,1302,900

19 4 12 2,945

12 17 23 8 17 12 8 11,090 9,630

1,9854,070

28 8 18 2,945

20 25 40 2 25 17 4 18,480 16,055

1,8806,440

48 30 2,945

#10

5 11 4 11 411 4 10 2 5,520 4,410 — —

12 11 4

10 16 4 17 816 4 13 4 11,045 10,350 — —

24 15

15 21 4 28 821 4 17 8 16,570 15,525 — —

36 22 2

25 31 4 49 431 4 24 2 27,610 25,875 — —

60 37 2

Rebar SizeAllowable Tension Load of Rebar Steel (lb.)

ASTM A615GR 60

ASTM A706GR 60

#3 4,595 4,085

#4 8,355 7,430

#5 12,955 11,515

#6 18,385 16,345

#7 25,070 22,285

#8 33,010 29,345

#10 52,930 47,170

IBC*

1. Allowable tension load must be the lesser of the concrete, bond or rebar steel load.

2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 180°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

3. Tabulated values are for a single anchor with no inluence of another anchor.

4. Interpolation between embedment depths is not permitted.

Page 14: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

33

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Allowable Tension Loads for Rebar in Normal-Weight Concrete (f'c = 2,500 psi) — Wind Load

Rebar SizeNominal

Embed. Depth (in.)

Minimum Dimensions for Uncracked (in.)

Minimum Dimensions for Cracked (in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge Distances = cac on all sides

Edge Distances = 1 4" on one side and cac on three sides

ha cac ha cac Uncracked Cracked Uncracked Cracked

#3

2 84 4 4 4 — — 935 —

505—

5 4 3 8 590

3 4 8 5 84 8 3 8 1,180 395

475250

7 4 4 2 660

4 26 8 9

6 8 3 8 1,765 595445

37510 8 6 4 660

6 7 8 12 27 8 3 8 2,355 790

430500

14 2 9 660

7 29 8 15 8

9 8 3 8 2,945 990425

62518 11 4 660

#4

2 45 4 4 4 — — 1,410 —

785—

6 8 4 4 785

3 5 2 5 85 2 4 4 1,540 1,195

790665

7 4 4 4 855

6 8 2 11 88 2 5 8 3,080 2,395

6851,250

14 2 9 1,015

8 10 2 16 210 2 6 8 4,105 3,190

6601,585

19 4 12 1,015

10 12 2 21 12 2 8 5,135 3,990

6501,905

24 15 1,015

#5

3 86 4 5 8

6 4 5 8 1,965 1,5801,005

8107 2 5 8 1,005

5 8 8 9 48 8 5 8 3,145 2,525

1,0351,295

12 7 2 1,430

7 210 8 14 4

10 8 7 8 4,715 3,790965

1,79518 11 4 1,430

12 215 8 26

15 8 10 4 7,855 6,320910

2,77030 18 4 1,430

#6

3 27 4 7

7 4 7 2,600 2,1501,260

1,0408 2 7 1,260

6 9 4 11 9 4 7 2 4,455 3,685

1,3851,760

14 2 9 1,915

9 12 4 17 812 4 9 8 6,685 5,530

1,2902,480

21 8 13 2 1,915

15 18 4 31 18 4 13 8 11,140 9,215

1,2203,875

36 22 2 1,915

#7

3 48 8 8 8

8 8 7 4 3,180 2,4051,480

1,1709 8 8 1,480

7 11 8 12 811 8 9 4 5,935 5,050

1,7702,285

16 8 10 2 2,445

10 214 8 20 8

14 8 12 8 8,905 7,5701,645

3,24025 4 15 4 2,445

17 221 8 35 4

21 8 17 14,845 12,6201,560

5,09542 26 4 2,445

#8

4 9 9 8 9 9 8 3,105 2,650

1,4001,220

9 8 9 8 1,400

8 13 14 8 13 9 4 6,210 5,395

1,7902,435

19 4 12 2,475

12 17 23 8 17 12 8 9,315 8,090

1,6703,415

28 8 18 2,475

20 25 40 2 25 17 4 15,520 13,490

1,5805,410

48 30 2,475

#10

5 11 4 11 411 4 10 2 4,640 3,705 — —

12 11 4

10 16 4 17 816 4 13 4 9,280 8,695 — —

24 15

15 21 4 28 821 4 17 8 13,915 13,040 — —

36 22 2

25 31 4 49 431 4 24 2 23,195 21,735 — —

60 37 2

Rebar SizeAllowable Tension Load of Rebar Steel (lb.)

ASTM A615GR 60

ASTM A706GR 60

#3 3,860 3,430

#4 7,020 6,240

#5 10,880 9,670

#6 15,445 13,730

#7 21,060 18,720

#8 27,730 24,650

#10 44,460 39,625

IBC*

1. Allowable tension load must be the lesser of the concrete, bond or rebar steel load.

2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 180°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1⁄0.6 = 1.67. The conversion factor α is based on the load combination assuming 100% wind load.

3. Tabulated values are for a single anchor with no inluence of another anchor.

4. Interpolation between embedment depths is not permitted.

Page 15: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

34

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Concrete

AT-XP® Allowable Tension Loads for Rebar in Normal-Weight Concrete (f'c = 2,500 psi) — Seismic Load

Rebar Size

Nominal Embed. Depth (in.)

Minimum Dimensions for Uncracked

(in.)

Minimum Dimensions for

Cracked (in.)

Allowable Tension Load Based on Concrete or Bond (lb.)

Edge Distances = cac on all sidesEdge Distances = 1 4" on one side and cac on

three sides

SDC A-B5 SDC C-F6,7 SDC A-B5 SDC C-F6,7

ha cac ha cac Uncracked Cracked Uncracked Cracked Uncracked Cracked Uncracked Cracked

#3

2 84 4 4 4 — — 1,090 — 815 —

590—

445—

5 4 3 8 685 515

3 4 8 5 84 8 3 8 1,375 460 1,030 345

555290

420215

7 4 4 2 770 580

4 26 8 9

6 8 3 8 2,060 695 1,545 520520

440390

33010 8 6 4 770 580

6 7 8 12 27 8 3 8 2,750 925 2,060 695

500580

380440

14 2 9 770 580

7 29 8 15 8

9 8 3 8 3,435 1,155 2,575 870495

730370

54518 11 4 770 580

#4

2 45 4 4 4 — — 1,645 — 1,235 —

915—

685—

6 8 4 4 915 685

3 5 2 5 85 2 4 4 1,795 1,395 1,350 1,045

925775

695580

7 4 4 4 1,000 750

6 8 2 11 88 2 5 8 3,590 2,795 2,695 2,095

8001,460

6001,095

14 2 9 1,185 885

8 10 2 16 210 2 6 8 4,790 3,725 3,590 2,795

7701,850

5801,385

19 4 12 1,185 885

10 12 2 21 12 2 8 5,990 4,655 4,490 3,495

7552,225

5651,665

24 15 1,185 885

#5

3 86 4 5 8

6 4 5 8 2,295 1,840 1,720 1,3851,175

945880

7057 2 5 8 1,175 880

5 8 8 9 48 8 5 8 3,670 2,945 2,750 2,210

1,2101,510

9051,135

12 7 2 1,670 1,250

7 210 8 14 4

10 8 7 8 5,500 4,425 4,125 3,3201,125

2,095845

1,57018 11 4 1,670 1,250

12 215 8 26

15 8 10 4 9,165 7,370 6,875 5,5251,065

3,230800

2,42030 18 4 1,670 1,250

#6

3 27 4 7

7 4 7 3,030 2,510 2,275 1,8801,470

1,2151,105

9108 2 7 1,470 1,105

6 9 4 11 9 4 7 2 5,200 4,300 3,900 3,225

1,6152,055

1,2101,540

14 2 9 2,235 1,675

9 12 4 17 812 4 9 8 7,800 6,450 5,850 4,835

1,5052,895

1,1252,175

21 8 13 2 2,235 1,675

15 18 4 31 18 4 13 8 12,995 10,750 9,750 8,060

1,4254,520

1,0703,390

36 22 2 2,235 1,675

#7

3 48 8 8 8

8 8 7 4 3,710 2,805 2,785 2,1051,730

1,3651,295

1,0259 8 8 1,730 1,295

7 11 8 12 811 8 9 4 6,925 5,890 5,195 4,415

2,0652,665

1,5452,000

16 8 10 2 2,855 2,140

10 214 8 20 8

14 8 12 8 10,390 8,835 7,790 6,6251,920

3,7801,440

2,83525 4 15 4 2,855 2,140

17 221 8 35 4

21 8 17 17,320 14,725 12,990 11,0451,820

5,9451,365

4,46042 26 4 2,855 2,140

#8

4 9 9 8 9 9 8 3,625 3,095 2,715 2,320

1,6351,420

1,2251,065

9 8 9 8 1,635 1,225

8 13 14 8 13 9 4 7,245 6,295 5,430 4,720

2,0902,840

1,5702,130

19 4 12 2,890 2,165

12 17 23 8 17 12 8 10,870 9,440 8,150 7,080

1,9453,985

1,4602,990

28 8 18 2,890 2,165

20 25 40 2 25 17 4 18,110 15,735 13,585 11,800

1,8406,310

1,3854,730

48 30 2,890 2,165

#10

5 11 4 11 411 4 10 2 5,410 4,325 4,060 3,245 — — — —

12 11 4

10 16 4 17 816 4 13 4 10,825 10,145 8,115 7,610 — — — —

24 15

15 21 4 28 821 4 17 8 16,235 15,215 12,175 11,410 — — — —

36 22 2

25 31 4 49 431 4 24 2 27,060 25,360 20,295 19,020 — — — —

60 37 2

Rebar SizeAllowable Tension Load of Rebar Steel (lb.)

ASTM A615GR 60

ASTM A706GR 60

#3 4,505 4,005

#4 8,190 7,280

#5 12,695 11,285

#6 18,020 16,015

#7 24,570 21,840

#8 32,350 28,755

#10 51,870 46,230

IBC*

1. Allowable tension load must be the lesser of the concrete, bond or rebar steel load.

2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 180°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1⁄0.7 = 1.43. The conversion factor α is based on the load combination assuming 100% seismic load.

3. Tabulated values are for a single anchor with no inluence of another anchor.

4. Interpolation between embedment depths is not permitted.

5. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

6. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

7. Allowable tension loads in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Page 16: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

35

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Masonry

AT-XP® Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction 1, 3, 4, 5, 6, 8, 9, 10, 11

Diameter (in.) or Rebar Size No.

Drill Bit Diameter (in.)

Minimum Embedment2 (in.)

Allowable Load Based on Bond Strength7 (lb.)

Tension Load Shear Load

Threaded Rod Installed in the Face of CMU Wall

8 2 3 8 1,265 1,135

2 8 4 2 1,910 1,660

8 4 5 8 2,215 1,810

4 8 6 2 2,260 1,810

Rebar Installed in the Face of CMU Wall

#3 2 3 8 1,180 1,315

#4 8 4 2 1,720 1,565

#5 4 5 8 1,835 1,565

1. Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on page 37.

2. Embedment depth shall be measured from the outside face of masonry wall.

3. Critical and minimum edge distance and spacing shall comply with the information on page 36. Figure 2 on page 36 illustrates critical and minimum edge and end distances.

4. Minimum allowable nominal width of CMU wall shall be 8 inches. No more than one anchor shall be permitted per masonry cell.

5. Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint), except anchors shall not be installed within 1 2 inches of the head joint, as show in Figure 2 on page 36.

6. Tabulated allowable load values are for anchors installed in fully grouted masonry walls.

7. Tabulated allowable loads are based on a safety factor of 5.0.

8. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below, as applicable.

9. Threaded rod and rebar installed in fully grouted masonry walls are permitted to resist dead, live, seismic and wind loads.

10. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.

11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as deined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

Figure 1. Load capacity based on in-service temperature

for AT-XP® adhesive in the face of fully grouted CMU wall construction

IBC*

0

10

20

30

40

50

60

70

80

90

100

110

120

120100806040200

100%

@14°F

100%

@32°F

100%

@70°F88%

@110°F

88%

@135°F76%

@150°F

Base Material Temperature (˚F )

Perc

ent

of A

llow

able

Loa

d V

alu

es (

%)

140 160

Page 17: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

36

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

AT-XP® Design Information — Masonry

* See page 12 for an explanation of the load table icons.

Shear Load A1

End o

f Wall

Edge of Wall

ShearLoad B2

Installations in this area forfull allowable load capacity

Installationin this areafor reducedallowableload capacity

4" minimumend distance

Critical enddistance(see load table)

No installationwithin 1½" ofhead joint

4" minimumedge distance

Critical edge distance(see load table)

AT-XP® Edge Distance and Spacing Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction7

Rod Dia. (in.)

or Rebar Size No.

Minimum Embed. Depth (in.)

Edge or Edge Distance1,8 Spacing2,9

Critical (Full Anchor Capacity)3 Minimum (Reduced Anchor Capacity)4 Critical (Full Anchor

Capacity)5 Minimum (Reduced Anchor Capacity)6

Critical Edge or End

Distance, Ccr (in.)

Allowable Load

Reduction Factor

Minimum Edge or End

Distance, Cmin (in.)

Allowable Load Reduction FactorCritical

Spacing, Scr (in.)

Allowable Load

Reduction Factor

Minimum Spacing, Smin (in.)

Allowable Load Reduction Factor

Load Direction Load Direction Load Direction Load Direction

Tension or Shear

Tension or Shear

Tension or Shear

TensionShear10

Tension or Shear

Tension or Shear

Tension or Shear

Tension ShearPerp. Para.

8 3 8 12 1.00 4 1.00 0.76 0.94 8 1.00 4 1.00 1.00

2 4 2 12 1.00 4 0.90 0.57 0.94 8 1.00 4 1.00 1.00

8 5 8 12 1.00 4 0.72 0.47 0.94 8 1.00 4 1.00 1.00

4 6 2 12 1.00 4 0.72 0.47 0.94 8 1.00 4 1.00 1.00

#3 3 8 12 1.00 4 1.00 0.62 0.95 8 1.00 4 1.00 1.00

#4 4 2 12 1.00 4 1.00 0.37 0.82 8 1.00 4 1.00 0.89

#5 5 8 12 1.00 4 1.00 0.37 0.82 8 1.00 4 1.00 0.89

1. Edge distance (Ccr or Cmin) is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.

2. Anchor spacing (Scr or Smin) is the distance measured from centerline to centerline of two anchors.

3. Critical edge distance, Ccr, is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).

4. Minimum edge distance, Cmin, is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, Ccr, by the load reduction factors shown above.

5. Critical spacing, Scr, is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not inluenced by adjacent anchors.

6. Minimum spacing, Smin, is the least spacing where an anchors has an allowable load capacity , which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, Scr, by the load reduction factors shown above.

7. Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.

8. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.

9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.

10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 3 below). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

Figure 2. Allowable Anchor Locations for Full and

Reduced Load Capacity When Installation Is in the

Face of Fully Grouted CMU Masonry

Wall Construction

Figure 3. Direction of Shear Load in Relation to

Edge and End of Wall

1. Direction of Shear Load A is parallel to edge of wall and perpendicular to end of wall.

2. Direction of Shear Load B is parallel to end of wall and perpendicular to edge of wall.

IBC*

Page 18: Simpson Strong-Tie Anchoring & Fastening Systems for Concrete … · 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modiication

C-A

-2016 ©

2015 S

IMP

SO

N S

TR

ON

G-T

IE C

OM

PA

NY

IN

C.

37

Ad

he

siv

e A

nchors

Simpson Strong-Tie® Anchoring & Fastening Systems for Concrete and Masonry

* See page 12 for an explanation of the load table icons.

AT-XP® Design Information — Masonry

AT-XP® Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength1

Drill Bit Diameter (in.)

Minimum Embedment2

(in.)

Tension Load (lb.) Shear Load (lb.)

Based on Steel Strength Based on Steel Strength

ASTM A615 Grade 402

ASTM A615 Grade 603

ASTM A615 Grade 404,5

ASTM A615 Grade 604,6

#3 0.11 2,200 2,640 1,310 1,685

#4 0.20 4,000 4,800 2,380 3,060

#5 0.31 6,200 7,400 3,690 4,745

1. Allowable load shall be the lesser of bond values given on page 35 and steel values in the table above.

2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.

3. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (24,000 psi x tensile stress area) for Grade 60 rebar.

4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3 (Fv = 0.17 x Fu x Tensile Stress Area).

5. Fu = 70,000 psi for Grade 40 rebar.

6. Fu = 90,000 psi for Grade 60 rebar

AT-XP® Allowable Tension and Shear Loads — Threaded Rod Based on Steel Strength1

Threaded Rod

Diameter (in.)

Tensile Stress Area

(in.2)

Tension Load Based on Steel Strength2 (lb.) Shear Load Based on Steel Strength3 (lb.)

ASTM F1554 Grade 364

ASTM A193 Grade B76

Stainless SteelASTM F1554

Grade 364

ASTM A193 Grade B76

Stainless Steel

ASTM A193 Grade B65

ASTM A193 Grades B8 and B8M7

ASTM A193 Grade B65

ASTM A193 Grades

B8 and B8M7

8 0.078 1,495 3,220 2,830 1,930 770 1,660 1,460 995

2 0.142 2,720 5,860 5,155 3,515 1,400 3,020 2,655 1,810

8 0.226 4,325 9,325 8,205 5,595 2,230 4,805 4,225 2,880

4 0.334 6,395 13,780 12,125 8,265 3,295 7,100 6,245 4,260

1. Allowable load shall be the lesser of bond values given on page 35 and steel values in the table above.

2. Allowable Tension Steel Strength is based on the following equation: Fv = 0.33 x Fu x Tensile Stress Area.

3. Allowable Shear Steel Strength is based on the following equation: Fv = 0.17 x Fu x Tensile Stress Area.

4. Minimum speciied tensile strength (Fu = 58,000 psi) of ASTM F1554, Grade 36 used to calculate allowable steel strength.

5. Minimum speciied tensile strength (Fu = 110,000 psi) of ASTM A193, Grade B6 used to calculate allowable steel strength.

6. Minimum speciied tensile strength (Fu = 125,000 psi) of ASTM A193, Grade B7 used to calculate allowable steel strength.

7. Minimum speciied tensile strength (Fu = 75,000 psi) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.

IBC*

IBC*