Top Banner

of 54

Random Process Introduction

Jul 06, 2018

Download

Documents

Sudeepta Mondal
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/17/2019 Random Process Introduction

    1/54

     

     Random Processes Random Processes Introduction Introduction (2)(2)

     Professor Ke-Sheng Cheng  Professor Ke-Sheng Cheng 

     Department of Bioenvironmental Systems Department of Bioenvironmental Systems

     Engineering  Engineering 

    E-mail: [email protected]

  • 8/17/2019 Random Process Introduction

    2/54

     

    Stochastic continuity

  • 8/17/2019 Random Process Introduction

    3/54

     

  • 8/17/2019 Random Process Introduction

    4/54

     

  • 8/17/2019 Random Process Introduction

    5/54

     

  • 8/17/2019 Random Process Introduction

    6/54

     

  • 8/17/2019 Random Process Introduction

    7/54 

  • 8/17/2019 Random Process Introduction

    8/54 

    Stochastic Convergence 

    A random sequence or a discrete-time random

    process is a sequence of random variables

    {  1(ω )  2(ω ) !  n(ω )!" # {  n(ω )" ω  ∈  .

    $or a specific ω {  n(ω )" is a sequence of

    numbers t%at mi&%t or mi&%t not conver&e.

    '%e notion of conver&ence of a random

    sequence can be &iven several interpretations.

  • 8/17/2019 Random Process Introduction

    9/54 

    Sure convergence

    (convergence everywhere)'%e sequence of random variables

    {  n(ω )" conver&es surel to t%e random

    variable  (ω ) if t%e sequence offunctions  n(ω ) conver&es to  (ω ) as n

     ∞

     for all ω  ∈

      i.e.

      n(ω ) →   (ω ) as n → ∞  for all ω  ∈  .

  • 8/17/2019 Random Process Introduction

    10/54

     

  • 8/17/2019 Random Process Introduction

    11/54

     

  • 8/17/2019 Random Process Introduction

    12/54

     

    Almost-sure convergence

    (Convergence with probability 1)

  • 8/17/2019 Random Process Introduction

    13/54

     

  • 8/17/2019 Random Process Introduction

    14/54

     

    Mean-square convergence

  • 8/17/2019 Random Process Introduction

    15/54

     

    Convergence in probability

  • 8/17/2019 Random Process Introduction

    16/54

     

  • 8/17/2019 Random Process Introduction

    17/54

     

    Convergence in distribution

  • 8/17/2019 Random Process Introduction

    18/54

     

    Remars

    onver&ence wit% probabilit one appliesto t%e individual reali*ations of t%erandom process. onver&ence in

    probabilit does not. '%e wea+ law of lar&e numbers is ane,ample of conver&ence in probabilit.

    '%e stron& law of lar&e numbers is an

    e,ample of conver&ence wit% probabilit1.

    '%e central limit t%eorem is an e,ampleof conver&ence in distribution.

  • 8/17/2019 Random Process Introduction

    19/54

     

    Weak Law of Large Numbers

    (WLLN) 

  • 8/17/2019 Random Process Introduction

    20/54

     

    Strong Law of Large Numbers

    (SLLN) 

  • 8/17/2019 Random Process Introduction

    21/54

     

    The Central Limit Theorem 

  • 8/17/2019 Random Process Introduction

    22/54

     

    !enn diagram o" relation o"

    types o" convergence

    Note that even

    sure convergencemay not implymean squareconvergence.

  • 8/17/2019 Random Process Introduction

    23/54

     

    #$ample

  • 8/17/2019 Random Process Introduction

    24/54

     

  • 8/17/2019 Random Process Introduction

    25/54

     

  • 8/17/2019 Random Process Introduction

    26/54

     

  • 8/17/2019 Random Process Introduction

    27/54

     

    Ergodic Theorem

  • 8/17/2019 Random Process Introduction

    28/54

     

  • 8/17/2019 Random Process Introduction

    29/54

     

  • 8/17/2019 Random Process Introduction

    30/54

     

    %he Mean-Square #rgodic

    %heorem

  • 8/17/2019 Random Process Introduction

    31/54

     

    '%e above t%eorem s%ows t%at one can

    e,pect a sample avera&e to conver&e to a

    constant in mean square sense if andonl if t%e avera&e of t%e means

    conver&es and if t%e memor dies out

    asmptoticall t%at is if t%e covariancedecreases as t%e la& increases.

  • 8/17/2019 Random Process Introduction

    32/54

     

    Mean-#rgodic &rocesses

  • 8/17/2019 Random Process Introduction

    33/54

     

    Strong or 'ndividual #rgodic

    %heorem

  • 8/17/2019 Random Process Introduction

    34/54

     

  • 8/17/2019 Random Process Introduction

    35/54

     

  • 8/17/2019 Random Process Introduction

    36/54

     

    #$amples o" Stochastic

    &rocessesiid random process 

    A discrete time random process {  (t ) t  #

    1 2 !" is said to be independent andidenticall distributed (iid ) if an finitenumber sa !  of random variables  (t 1)

      (t 2) !  (t ! ) are mutuall independent

    and %ave a common cumulativedistribution function "   (⋅) .

  • 8/17/2019 Random Process Introduction

    37/54

     

    '%e oint cdf for  (t 1)  (t 2) !  (t ! ) is

    &iven b

    t also ields

    w%ere p( # ) represents t%e commonprobabilit mass function.

    ( )

    )()()(

    ,,,),,,(

    21

    221121,,, 21

    k  X  X  X 

    k k k  X  X  X 

     x F  x F  x F 

     x X  x X  x X  P  x x x F k 

    =

    ≤≤≤=

    )()()(),,,( 2121,,, 21   k  X  X  X k  X  X  X    x p x p x p x x x p k    =

  • 8/17/2019 Random Process Introduction

    38/54

     

  • 8/17/2019 Random Process Introduction

    39/54

     

    Random walk rocess

  • 8/17/2019 Random Process Introduction

    40/54

     

    /et 0 denote t%e probabilit mass

    function of  0. '%e oint probabilit of

      0  1…

       n is

    ( )

    )|()|()(

    )()()(

    )()()(

    ,,,

    ),,,(

    10100

    10100

    101100

    101100

    1100

    =−−=

    −=−===

    −=−======

    nn

    nn

    nnn

    nnn

    nn

     x x P  x x P  x

     x x f   x x f   x

     x x P  x x P  x X  P 

     x x x x x X  P 

     x X  x X  x X  P 

    π 

    π ξ ξ 

    ξ ξ 

  • 8/17/2019 Random Process Introduction

    41/54

     

    )|()|()|()(

    )|()|()|()(

    ),,,(),,,,(

    ),,,|(

    1

    10100

    110100

    1100

    111100

    110011

    nn

    nn

    nnnn

    nn

    nnnn

    nnnn

     x x P  x x P  x x P  x

     x x P  x x P  x x P  x

     x X  x X  x X  P  x X  x X  x X  x X  P 

     x X  x X  x X  x X  P 

    +

    +−

    ++

    ++

    =

    ⋅=

    === =====

    ====

    π 

    π 

  • 8/17/2019 Random Process Introduction

    42/54

     

    '%e propert

    is +nown as t%e ar+ov propert.

    A special case of random wal+: t%e

    rownian motion.

    )|(),,,|( 1110011   nnnnnnnn   x X  x X  P  x X  x X  x X  x X  P    ======= +++  

  • 8/17/2019 Random Process Introduction

    43/54

     

    !aussian rocess 

    A random process {  (t )" is said to be a3aussian random process if all finitecollections of t%e random process  1#  (t 1)  2#  (t 2) !  ! #  (t ! ) are

     ointl 3aussian random variables for all!  and all c%oices of t 1 t 2 ! t ! .

    4oint pdf of ointl 3aussian randomvariables  1  2 !  ! :

  • 8/17/2019 Random Process Introduction

    44/54

     

  • 8/17/2019 Random Process Introduction

    45/54

     

    Time series " #R random

     rocess

  • 8/17/2019 Random Process Introduction

    46/54

     

    %he rownian motion

    (one-dimensional also nown as random wal) onsider a particle randoml moves on a

    real line.

    5uppose at small time intervals τ  t%e particle

     umps a small distance randoml and

    equall li+el to t%e left or to t%e ri&%t.

    /et be t%e position of t%e particle on

    t%e real line at time t .

    )(t  X τ 

  • 8/17/2019 Random Process Introduction

    47/54

     

    Assume t%e initial position of t%e

    particle is at t%e ori&in i.e.6osition of t%e particle at time t  can be

    e,pressed as

    w%ere are independent random

    variables eac% %avin& probabilit 172 of

    equatin& 1 and 1.

    ( represents t%e lar&est inte&er not

    e,ceedin& .)

    0)0(   =τ  X 

    ( )]/[21)( τ τ    δ    t Y Y Y t  X    +++=  

    ,, 21  Y Y 

    [ ]τ /t 

    τ /t 

  • 8/17/2019 Random Process Introduction

    48/54

     

    8istribution of  τ (t )

    /et t%e step len&t% equal t%en

    $or fi,ed t  if τ  is small t%en t%edistribution of is appro,imatel

    normal wit% mean 0 and variance t  i.e.

    .

    δ    τ 

    ( )]/[21)( τ τ    τ    t Y Y Y t  X    +++=  

    )(t  X τ 

    ( )t  N t  X    ,0~)(τ 

  • 8/17/2019 Random Process Introduction

    49/54

     

    *raphical illustration o"

    +istribution o"  τ (t )

    Time, t 

     PDF  of  X (t )

     X (t )

  • 8/17/2019 Random Process Introduction

    50/54

     

    f t  and h are fi,ed and τ  is sufficientl

    small t%en

    ( )   ( )[ ]

    ( )

    [ ] [ ] [ ]       +++=

    +++=

    +++−+++=−+

    +++

    +++

    +

    τ τ τ 

    τ τ 

    τ τ τ 

    τ τ τ τ 

    τ 

    τ 

    τ 

    ht t t 

    ht t t 

    t ht 

    Y Y Y 

    Y Y Y 

    Y Y Y Y Y Y t  X ht  X 

    2

    ]/)[(2]/[1]/[

    ]/[21]/)[(21)()(

  • 8/17/2019 Random Process Introduction

    51/54

     

    +istribution o" the

    displacement

    '%e random variable

    is normall distributed wit% mean 0

    and variance h i.e.

    )()(   t  X ht  X  τ τ    −+

    )()(   t  X ht  X  τ τ    −+

    ( )[ ]   duh

    u

    h xt  X ht  X  P 

     x

    ∫  ∞−      

     

     

      −=≤−+

    2exp

    2

    1)()(

    2

    π τ τ 

  • 8/17/2019 Random Process Introduction

    52/54

     

    9ariance of is dependent on t 

    w%ile variance of is not.

    f t%en

     

    are independent random variables.

    )(t  X τ 

    )()(   t  X ht  X  τ τ    −+

    mt t t  2210   ≤≤≤≤     )()( 12   t  X t  X  τ τ    −

    ,),()( 34   t  X t  X  τ τ    −   )()( 122   −−   mm   t  X t  X  τ τ 

  • 8/17/2019 Random Process Introduction

    53/54

     

     X 

    C C

  • 8/17/2019 Random Process Introduction

    54/54

    Covariance and Correlation

    "unctions o" )(t  X τ 

    [ ] [ ]

    [ ] [ ]

    [ ] [ ]   [ ] [ ]   [ ]

    [ ]

    Y Y Y  E 

    Y Y Y Y Y Y Y Y Y  E 

    Y Y Y Y Y Y  E 

    ht  X t  X  E ht  X t  X Cov

    ht t t t t 

    ht t 

    =

     

     

     

     

      +++=

       

       +++⋅ 

      

       ++++ 

      

       +++=

     

      

       +++⋅ 

      

       +++=

    +=+

    +++

    +

    2

    21

    2121

    2

    21

    2121

    )()()(),(

    τ 

    τ τ τ 

    τ τ 

    τ τ 

    τ τ τ τ 

    τ 

    τ 

    τ 

    [ ][ ]

    ( ) ( )ht t 

    ht t 

    ht  X t  X Cov

    ht  X t  X Correl 

    +⋅

    =

    +⋅

    +=

    +

    )(),()(),(

    τ τ 

    τ τ