Top Banner
柚木克之 (YUGI, Katsuyuki) Kuroda Lab., The University of Tokyo Underlying mechanisms of biochemical oscillations 2012724日火曜日
133

Selkov Oscillation Lecturer

Nov 07, 2015

Download

Documents

coper123

excelente articulo
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • (YUGI, Katsuyuki)

    Kuroda Lab., The University of Tokyo

    Underlying mechanisms of biochemical oscillations

    2012724

  • Electrocardiograph

    2012724

  • 2012724

  • k1.2x102sec1

    BorisukandTyson(1998)

    2012724

  • Hes1(Notch signalling system)

    mRNA2

    Hirata et al. (2002) Science

    MAPK2

    , 2006

    Nakayama et al. (2008) Curr. Biol.

    In depth

    2012724

  • Relaxation oscillator (e.g. Selkov model)

    Hopf

    Negative feedback oscillator (e.g. Repressilator)

    2012724

  • Selkov

    2012724

  • Strogatz(1994)pp.205

    Selkov

    {x = v2 v3y = v1 v2

    v2 = ay + x2yv1 = bv3 =x

    v1 v2 v3ADP(x)F6P(y)PFK

    2012724

  • Kennedy et al. (2007)

    2012724

  • Bertram et al. (2007) Corkey et al. (1988)

    insulin

    2012724

  • Luteinizing hormone

    Growth hormone ()Adrenocorticotropic hormone

    Insulin

    2012724

  • 15

    2 2 211 min 11 min

    insulin

    insulin

    insulin

    Continuous insulin gluc

    ose

    prod

    uctio

    n

    mol

    /kg/

    min

    13min

    26min

    2012724

  • : a = 0.06, b = 0.6

    : ADP = 1.0, F6P = 1.0

    Strogatz(1994)pp.205

    1(MATLAB): Selkov model

    {x = v2 v3y = v1 v2

    v2 = ay + x2yv1 = bv3 = x

    v1 v2 v3ADP(x)F6P(y)PFK

    2012724

  • function selkov( ) time = 0.001:1:100; s0 = [1.0 , 1.0]; % Initial values param = [0.06 , 0.6]; % Constants [t,time_course] = ode15s(@(t,s) ODE(t,s,param),time,s0); figure; plot(t,time_course); end

    function dsdt = ODE(t,s,param) ADP = s(1); F6P = s(2); a = param(1); b = param(2); v1 = v2 = v3 = dsdt(1,:) = dsdt(2,:) =end

    2012724

  • : ADP

    :F6P

    2012724

  • function selkov( ) time = 0.001:1:100; s0 = [1.0 , 1.0]; % Initial values param = [0.06 , 0.6]; % Constants [t,time_course] = ode15s(@(t,s) ODE(t,s,param),time,s0); figure; plot(t,time_course); end

    function dsdt = ODE(t,s,param) ADP = s(1); F6P = s(2); a = param(1); b = param(2); v1 = b; v2 = a * F6P + ADP^2 * F6P; v3 = ADP; dsdt(1,:) = v2 v3; dsdt(2,:) = v1 v2;end

    2012724

  • 1David Baltimore

    2012724

  • RockefellerCaltech

    Baltimore

    2012724

  • Baltimore

    2012724

  • Hoffmann et al. (2002) Science

    2012724

  • NF-B

    IBNF-B IKKIB

    IB NF-B

    NF-BIB

    NF-B

    NF-B

    2012724

  • ()

    ()

    EMSA(Electrophoretic Mobility Shift Assay)

    2012724

  • (feedback)

    2012724

  • 1

    2012724

  • Phase plane ()

    2

    x-y

    Nullcline ()

    = 0

    [ADP]

    [F6P]

    x = 0

    y = 0

    2012724

  • Selkov (MATLAB)

    ([ADP],[F6P])2

    MATLAB

    2:

    2012724

  • function selkov_phaseplane( ) time = 0.001:1:50; plot_phase_plane(time_course,param(1),param(2));end function plot_phase_plane(time_course,a,b) figure; hold on; % plot( , ); % ADP = 0:0.1:3; F6P = ADP ./ ( a + ADP.^2 ); % dADP / dt == 0 plot(ADP,F6P,r); % rredr ADP = 0:0.1:3; % d F6P / dt == 0 plot( , , ); hold off;end

    function dsdt = ODE(t,s,param) ()

    2012724

  • :

    2012724

  • function selkov_phaseplane( ) time = 0.001:1:50; plot_phase_plane(time_course,param(1),param(2));end function plot_phase_plane(time_course,a,b) figure; hold on; % plot(time_course(:,1),time_course(:,2)); ADP = 0:0.1:3; F6P = ADP ./ ( a + ADP.^2 ); % dADP / dt == 0 plot(ADP,F6P,r); % rredr ADP = 0:0.1:3; F6P = b ./ ( a + ADP.^2 ); % d F6P / dt == 0 plot(ADP,F6P,r); hold off;end

    2012724

  • [ADP]

    [F6P]

    (1,2)

    5

    2

    ( x , y ) ( , )

    {x = f(x, y)y = g(x, y)

    {x = x + 2y + x2yy = 8 2y x2y

    2012724

  • x

    ( , ) = ( 0 , p )

    : =0

    : =0

    [ADP]

    [F6P]

    = 0

    = 0

    2012724

  • ()

    x()

    y

    3a: Selkov

    2012724

  • [ADP]

    [F6P]

    = 0

    = 0

    2012724

  • Selkovfigure(MATLAB)

    quiver

    meshgrid

    3b: Selkov

    2012724

  • [X,Y] = meshgrid(0.01:0.2:2, 0.01:0.2:2);

    DX = -X + a * Y + X.^2 .* Y;

    DY = b - a * Y - X.^2 .* Y;

    (X,Y)(DX,DY)

    quiver(X,Y,DX,DY);

    : MATLAB

    2012724

  • function selkov_vector_field () ()function ODE(t,s,param)()function plot_phase_plane(time_course, a, b)()

    function plot_vector_field(a,b) figure(1); [X,Y] = meshgrid( ); DX = DY = quiver( ); %(X,Y)(DX,DY)end

    2012724

  • 2012724

  • function selkov_vector_field () ()function ODE(t,s,param)()function plot_phase_plane(time_course, a, b)()

    function plot_vector_field(a,b) figure(1); [X,Y] = meshgrid(0.01:0.2:3, 0.01:0.2:10); DX = -X + a * Y + X.^2 .* Y; DY = b - a * Y - X.^2 .* Y; quiver(X,Y,DX,DY); %(X,Y)(DX,DY)end

    2012724

  • 2Arnold Levine

    2012724

  • Rockefeller

    p53Levine

    2012724

  • Lev Bar-Or et al. (2000) PNAS

    2012724

  • p53

    ()

    p53Mdm2

    2012724

  • 2012724

  • 2

    2012724

  • [ADP]

    [F6P]

    = 0

    = 0

    2012724

  • 2

    [ADP]

    [F6P]

    [ADP]

    [F6P]

    2012724

  • d

    dtx1 = F1(x1, , xn)

    ...d

    dtxn = Fn(x1, , xn)

    d

    dt

    x1...xn

    =

    F1x1

    F1xn...

    . . ....

    Fnx1

    Fnxn

    x1...

    xn

    F1x1

    F1x1

    F1xn

    dx1dt

    = F1(x1, , xn)

    dx1dt

    = F1(x1, , xn)

    2012724

  • Selkov (MATLAB)

    (MATLAB)

    (MATLAB)

    (MATLAB)

    4: Selkov

    (xx

    xy

    yx

    yy

    )

    xx =

    x(x+ ay + x2y)

    yx =

    y(x+ ay + x2y)

    2012724

  • f

    diff(f, x);

    f

    f = -x + a * y + x^2 * y;

    J =[ diff(f,x) , diff(f,y) ; diff(g,x) , diff(g,y) ];

    MATLAB

    2012724

  • Symbolic Math ToolBox

    syms x y a b; %x, y, a, b

    x, y

    S = solve( -x + a * y + x^2 * y=0,'b - a * y - x^2 *y=0', 'x', 'y');

    Sx,y

    xS.x

    2012724

  • J = subs(J, [a,b] ,[0.06,0.6])

    % Ja,b0.06,0.6

    A

    eig(A)

    2012724

  • function selkov_jacobian( )syms x y a b;S = solve(' ',' ',' ',' '); % x, yf = -x + a * y + x^2 * y;g = J = [ ; %fx,y ]; %gx,y

    fix = subs([S.x,S.y],[ , ],[ , ]) %a,b0.06,0.6J = subs(J, [ , ,,a,b] ,[ , ,0.06,0.6]) %Ja,b0.06,0.6 %end

    2012724

  • >> selkov_jacobian

    fix =

    0.6000 1.4286

    J =

    0.7143 0.4200-1.7143 -0.4200

    ans =

    0.1471 + 0.6311i0.1471 - 0.6311i>>

    2012724

  • yx =

    y(x+ ay + x2y) = a+ x2

    xx =

    x(x+ ay + x2y) = 1 + 2xy

    xy =

    x(b ay x2y) = 2xy

    yy =

    y(b ay x2y) = a x2

    (1 + 2b2a+b2 a+ b2

    2b2a+b2 a b2)

    ( 1 + 2xy a+ x22xy a x2

    )(b ,

    b

    a+ b2

    )

    2012724

  • function selkov_jacobian( )syms x y a b;S = solve('-x + a * y + x^2 * y=0','b - a * y - x^2 * y=0','x','y'); % x, yf = -x + a * y + x^2 * y;g = b - a * y - x^2 * y; J = [ diff(f,x) , diff(f,y); %fx,y diff(g,x) , diff(g,y) ]; %gx,y

    fix = subs([S.x,S.y],[a,b],[0.06,0.6]) %a,b0.06,0.6J = subs(J, [x,y,a,b] ,[fix(1),fix(2),0.06,0.6]) %Ja,b0.06,0.6eig(J) %end

    2012724

  • (Node)

    : (attractor)

    : (repellor)

    (Saddle)

    :

    : StableNode Saddle

    d

    dtx = Jx

    x(t) = exp(Jt)x0= c1 exp(1t)v1 + cn exp(nt)vn

    x

    y

    x

    y

    2012724

  • (Spiral)

    (Focus)

    (Center)

    StableSpiral

    Center

    UnstableSpiral

    (Eulers formula)

    x

    y

    x

    y

    x

    y

    2012724

  • Selkov()a=0.06, b=0.6

    1:

    Ax=x|A-I|=02x2 2-tr(A) +det(A)=0

    2: = tr(A) = 1 + 2 = det(A) =12

    < 0 > 0

    24 > 0

    5: Selkov

    2012724

  • > 0 2 a,b

    a=0.06, b=0.6

    24 < 0 > 0

    = det(J) = a+ b2 > 0

    J =

    (1 + 2b2a+b2 a+ b2

    2b2a+b2 a b2)

    = tr(J) = (a+ b2) a b2

    a+ b2

    2012724

  • 3

    2012724

  • 2

    8130

    260

    http://bsw3.naist.jp/courses/courses106.html

    http://www.nig.ac.jp/hot/2006/saga0606-j.html

    2012724

  • NIH

    2012724

  • Q. 2hr?

    A. Hes1, Smad, Stat

    2012724

  • 2012724

  • 2012724

  • ()

    2012724

  • 3

    2012724

  • (limit cycle)

    (trajectory)

    Center ()

    Center

    Poincar-Bendixson

    Center

    Limitcycle

    2012724

  • Re

  • Stable Spiral Unstable Spiral

    Unstable Spiral

    Hopf

    Hopf

    2012724

  • Selkov 2Hopf ()

    1: a=0.14, b=0.6

    2: a=0.06, b=0.6

    MATLAB

    6: SelkovHopf

    2012724

  • a=0.06, b=0.6 >0

    a=0.14, b=0.6 0

    1,2 -4 < 0

    = (a+ b2) a b2

    a+ b2

    4 = 5(a+ b2) a b2

    a+ b2

    2012724

  • a=0.14, b=0.6 a=0.06, b=0.6

    2012724

  • Relaxation oscillatorand

    Negative feedback oscillator

    2012724

  • Relaxation oscillator ()

    2

    Negative feedback oscillator ()

    3

    ? Bendixson

    2

    2012724

  • D

    D

    Bendixson

    f1x1

    +f2x2

    ([F6P])[F6P]

    +([ADP])[ADP]

    2012724

  • 1(positive)

    1negative feedback loop

    ()

    Relaxation oscillator

    J =(+ ??

    )

    2012724

  • 2negative feedback oscillators (Bendixson)

    ()

    3

    Bendixson

    Negative feedback oscillator

    J =( ?

    ? )

    2012724

  • 7: SelkovBendixson

    Selkov

    > 0

    2012724

  • function selkov_bendixson( ) syms x y a b; f = % ODE g = % ODE J = % f, gJ J = subs(J, [a,b] ,[0.06 , 0.6]); % a,b B = %

    figure(1) hold on; for i=0:0.5:3 % x for j=0:1:10 % y B_value = subs( ); % Bx,yi,j if( B_value > 0 ) plot(i,j,'ko','MarkerFaceColor','w'); else plot(i,j,'ko','MarkerFaceColor','k'); end end endend

    2012724

  • 2012724

  • function selkov_bendixson( ) syms x y a b; f = -x + a * y + x^2 * y; g = b - a * y - x^2 * y; J = [ diff(f,x) , diff(f,y); diff(g,x) , diff(g,y)]; J = subs(J, [a,b] ,[0.06 , 0.6]); % a,b B = J(1,1)+J(2,2); %

    figure(1) hold on; for i=0:0.5:3 % x for j=0:1:10 % y B_value = subs( B, [x,y], [i,j] ); % Bx,yi,j if( B_value > 0 ) plot(i,j,'ko','MarkerFaceColor','w'); else plot(i,j,'ko','MarkerFaceColor','k'); end end endend

    2012724

  • (bifurcation diagram)(phase diagram)

    1 ()

    2(a, b)

    LacY

    -GFP b

    a2012724

  • ab

    8: Selkov ()

    2012724

  • plot(x,y,'ko','MarkerFaceColor','k'); plot(x,y,'ko','MarkerFaceColor','w'); plot(x,y,'ko','MarkerEdgeColor','r','MarkerFaceColor','r'); plot(x,y,'ko','MarkerEdgeColor','r','MarkerFaceColor','w');

    1 isreal(n)

    real(c)

    1

    2012724

  • for a , b

    if

    if ( isreal(v(1)) )

    OK ()

    if

    if( real(v(1)) < 0 )

    2

    2012724

  • function selkov_phase_diagram()figure;hold on;

    for a=0.01:0.01:0.15for b=0.1:0.1:1.0endendend

    function v=jacobian( p , q ) syms x y a b;S = solve(' -x + a * y + x^2 * y=0','b - a * y - x^2 * y=0','x','y'); f = -x + a * y + x^2 * y;g = b - a * y - x^2 * y;J = [ diff(f,x) , diff(f,y);diff(g,x) , diff(g,y)];

    fix = subs([S.x,S.y],[a,b],[p,q]);J = subs(J, [x,y,a,b] ,[fix(1),fix(2),p,q]);v = eig(J);end

    (1/2)

    2012724

  • function phase_diagram( a , b )v=jacobian(a,b);

    if ( isreal(v(1)) ) % v(1)v(2)v(1)if( v(1) < 0 && v(2) < 0 )plot();elseplot();endelseif( < 0 ) % v(1) < 0plot( );elseplot( );endendend

    (2/2)

    2012724

  • function selkov_phase_diagram()figure;hold on;

    for a=0.01:0.01:0.15for b=0.1:0.1:1.0phase_diagram(a,b);endendend

    function v=jacobian( p , q ) syms x y a b;S = solve(' -x + a * y + x^2 * y=0','b - a * y - x^2 * y=0','x','y'); f = -x + a * y + x^2 * y;g = b - a * y - x^2 * y;J = [ diff(f,x) , diff(f,y);diff(g,x) , diff(g,y)];

    fix = subs([S.x,S.y],[a,b],[p,q]);J = subs(J, [x,y,a,b] ,[fix(1),fix(2),p,q]);v = eig(J);end

    (1/2)

    2012724

  • function phase_diagram( a , b )v=jacobian(a,b);

    if ( isreal(v(1)) ) % v(1)v(2)v(1)if( v(1) < 0 && v(2) < 0 )plot(a,b,'ko','MarkerFaceColor','k'); else plot(a,b,'ko','MarkerFaceColor','w');endelseif( real(v(1)) < 0 ) % v(1) < 0plot(a,b,'ko','MarkerEdgeColor','r','MarkerFaceColor','r'); else plot(a,b,'ko','MarkerEdgeColor','r','MarkerFaceColor','w');endendend

    (2/2)

    2012724

  • ab

    : a, b

    Hopf

    2012724

  • Supercritical Hopf

    Selkov

    2012724

  • !

    Poincar-Bendixson

    Hopf

    2012724

  • Negative feedback oscillator

    2012724

  • Elowitz and Leibler (2000) Nature

    Repressilator

    2012724

  • (NOT)

    1 / ( 2n )

    Repressilator

    3

    hUp://133.6.66.95/mizutanilab3/ROC_ROCirc.html

    2012724

  • : Ring Oscillator

    2012724

  • 3()

    Repressilator

    {d[mRNA]

    dt = 0 +

    1+[Repressor]n [mRNA]d[Protein]

    dt = ([mRNA] [Protein])

    2012724

  • A n=2.1, 0=0

    B n=2, 0=0

    C n=2, 0/=103

    X

    Phase diagram

    2012724

  • inset

    X

    2012724

  • 40

    0.2-0.5 h-1

    2012724

  • (lacI, cI, tetR, LacI, CI, TetR) = (0.2, 0.3, 0.1, 0.1, 0.5, 0.4)

    =20, 0=0, =0.2, n=2

    9:

    {d[mRNA]

    dt = 0 +

    1+[Repressor]n [mRNA]d[Protein]

    dt = ([mRNA] [Protein])

    2012724

  • function repressilator( input_args ) time = 0.001:1:200; s0 = [0.2, 0.3, 0.1, 0.1, 0.5, 0.4]; % Initial values param = [20, 0, 0.2, 2]; % Constants [t,time_course] = ode15s(@(t,s) ODE(t,s,param),time,s0); plot_time_course(t,time_course); plot_phase_plane(time_course);end

    MATLAB(1/2)

    2012724

  • function dsdt = ODE(t,s,param) lacI = s(1); cI = s(2); tetR = s(3); LacI = s(4); CI = s(5); TetR = s(6); alpha = param(1); alpha_zero = param(2); beta = param(3); n = param(4); dsdt(1,:) = dsdt(2,:) = dsdt(3,:) = dsdt(4,:) = dsdt(5,:) = dsdt(6,:) = end

    MATLAB(2/2):

    2012724

  • 2012724

  • function dsdt = ODE(t,s,param) lacI = s(1); cI = s(2); tetR = s(3); LacI = s(4); CI = s(5); TetR = s(6); alpha = param(1); alpha_zero = param(2); beta = param(3); n = param(4); dsdt(1,:) = alpha_zero + alpha / ( 1 + CI^n ) - lacI; dsdt(2,:) = alpha_zero + alpha / ( 1 + TetR^n ) - cI; dsdt(3,:) = alpha_zero + alpha / ( 1 + LacI^n ) - tetR; dsdt(4,:) = - beta * ( LacI - lacI ); dsdt(5,:) = - beta * ( CI - cI ); dsdt(6,:) = - beta * ( TetR - tetR );end

    2012724

  • Plan A:

    2

    Plan B:

    Repressilator6Plan B

    Hopf

    2012724

  • 6

    Hopf

    m1p3

    =npn13(1 + p23)2

    = X

    p3 =

    1 + pn3+ 0

    ( + 1)2(2X + 4) 3X2 < 0

    J =

    1 0 0 0 0 X0 1 0 X 0 00 0 1 0 X 0 0 0 0 00 0 0 00 0 0 0

    p3

    2012724

  • 10: Hopf

    ( + 1)2(2X + 4) 3X2 < 0

    p3 =

    1 + pn3+ 0

    () =10, 0=0, n=2 p3 = 2

    p3

    =10, 0=0, n=2

    X =npn13(1 + p23)2

    2012724

  • =0.13 =0.14 (+1)2(2X+4)-3X2 = 0.0231 > 0 (+1)2(2X+4)-3X2 = -0.0355 < 0

    2012724

  • Hill

    (0)m

    2012724

  • Toggle switchPitchfork

    2012724

  • Toggle switchPitchfork

    : xy

    Gardner et al. (2000)

    x =a

    1 + y2 x

    y =a

    1 + x2 y

    LacI (x) CI (y)x y

    2012724

  • Pitchfork

    a=2 a>2

    a

    xx

    yy

    pitchfork

    Stable

    Stable

    Unstable

    y

    = 0

    = 0

    2012724

  • :

    1. Toggle switch

    a 1 3

    2. 11

    Stable Node 3 Stable Node 2 Unstable

    Node 1

    2012724

  • :

    3. y x

    x x5 - ax4 + 2x3 - 2ax2 + (1 + a2)x -

    a = 0

    4. 3 x x5 - ax4 + 2x3 - 2ax2

    + (1 + a2) x - a = 0 (x3 + x - a)(x2 - ax + 1) = 0

    2012724

  • : (1/2)

    5. x3 + ax + b = 0 3

    D = - 4a3 - 27b2 D > 0

    3 D = 0D < 0 1

    2

    x3 + x - a x3 + x - a = 0 1

    a

    2012724

  • : (2/2)

    6. x2 - ax + 1

    x2 - ax + 1 = 0 a > 2 2a = 2

    1a < 2

    7. 56 x (x3 + x -

    a)(x2 - ax + 1) = 0 (x3 + x - a)1

    (x2 - ax + 1) a = 202

    Toggle switch 0 < a < 2 a = 2 a > 2

    a = 2

    2012724

  • : (1/2)

    8. Toggle-switch

    9. a > 2 x2 - ax + 1 = 0

    (i)

    (ii) 2

    (: )

    (1 2ay(1+y2)2

    2ax(1+x2)2 1

    )

    (aa2 4

    2,aa2 4

    2

    )

    2012724

  • : (2/2)

    10. x3 + x - a = 0 x

    x

    (i) a = 2 x = 1 x a 0 < a < 2 0 < x < 1 a > 2 x > 1

    (ii) 0 < x < 1 0 < a < 2 > 0 x > 1 a > 2 < 0

    x =3

    a2+

    (a2

    )2+(13

    )3 1

    3 3

    a2 +

    (a2

    )2 + ( 13)3

    2012724

  • : Pitchfork

    11. 7.10.

    a

    x

    0

  • 1(1/2)

    y =a

    1 + x2 = 0

    13x

    y ---y - 0 +

    y

    y =0 (1 + x2) a 2x

    (1 + x2)2

    = 2ax(1 + x2)2

    y =2a(1 + x2)2 (2ax) 2(1 + x2) 2x

    (1 + x2)4

    =2a(1 + x2){(1 + x2) 2x 2x}

    (1 + x2)4

    =2a(1 + x2)(13x)(1 +3x)

    (1 + x2)4

    x

    ya

    13

    = 0

    2012724

  • 1(2/2)

    = 0 y = x 2

    x

    y

    a

    = 0

    = 0

    a

    y = x

    2012724

  • 2

    x

    y = 0

    ax

    y

    = 0

    a

    x

    ya

    = 0

    = 0

    a2012724

  • 3

    y =a

    1 + x2x =

    a

    1 + y2

    x =a

    1 +(

    a1+x2

    )2=

    a(1 + x2)2

    (1 + x2)2 + a2

    (1 + x2)2x+ a2x = a(1 + x2)2

    x+ 2x3 + x5 + a2x = a+ 2ax2 + ax4

    x5 ax4 + 2x3 2ax2 + (1 + a2)x a = 0

    2012724

  • 4

    (x3 + x a)(x2 ax+ 1) = 0x5 ax4 + x3 + x3 ax2 + x ax2 + a2x a = 0

    x5 ax4 + 2x3 2ax2 + (1 + a2)x a = 0

    2012724

  • 5-7

    5. x3 + x - a = 0 D = - 4 - 27a2 < 0

    12

    6. x2 - ax + 1 = 0 D = a2 - 4 a > 2

    D > 0 2a = 2 D = 0

    1 a < 2 D < 0

    7.

    0

  • 8 x =a

    1 + y2 x

    y =a

    1 + x2 y

    xx = 1

    yx = 2ay

    (1 + y2)2

    yy = 1

    yx = 2ax

    (1 + x2)2(1 2ay(1+y2)2

    2ax(1+x2)2 1

    )

    2012724

  • 9-(ii) =1 4a

    2xy

    (1 + x2)2(1 + y2)2

    = 1 4a2xy

    (1 + x2 + y2 + x2y2)2

    xy =(aa2 4)(aa2 4)

    4= 1

    =1 4a2

    (2 + x2 + y2)2

    = 1 4a2

    (2 + 4a284 )2

    = 1 4a2

    a4

    = 1 4a2

    > 0 ( a > 2)

    0, 2-4>02

    2012724

  • 10

    (i) 0 < a < 2 x x

    a = 0 x = 0 a = 2 x

    = 1 x a 0 < a < 2

    x 0 1

    0 < x < 1

    (ii) y=x

    =1 4a2xy

    (1 + x2)2(1 + y2)2

    = 1 4a2x2

    (1 + x2)4

    ddx

    = 1 8a2x(1 + x2)3(x 1)2

    (1 + x2)4 x

    a = 0, x = 0 = 1a = 2, x = 1 = 0

    0 < a < 2 1 > > 0a > 2 < 0

    2012724

  • 11

    x

    a2

    1

    NodeSaddle

    x3 + x - a = 0

    x2 - ax + 1 = 0

    x2 - ax + 1 = 0

    2012724

  • ?

    (Saddle-

    Node, Pitchfork)

    (Hopf)

    2012724

  • Further readings

    Strogatz, S.H, Nonlinear dynamics and chaos, Perseus Books Publishing, 1994. (ISBN 0-7382-0453-6)

    Borisuk and Tyson (1998)

    Fall, C.P., Marland, E.S., Wagner, J.M. and Tyson, J.J. Computational cell biology, Springer, 2002. (ISBN 0-387-95369-8)

    Bendixson

    Borisuk, M.T. and Tyson, J.J., Bifurcation analysis of a model of mitotic control in frog eggs, J. Theor. Biol. 195:69-85, 1998.

    2012724