Top Banner
CMB CMB & Proper motion Anomalies Frequency dependence Peculiar velocity effects and CMB anomalies Alessio Notari 1 Universitat de Barcelona June 2018, Ferrara 1 In collaboration with: M.Quartin, O.Roldan, earlier work with R.Catena, M.Liguori, A.Renzi, L.Amendola, I.Masina, C.Quercellini JCAP 1606 (2016) no.06, 026, Phys.Rev. D94 (2016) no.4, 043006 , JCAP 1509 (2015) 09, 050, JCAP 1506 (2015) 06, 047 JCAP 1501 (2015) 01, 008, JCAP 1403 (2014) 019 JCAP 1309 (2013) 036, JCAP 1202 (2012) 026; JCAP 1107 (2011) 027 and “Exploring cosmic origins with CORE: effects of observer peculiar motion", CORE Collaboration, JCAP 1804 (2018) no.04, 021
80

Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

Sep 26, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Peculiar velocity effects and CMB anomalies

Alessio Notari 1

Universitat de Barcelona

June 2018, Ferrara

1In collaboration with: M.Quartin, O.Roldan, earlier work with R.Catena, M.Liguori, A.Renzi, L.Amendola,

I.Masina, C.Quercellini

JCAP 1606 (2016) no.06, 026, Phys.Rev. D94 (2016) no.4, 043006 ,JCAP 1509 (2015) 09, 050, JCAP 1506 (2015) 06, 047JCAP 1501 (2015) 01, 008, JCAP 1403 (2014) 019JCAP 1309 (2013) 036, JCAP 1202 (2012) 026; JCAP 1107 (2011) 027and “Exploring cosmic origins with CORE: effects of observer peculiar motion",CORE Collaboration, JCAP 1804 (2018) no.04, 021

Page 2: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB as a test of Global Isotropy

Is the CMB statistically Isotropic?

What is the impact of our peculiar velocity?

(β = vc = 10−3)

Can we disentangle them?

Page 3: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB as a test of Global Isotropy

Is the CMB statistically Isotropic?

What is the impact of our peculiar velocity?

(β = vc = 10−3)

Can we disentangle them?

Page 4: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB spectrum

More preciselyT (n)→ a`m

≡∫

dΩY ∗`m(n)T (n)

Hypothesis of Gaussianity and Isotropy:

a`m random numbers from a Gaussian of width Cth` .

Physics fixes Cth` = 〈|a`m|2〉

Uncorrelated: NO preferred direction

Page 5: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB spectrum

More preciselyT (n)→ a`m ≡

∫dΩY ∗`m(n)T (n)

Hypothesis of Gaussianity and Isotropy:

a`m random numbers from a Gaussian of width Cth` .

Physics fixes Cth` = 〈|a`m|2〉

Uncorrelated: NO preferred direction

Page 6: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB spectrum

More preciselyT (n)→ a`m ≡

∫dΩY ∗`m(n)T (n)

Hypothesis of Gaussianity and Isotropy:

a`m random numbers from a Gaussian of width Cth` .

Physics fixes Cth` = 〈|a`m|2〉

Uncorrelated: NO preferred direction

Page 7: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB spectrum

More preciselyT (n)→ a`m ≡

∫dΩY ∗`m(n)T (n)

Hypothesis of Gaussianity and Isotropy:

a`m random numbers from a Gaussian of width Cth` .

Physics fixes Cth` = 〈|a`m|2〉

Uncorrelated: NO preferred direction

Page 8: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB: Peculiar Velocity and Anomalies

Our velocity β ≡ vc breaks Isotropy introducing

correlations in the CMB at all scales

(not only ` = 1!)

1 We can measure β with ` = 1 , and ` > 1!2

2 Anomalies? (dipolar modulation, alignments?)

3 Is it frequency dependent?(Calibration? Blackbody distortion, tSZ contamination?)

2Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A. N., Quartin’2011.

Measured in Planck XXVII, 2013.

Page 9: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB: Peculiar Velocity and Anomalies

Our velocity β ≡ vc breaks Isotropy introducing

correlations in the CMB at all scales

(not only ` = 1!)

1 We can measure β with ` = 1 , and ` > 1!2

2 Anomalies? (dipolar modulation, alignments?)

3 Is it frequency dependent?(Calibration? Blackbody distortion, tSZ contamination?)

2Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A. N., Quartin’2011.

Measured in Planck XXVII, 2013.

Page 10: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB: Peculiar Velocity and Anomalies

Our velocity β ≡ vc breaks Isotropy introducing

correlations in the CMB at all scales

(not only ` = 1!)

1 We can measure β with ` = 1

, and ` > 1!2

2 Anomalies? (dipolar modulation, alignments?)

3 Is it frequency dependent?(Calibration? Blackbody distortion, tSZ contamination?)

2Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A. N., Quartin’2011.

Measured in Planck XXVII, 2013.

Page 11: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB: Peculiar Velocity and Anomalies

Our velocity β ≡ vc breaks Isotropy introducing

correlations in the CMB at all scales

(not only ` = 1!)

1 We can measure β with ` = 1 , and ` > 1!2

2 Anomalies? (dipolar modulation, alignments?)

3 Is it frequency dependent?(Calibration? Blackbody distortion, tSZ contamination?)

2Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A. N., Quartin’2011.

Measured in Planck XXVII, 2013.

Page 12: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB: Peculiar Velocity and Anomalies

Our velocity β ≡ vc breaks Isotropy introducing

correlations in the CMB at all scales

(not only ` = 1!)

1 We can measure β with ` = 1 , and ` > 1!2

2 Anomalies? (dipolar modulation, alignments?)

3 Is it frequency dependent?(Calibration? Blackbody distortion, tSZ contamination?)

2Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A. N., Quartin’2011.

Measured in Planck XXVII, 2013.

Page 13: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB: Peculiar Velocity and Anomalies

Our velocity β ≡ vc breaks Isotropy introducing

correlations in the CMB at all scales

(not only ` = 1!)

1 We can measure β with ` = 1 , and ` > 1!2

2 Anomalies? (dipolar modulation, alignments?)

3 Is it frequency dependent?(Calibration? Blackbody distortion, tSZ contamination?)

2Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A. N., Quartin’2011.

Measured in Planck XXVII, 2013.

Page 14: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

CMB: Peculiar Velocity and Anomalies

Our velocity β ≡ vc breaks Isotropy introducing

correlations in the CMB at all scales

(not only ` = 1!)

1 We can measure β with ` = 1 , and ` > 1!2

2 Anomalies? (dipolar modulation, alignments?)

3 Is it frequency dependent?(Calibration? Blackbody distortion, tSZ contamination?)

2Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A. N., Quartin’2011.

Measured in Planck XXVII, 2013.

Page 15: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Effects of β

T (n) (CMB Rest frame)⇒ T ′(n′) (Our frame)

Preferred direction β

Doppler:T ′(n) = T (n)γ(1 + β cos θ) (cos(θ) = n · β)

Aberration:T ′(n′) = T (n)θ − θ′ ≈ β sin θ

Peebles & Wilkinson ’68, Challinor & van Leeuwen 2002, Burles & Rappaport 2006

Page 16: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Effects of β

T (n) (CMB Rest frame)⇒ T ′(n′) (Our frame)

Preferred direction β

Doppler:T ′(n) = T (n)γ(1 + β cos θ) (cos(θ) = n · β)

Aberration:T ′(n′) = T (n)θ − θ′ ≈ β sin θ

Peebles & Wilkinson ’68, Challinor & van Leeuwen 2002, Burles & Rappaport 2006

Page 17: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Effects of β

T (n) (CMB Rest frame)⇒ T ′(n′) (Our frame)

Preferred direction β

Doppler:T ′(n) = T (n)γ(1 + β cos θ) (cos(θ) = n · β)

Aberration:T ′(n′) = T (n)θ − θ′ ≈ β sin θ

Peebles & Wilkinson ’68, Challinor & van Leeuwen 2002, Burles & Rappaport 2006

Page 18: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Effects of β

T (n) (CMB Rest frame)⇒ T ′(n′) (Our frame)

Preferred direction β

Doppler:T ′(n) = T (n)γ(1 + β cos θ) (cos(θ) = n · β)

Aberration:T ′(n′) = T (n)θ − θ′ ≈ β sin θ

Peebles & Wilkinson ’68, Challinor & van Leeuwen 2002, Burles & Rappaport 2006

Page 19: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Aberration & Doppler

Page 20: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

In multipole space

Mixing of neighbors:

a′`m ' a`m + β(c−`ma`−1m + c+`ma`+1m) +O((β`)2)

c+`m = (`+ 2−1)

√(`+1)2−m2

4(`+1)2−1

c−`m = −(`− 1 + 1)√

`2−m2

4`2−1

Doppler (constant), aberration grows with `!

We can measure β (Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A.

N., Quartin’2011, Planck XXVII, 2013.)

Page 21: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

In multipole space

Mixing of neighbors:

a′`m ' a`m + β(c−`ma`−1m + c+`ma`+1m) +O((β`)2)

c+`m = (`+ 2−1)

√(`+1)2−m2

4(`+1)2−1

c−`m = −(`− 1 + 1)√

`2−m2

4`2−1

Doppler (constant), aberration grows with `!

We can measure β (Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A.

N., Quartin’2011, Planck XXVII, 2013.)

Page 22: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

In multipole space

Mixing of neighbors:

a′`m ' a`m + β(c−`ma`−1m + c+`ma`+1m) +O((β`)2)

c+`m = (`+ 2−1)

√(`+1)2−m2

4(`+1)2−1

c−`m = −(`− 1 + 1)√

`2−m2

4`2−1

Doppler (constant), aberration grows with `!

We can measure β (Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A.

N., Quartin’2011, Planck XXVII, 2013.)

Page 23: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

In multipole space

Mixing of neighbors:

a′`m ' a`m + β(c−`ma`−1m + c+`ma`+1m) +O((β`)2)

c+`m = (`+ 2−1)

√(`+1)2−m2

4(`+1)2−1

c−`m = −(`− 1 + 1)√

`2−m2

4`2−1

Doppler (constant), aberration grows with `!

We can measure β (Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina, A.

N., Quartin’2011, Planck XXVII, 2013.)

Page 24: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Expected sensitivity

TT

Planck

Ideal

0 500 1000 1500

10

20

50

100

200

500

3

1

0.3

0.1

∆ΘH°L∆Β

Β

L.Amendola, R.Catena, I.Masina, A.N., M.Quartin, C.Quercellini 2011

Page 25: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck Measurement

β = 384km/s ± 78km/s (stat) ±115km/s (syst.)

100 2000lmax

+ ~β

−~β

+ ~β

− ~β

+ ~β×− ~β×

Planck Collaboration 2013, XXVII. Doppler boosting of the CMB: Eppur si muove

Found both Aberration and Doppler

Page 26: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck Measurement

β = 384km/s ± 78km/s (stat) ±115km/s (syst.)

100 2000lmax

+ ~β

−~β

+ ~β

− ~β

+ ~β×− ~β×

Planck Collaboration 2013, XXVII. Doppler boosting of the CMB: Eppur si muove

Found both Aberration and Doppler

Page 27: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Different frequencies

β = 384km/s ± 78km/s (stat) ±115km/s (syst.)Systematics are present (discrepancy between differentfrequency maps for Aberration)

Figure: Total: β. Aberration: φ. Doppler: τ .

Planck Collaboration 2013, XXVII. Doppler boosting of the CMB: Eppur si muove

Page 28: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Forecasts

0 1000 2000 3000 4000

0.05

0.10

0.50

1

ℓmax

δβ/β

TT+TE+ET+EE+BB

LiteBIRD

Planck

COrE

Ideal

“Exploring cosmic origins with CORE: effects of observer peculiarmotion", CORE Collaboration, JCAP 2018

Page 29: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Forecasts: Other Sources

0 1000 2000 3000 4000 5000

0.05

0.10

0.50

1

ℓmax

δβ/β

Ideal

TT

TE+ET

EE

BB

tSZ

CIB

CIB and tSZ maps“Exploring cosmic origins with CORE: effects of observer peculiarmotion", CORE Collaboration, JCAP 2018

Page 30: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Forecasts

ExperimentChannel FWHM T S/N S/N S/N S/N[GHz] [arcmin] [µK.arcmin] TT TE + ET EE Total

Planck (all) ' 5.5 ' 13 3.8 1.7 1.0 4.3LiteBIRD (all) ' 19 ' 1.7 2.0 1.8 1.8 3.3

CORE

60 17.87 7.5 2.1 1.9 1.8 3.470 15.39 7.1 2.5 2.4 2.2 4.180 13.52 6.8 2.8 2.8 2.6 4.890 12.08 5.1 3.5 3.4 3.3 5.9100 10.92 5 3.9 3.7 3.7 6.5115 9.56 5 4.3 4.2 4.2 7.3130 8.51 3.9 5.1 4.9 5. 8.6145 7.68 3.6 5.7 5.3 5.5 9.5160 7.01 3.7 6.1 5.6 5.8 10.1175 6.45 3.6 6.5 5.8 6.1 10.7195 5.84 3.5 7.1 6.1 6.5 11.4220 5.23 3.8 7.5 6.3 6.7 11.9255 4.57 5.6 7.5 5.9 6.2 11.4295 3.99 7.4 7.5 5.7 5.8 11.340 3.49 11.1 7. 5.1 4.9 9.9390 3.06 22 5.8 3.8 3.1 7.6450 2.65 45.9 4.5 2.3 1.4 5.3520 2.29 116.6 2.9 1. 0.3 3.1600 1.98 358.3 1.4 0.3 0. 1.4(all) ' 4.5 ' 1.4 8.2 6.6 7.3 12.8

Ideal (`max = 2000) (all) 0 0 5.3 7.1 8.7 12.7Ideal (`max = 3000) (all) 0 0 10 9.8 14 21Ideal (`max = 4000) (all) 0 0 16 11.4 19 29Ideal (`max = 5000) (all) 0 0 22 12.6 26 38

Table 3. Aberration and Doppler effects with CORE. We assume fsky = 0.8 for all experiments(and fsky = 1 in the ideal cases) in order to make comparisons simpler. For CORE we assume the 1.2-m telescope configuration, but with extended mission time to match the 1.5-m noise in µK.arcmin.For CORE and LiteBIRD we assume P =

p2T , while for Planck we use the 2015 values. The

combined channel estimates are effective values that best approximate Eq. (5.18) in the ` range ofinterest. Note that CORE will have S/N 5 in 14 different frequency bands. Also, by combining allfrequencies, CORE will have similar S/N in TT , TE + ET and EE.

6.1 The CMB dipole

The dipole amplitude is directly proportional to the first derivative of the photon occupationnumber, (), which is related to the thermodynamic temperature, Ttherm(), i.e., to thetemperature of the blackbody having the same () at the frequency , by

Ttherm =h

kB ln(1 + 1/()). (6.1)

– 21 –

“Exploring cosmic origins with CORE: effects of observer peculiar motion",

CORE Collaboration, JCAP 1804 (2018) no.04, 021

Page 31: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Is β degenerate with an Intrinsic Dipole?

A dipolar large scale potential: ΦL = cos(θ)f (r)

Produces3 a CMB dipole TL ∝ cos(θ).

It also produces couplings at 2nd order : cNL T (n)TL(n)

cNL Degenerate with Doppler (if zero primordialnon-Gaussianity!)

ΦL produces dipolar Lensing = Aberration ?

Yes, but coefficient: generically depends on f (r):

=⇒ non-degenerate with Aberration (f (r) ∝ r2)

3O.Roldan, A.N., M.Quartin 2016

Page 32: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Is β degenerate with an Intrinsic Dipole?

A dipolar large scale potential: ΦL = cos(θ)f (r)

Produces3 a CMB dipole TL ∝ cos(θ).

It also produces couplings at 2nd order : cNL T (n)TL(n)

cNL Degenerate with Doppler (if zero primordialnon-Gaussianity!)

ΦL produces dipolar Lensing = Aberration ?

Yes, but coefficient: generically depends on f (r):

=⇒ non-degenerate with Aberration (f (r) ∝ r2)

3O.Roldan, A.N., M.Quartin 2016

Page 33: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Is β degenerate with an Intrinsic Dipole?

A dipolar large scale potential: ΦL = cos(θ)f (r)

Produces3 a CMB dipole TL ∝ cos(θ).

It also produces couplings at 2nd order : cNL T (n)TL(n)

cNL Degenerate with Doppler (if zero primordialnon-Gaussianity!)

ΦL produces dipolar Lensing = Aberration ?

Yes, but coefficient: generically depends on f (r):

=⇒ non-degenerate with Aberration (f (r) ∝ r2)

3O.Roldan, A.N., M.Quartin 2016

Page 34: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Is β degenerate with an Intrinsic Dipole?

A dipolar large scale potential: ΦL = cos(θ)f (r)

Produces3 a CMB dipole TL ∝ cos(θ).

It also produces couplings at 2nd order : cNL T (n)TL(n)

cNL Degenerate with Doppler (if zero primordialnon-Gaussianity!)

ΦL produces dipolar Lensing = Aberration ?

Yes, but coefficient: generically depends on f (r):

=⇒ non-degenerate with Aberration (f (r) ∝ r2)

3O.Roldan, A.N., M.Quartin 2016

Page 35: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Is β degenerate with an Intrinsic Dipole?

A dipolar large scale potential: ΦL = cos(θ)f (r)

Produces3 a CMB dipole TL ∝ cos(θ).

It also produces couplings at 2nd order : cNL T (n)TL(n)

cNL Degenerate with Doppler (if zero primordialnon-Gaussianity!)

ΦL produces dipolar Lensing

= Aberration ?

Yes, but coefficient: generically depends on f (r):

=⇒ non-degenerate with Aberration (f (r) ∝ r2)

3O.Roldan, A.N., M.Quartin 2016

Page 36: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Is β degenerate with an Intrinsic Dipole?

A dipolar large scale potential: ΦL = cos(θ)f (r)

Produces3 a CMB dipole TL ∝ cos(θ).

It also produces couplings at 2nd order : cNL T (n)TL(n)

cNL Degenerate with Doppler (if zero primordialnon-Gaussianity!)

ΦL produces dipolar Lensing = Aberration ?

Yes, but coefficient: generically depends on f (r):

=⇒ non-degenerate with Aberration (f (r) ∝ r2)

3O.Roldan, A.N., M.Quartin 2016

Page 37: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Is β degenerate with an Intrinsic Dipole?

A dipolar large scale potential: ΦL = cos(θ)f (r)

Produces3 a CMB dipole TL ∝ cos(θ).

It also produces couplings at 2nd order : cNL T (n)TL(n)

cNL Degenerate with Doppler (if zero primordialnon-Gaussianity!)

ΦL produces dipolar Lensing = Aberration ?

Yes, but coefficient: generically depends on f (r):

=⇒ non-degenerate with Aberration (f (r) ∝ r2)

3O.Roldan, A.N., M.Quartin 2016

Page 38: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Is β degenerate with an Intrinsic Dipole?

A dipolar large scale potential: ΦL = cos(θ)f (r)

Produces3 a CMB dipole TL ∝ cos(θ).

It also produces couplings at 2nd order : cNL T (n)TL(n)

cNL Degenerate with Doppler (if zero primordialnon-Gaussianity!)

ΦL produces dipolar Lensing = Aberration ?

Yes, but coefficient: generically depends on f (r):

=⇒ non-degenerate with Aberration (f (r) ∝ r2)

3O.Roldan, A.N., M.Quartin 2016

Page 39: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Testing Isotropy

Given a map T (n): mask half of the sky:T (n) = M(n)T (n)

We compute a`m → CM`

And compare two opposite halves CN` and CS

`

Page 40: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Testing Isotropy

Given a map T (n): mask half of the sky:T (n) = M(n)T (n)

We compute a`m → CM`

And compare two opposite halves CN` and CS

`

Page 41: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Testing Isotropy

Given a map T (n): mask half of the sky:T (n) = M(n)T (n)

We compute a`m → CM`

And compare two opposite halves CN` and CS

`

Page 42: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Hemispherical asymmetry?

In several papers: significant (about 3σ) hemisphericalasymmetry at ` < O(60)Eriksen et al. ’04, ’07, Hansen et al. ’04, ’09, Hoftuft et al. ’09, Bernui ’08, Paci et al. ’13

The claim extends also to ` ≤ 600 (WMAP)Hansen et al. ’09

And also to the Planck data (Up to which `?)Planck Collaboration, XIII. Isotropy and Statistics.

Page 43: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck asymmetry

7% asymmetry

at scales & 4

Same as in WMAP

Planck Collaboration: Isotropy and statistics

0.00 0.05 0.10 0.15Modulation amplitude, A

05

10

15

20

Pro

bability

distributio

n

5 deg

6 deg

7 deg

8 deg

9 deg

10 deg

0.85 0.90 0.95 1.00Power spectrum amplitude, q

04

812

16

Pro

bability

distributio

n

5 deg

6 deg

7 deg

8 deg

9 deg

10 deg

0.1 0.0 0.1 0.2

Power spectrum tilt, n

02

46

8

Pro

bability

distributio

n

5 deg

6 deg

7 deg

8 deg

9 deg

10 deg

Fig. 29. Marginal dipole modulation amplitude (top), powerspectrum amplitude (middle) and power spectrum tilt (bottom)probability distributions as a function of smoothing scale, shownfor the Commander CMB solution.

particular, there appears to be a slight trend toward a steeperand positive spectral index as more weight is put on the largerscales, a result already noted by COBE-DMR. The same conclu-

0.90 0.95 1.00 1.05Power spectrum amplitude, q

0.1

0.0

0.1

0.2

Power

spectru

mtilt,n

Commander

NILC

SEVEM

SMICA

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14Modulation amplitude, A

05

10

15

20

Pro

bability

distributio

n

Commander

NILC

SEVEM

SMICA

Commander

NILC

SEVEM

SMICA

WMAP

Fig. 30. Consistency between component separation algorithmsas measured by the dipole modulation likelihood. The toppanel shows the marginal power spectrum amplitude for the 5smoothing scale, the middle panel shows dipole modulation am-plitude, and the bottom panel shows the preferred dipole direc-tions. The coloured area indicates the 95% confidence region forthe Commander solution, while the dots shows the maximum-posterior directions for the other codes.

sion is reached using the low-` Planck likelihood, as describedin Planck Collaboration XV (2013).

In Fig. 30 we compare the results from all four CMB solu-tions for the 5 FWHM smoothing scale. Clearly the results areconsistent despite the use of di↵erent algorithms and di↵erenttreatments of the Galactic plane, demonstrating robustness with

29

Figure:

Planck Collaboration 2013, XIII. Isotropy and Statistics.

Page 44: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck asymmetry

7% asymmetryat scales & 4

Same as in WMAP

Planck Collaboration: Isotropy and statistics

0.00 0.05 0.10 0.15Modulation amplitude, A

05

10

15

20

Pro

bability

distributio

n

5 deg

6 deg

7 deg

8 deg

9 deg

10 deg

0.85 0.90 0.95 1.00Power spectrum amplitude, q

04

812

16

Pro

bability

distributio

n

5 deg

6 deg

7 deg

8 deg

9 deg

10 deg

0.1 0.0 0.1 0.2

Power spectrum tilt, n

02

46

8

Pro

bability

distributio

n

5 deg

6 deg

7 deg

8 deg

9 deg

10 deg

Fig. 29. Marginal dipole modulation amplitude (top), powerspectrum amplitude (middle) and power spectrum tilt (bottom)probability distributions as a function of smoothing scale, shownfor the Commander CMB solution.

particular, there appears to be a slight trend toward a steeperand positive spectral index as more weight is put on the largerscales, a result already noted by COBE-DMR. The same conclu-

0.90 0.95 1.00 1.05Power spectrum amplitude, q

0.1

0.0

0.1

0.2

Power

spectru

mtilt,n

Commander

NILC

SEVEM

SMICA

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14Modulation amplitude, A

05

10

15

20

Pro

bability

distributio

n

Commander

NILC

SEVEM

SMICA

Commander

NILC

SEVEM

SMICA

WMAP

Fig. 30. Consistency between component separation algorithmsas measured by the dipole modulation likelihood. The toppanel shows the marginal power spectrum amplitude for the 5smoothing scale, the middle panel shows dipole modulation am-plitude, and the bottom panel shows the preferred dipole direc-tions. The coloured area indicates the 95% confidence region forthe Commander solution, while the dots shows the maximum-posterior directions for the other codes.

sion is reached using the low-` Planck likelihood, as describedin Planck Collaboration XV (2013).

In Fig. 30 we compare the results from all four CMB solu-tions for the 5 FWHM smoothing scale. Clearly the results areconsistent despite the use of di↵erent algorithms and di↵erenttreatments of the Galactic plane, demonstrating robustness with

29

Figure:

Planck Collaboration 2013, XIII. Isotropy and Statistics.

Page 45: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck asymmetry

7% asymmetryat scales & 4

Same as in WMAP

Planck Collaboration: Isotropy and statistics

0.00 0.05 0.10 0.15Modulation amplitude, A

05

10

15

20

Pro

bability

distributio

n

5 deg

6 deg

7 deg

8 deg

9 deg

10 deg

0.85 0.90 0.95 1.00Power spectrum amplitude, q

04

812

16

Pro

bability

distributio

n5 deg

6 deg

7 deg

8 deg

9 deg

10 deg

0.1 0.0 0.1 0.2

Power spectrum tilt, n

02

46

8

Pro

bability

distributio

n

5 deg

6 deg

7 deg

8 deg

9 deg

10 deg

Fig. 29. Marginal dipole modulation amplitude (top), powerspectrum amplitude (middle) and power spectrum tilt (bottom)probability distributions as a function of smoothing scale, shownfor the Commander CMB solution.

particular, there appears to be a slight trend toward a steeperand positive spectral index as more weight is put on the largerscales, a result already noted by COBE-DMR. The same conclu-

0.90 0.95 1.00 1.05Power spectrum amplitude, q

0.1

0.0

0.1

0.2

Power

spectru

mtilt,n

Commander

NILC

SEVEM

SMICA

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14Modulation amplitude, A

05

10

15

20

Pro

bability

distributio

n

Commander

NILC

SEVEM

SMICA

Commander

NILC

SEVEM

SMICA

WMAP

Fig. 30. Consistency between component separation algorithmsas measured by the dipole modulation likelihood. The toppanel shows the marginal power spectrum amplitude for the 5smoothing scale, the middle panel shows dipole modulation am-plitude, and the bottom panel shows the preferred dipole direc-tions. The coloured area indicates the 95% confidence region forthe Commander solution, while the dots shows the maximum-posterior directions for the other codes.

sion is reached using the low-` Planck likelihood, as describedin Planck Collaboration XV (2013).

In Fig. 30 we compare the results from all four CMB solu-tions for the 5 FWHM smoothing scale. Clearly the results areconsistent despite the use of di↵erent algorithms and di↵erenttreatments of the Galactic plane, demonstrating robustness with

29

Figure:

Planck Collaboration 2013, XIII. Isotropy and Statistics.

Page 46: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Hemispherical Asymmetry at high `?

A correct analysis has to include Doppler andAberration (important at ` & 1000)A.N., M.Quartin & R.Catena, JCAP Apr. ’13

We find between 2.5− 3σ anomaly only at ` . 600(A.N., M.Quartin & JCAP ’14, Planck Collaboration 2013, XIII. Isotropy and Statistics)

Page 47: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Hemispherical Asymmetry at high `?

A correct analysis has to include Doppler andAberration (important at ` & 1000)A.N., M.Quartin & R.Catena, JCAP Apr. ’13

We find between 2.5− 3σ anomaly only at ` . 600(A.N., M.Quartin & JCAP ’14, Planck Collaboration 2013, XIII. Isotropy and Statistics)

Page 48: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Hemispherical Asymmetry at high `?

A correct analysis has to include Doppler andAberration (important at ` & 1000)A.N., M.Quartin & R.Catena, JCAP Apr. ’13

We find between 2.5− 3σ anomaly only at ` . 600(A.N., M.Quartin & JCAP ’14, Planck Collaboration 2013, XIII. Isotropy and Statistics)

Page 49: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Hemispherical Asymmetry due to Velocity

Figure: Discs along the Dipole direction

For a small disc (along Dipole direction):

δC`C`' 4β + 2β`C′

`

Small area experiments bias (i.e. CMB peaks position shiftsof 0.5% in ACT) A.N., M.Quartin, R.Catena 2013

Page 50: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Hemispherical Asymmetry due to Velocity

Figure: Discs along the Dipole direction

For a small disc (along Dipole direction):

δC`C`' 4β + 2β`C′

`

Small area experiments bias (i.e. CMB peaks position shiftsof 0.5% in ACT) A.N., M.Quartin, R.Catena 2013

Page 51: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Hemispherical Asymmetry due to Velocity

Figure: Discs along the Dipole direction

For a small disc (along Dipole direction):

δC`C`' 4β + 2β`C′

`

Small area experiments bias (i.e. CMB peaks position shiftsof 0.5% in ACT) A.N., M.Quartin, R.Catena 2013

Page 52: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

“Dipolar modulation"?

Several authors have studied the ansatz

T = Tisotropic(1 + Amod · n

),

3-σ detection of Amod along max. asymm. direction(For ` < 60 or ` < 600 )

Amod 60 times bigger than β! (at ` < 60)

Page 53: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

“Dipolar modulation"?

Several authors have studied the ansatz

T = Tisotropic(1 + Amod · n

),

3-σ detection of Amod along max. asymm. direction(For ` < 60 or ` < 600 )

Amod 60 times bigger than β! (at ` < 60)

Page 54: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

“Dipolar modulation"?

Several authors have studied the ansatz

T = Tisotropic(1 + Amod · n

),

3-σ detection of Amod along max. asymm. direction(For ` < 60 or ` < 600 )

Amod 60 times bigger than β! (at ` < 60)

Page 55: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Our Results on A

Figure: All simulations include Planck noise asymmetry.

A.N. & M.Quartin, 2014

Page 56: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Frequency dependence??

A boost does NOT change the blackbody

But, consider Intensity:

I(ν) =2ν3

T (n) − 1.

Linearize Intensity: (WMAP, PLANCK...):

Using T ≡ T0 + ∆T (n), I ≡ I0 + ∆I(n), we get

∆I(ν, n) ≈ 2ν4eνν0

T 20

(e

νν0 − 1

)2 ∆T (n) ≡ K∆T (n)

T0,

Page 57: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Frequency dependence??

A boost does NOT change the blackbody

But, consider Intensity:

I(ν) =2ν3

T (n) − 1.

Linearize Intensity: (WMAP, PLANCK...):

Using T ≡ T0 + ∆T (n), I ≡ I0 + ∆I(n), we get

∆I(ν, n) ≈ 2ν4eνν0

T 20

(e

νν0 − 1

)2 ∆T (n) ≡ K∆T (n)

T0,

Page 58: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Frequency dependence??

A boost does NOT change the blackbody

But, consider Intensity:

I(ν) =2ν3

T (n) − 1.

Linearize Intensity: (WMAP, PLANCK...):

Using T ≡ T0 + ∆T (n), I ≡ I0 + ∆I(n), we get

∆I(ν, n) ≈ 2ν4eνν0

T 20

(e

νν0 − 1

)2 ∆T (n) ≡ K∆T (n)

T0,

Page 59: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Frequency dependence??

At second order:

∆IK

=∆T (n)

T0+

(∆T (n)

T0

)2

Q(ν) ,

where Q(ν) ≡ ν/(2ν0) coth[ν/(2ν0)].

Spurious y -distortionDegenerate with tSZ and primordial y -distortionAny T fluctuation produces this

Page 60: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Frequency dependence??

At second order:

∆IK

=∆T (n)

T0+

(∆T (n)

T0

)2

Q(ν) ,

where Q(ν) ≡ ν/(2ν0) coth[ν/(2ν0)].

Spurious y -distortionDegenerate with tSZ and primordial y -distortionAny T fluctuation produces this

Page 61: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Frequency dependence??

Dominated by dipole ∆14

L(ν, n) = µ∆1 +δTT0− βµ δT

T0+ β

(δTab

T0

)+

+

[(µ2 − 1

3

)∆2

1 +13

∆21 + 2∆1µ

δTT0

]Q(ν) .

Quadrupole (10−7)Monopole (10−7)Couplings (10−8)

Caveat : ∆1 = β + intrinsic dipole

4Knox,Kamionkowski ’04, Chluba, Sunyaev ’04, Planck , A.N. &Quartin ’16

Page 62: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Frequency dependence??

Dominated by dipole ∆14

L(ν, n) = µ∆1 +δTT0− βµ δT

T0+ β

(δTab

T0

)+

+

[(µ2 − 1

3

)∆2

1 +13

∆21 + 2∆1µ

δTT0

]Q(ν) .

Quadrupole (10−7)Monopole (10−7)Couplings (10−8)

Caveat : ∆1 = β + intrinsic dipole

4Knox,Kamionkowski ’04, Chluba, Sunyaev ’04, Planck , A.N. &Quartin ’16

Page 63: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Frequency dependence??

Dominated by dipole ∆14

L(ν, n) = µ∆1 +δTT0− βµ δT

T0+ β

(δTab

T0

)+

+

[(µ2 − 1

3

)∆2

1 +13

∆21 + 2∆1µ

δTT0

]Q(ν) .

Quadrupole (10−7)Monopole (10−7)Couplings (10−8)

Caveat : ∆1 = β + intrinsic dipole

4Knox,Kamionkowski ’04, Chluba, Sunyaev ’04, Planck , A.N. &Quartin ’16

Page 64: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

WMAP/Planck Quadrupole-Octupolealignments

Another anomaly:

From a2m and a3m → Multipole vectors→ n2, n3.

n2 · n3 ≈ 0.99

And also Dipole-Quadrupole-Octupole (n1, n2, n3)aligned (e.g.Copi et al. ’13 )

Page 65: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

WMAP/Planck Quadrupole-Octupolealignments

Another anomaly:

From a2m and a3m → Multipole vectors→ n2, n3.

n2 · n3 ≈ 0.99

And also Dipole-Quadrupole-Octupole (n1, n2, n3)aligned (e.g.Copi et al. ’13 )

Page 66: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

WMAP/Planck Quadrupole-Octupolealignments

Another anomaly:

From a2m and a3m → Multipole vectors→ n2, n3.

n2 · n3 ≈ 0.99

And also Dipole-Quadrupole-Octupole (n1, n2, n3)aligned (e.g.Copi et al. ’13 )

Page 67: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Removing Doppler quadrupole

Planck data initially showed less alignment thanWMAP: 2.3σ for n1 · n2 (SMICA 2013)

After removing Doppler→ 2.9σ (Copi et al. ’13),(agreement with WMAP)

Using Qeff ≈ 1.7 on SMICA 2013, (A.N. & M.Quartin, JCAP 2015)

=⇒ 3.3σ for n1 · n2

...and agreement among different maps!

Page 68: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Removing Doppler quadrupole

Planck data initially showed less alignment thanWMAP: 2.3σ for n1 · n2 (SMICA 2013)

After removing Doppler→ 2.9σ (Copi et al. ’13),(agreement with WMAP)

Using Qeff ≈ 1.7 on SMICA 2013, (A.N. & M.Quartin, JCAP 2015)

=⇒ 3.3σ for n1 · n2

...and agreement among different maps!

Page 69: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Removing Doppler quadrupole

Planck data initially showed less alignment thanWMAP: 2.3σ for n1 · n2 (SMICA 2013)

After removing Doppler→ 2.9σ (Copi et al. ’13),(agreement with WMAP)

Using Qeff ≈ 1.7 on SMICA 2013, (A.N. & M.Quartin, JCAP 2015)

=⇒ 3.3σ for n1 · n2

...and agreement among different maps!

Page 70: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck Calibration?

Doppler effect is used to calibrate the detectors!

WMAP calibrated using βORBITAL (≈ 10−4)

Planck 2013 on βSUN (using WMAP!)

Planck 2015 calibrated on βORBITAL

Page 71: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck Calibration?

Doppler effect is used to calibrate the detectors!

WMAP calibrated using βORBITAL (≈ 10−4)

Planck 2013 on βSUN (using WMAP!)

Planck 2015 calibrated on βORBITAL

Page 72: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck Calibration?

Splitting βTOT = βS + βO (A.N. & M.Quartin ’2015) :

δIν =δTT0

+ βS · n + βO · n +

+ Q(ν)[(βS · n)2 + (βO · n)2 + 2(βS · n)(βO · n)

]

Leading βO · n ≈ 10−4

Subleading ≈ 10−6

Q(ν) ≈ (1.25,1.5,2.0,3.1) for HFI!

Q(ν) corrections to be included in Planck Calibration:might represent up to O(1%) systematics

Page 73: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck Calibration?

Splitting βTOT = βS + βO (A.N. & M.Quartin ’2015) :

δIν =δTT0

+ βS · n + βO · n +

+ Q(ν)[(βS · n)2 + (βO · n)2 + 2(βS · n)(βO · n)

]

Leading βO · n ≈ 10−4

Subleading ≈ 10−6

Q(ν) ≈ (1.25,1.5,2.0,3.1) for HFI!

Q(ν) corrections to be included in Planck Calibration:might represent up to O(1%) systematics

Page 74: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck Calibration?

Splitting βTOT = βS + βO (A.N. & M.Quartin ’2015) :

δIν =δTT0

+ βS · n + βO · n +

+ Q(ν)[(βS · n)2 + (βO · n)2 + 2(βS · n)(βO · n)

]

Leading βO · n ≈ 10−4

Subleading ≈ 10−6

Q(ν) ≈ (1.25,1.5,2.0,3.1) for HFI!

Q(ν) corrections to be included in Planck Calibration:might represent up to O(1%) systematics

Page 75: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck Calibration?

Splitting βTOT = βS + βO (A.N. & M.Quartin ’2015) :

δIν =δTT0

+ βS · n + βO · n +

+ Q(ν)[(βS · n)2 + (βO · n)2 + 2(βS · n)(βO · n)

]

Leading βO · n ≈ 10−4

Subleading ≈ 10−6

Q(ν) ≈ (1.25,1.5,2.0,3.1) for HFI!

Q(ν) corrections to be included in Planck Calibration:might represent up to O(1%) systematics

Page 76: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Planck Calibration?

Splitting βTOT = βS + βO (A.N. & M.Quartin ’2015) :

δIν =δTT0

+ βS · n + βO · n +

+ Q(ν)[(βS · n)2 + (βO · n)2 + 2(βS · n)(βO · n)

]

Leading βO · n ≈ 10−4

Subleading ≈ 10−6

Q(ν) ≈ (1.25,1.5,2.0,3.1) for HFI!

Q(ν) corrections to be included in Planck Calibration:might represent up to O(1%) systematics

Page 77: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Conclusions

1 Can we reliably and precisely measure β via `, `± 1couplings (to confirm local origin):

Separately in Doppler and Aberration?Also in Polarization?

2 Agreement with other measurements? (Radio dipole orother large scale observations...)

3 Anomalies:Properly remove boost effects (if local!)Are they present in Polarization?

4 Never use linearized temperature ∆I(n) = H∆T (n), toavoid spurious frequency dependence (calibration,maps...)

Page 78: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Conclusions

1 Can we reliably and precisely measure β via `, `± 1couplings (to confirm local origin):

Separately in Doppler and Aberration?Also in Polarization?

2 Agreement with other measurements? (Radio dipole orother large scale observations...)

3 Anomalies:Properly remove boost effects (if local!)Are they present in Polarization?

4 Never use linearized temperature ∆I(n) = H∆T (n), toavoid spurious frequency dependence (calibration,maps...)

Page 79: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Conclusions

1 Can we reliably and precisely measure β via `, `± 1couplings (to confirm local origin):

Separately in Doppler and Aberration?Also in Polarization?

2 Agreement with other measurements? (Radio dipole orother large scale observations...)

3 Anomalies:Properly remove boost effects (if local!)Are they present in Polarization?

4 Never use linearized temperature ∆I(n) = H∆T (n), toavoid spurious frequency dependence (calibration,maps...)

Page 80: Peculiar velocity effects and CMB anomalies - agenda.infn.it · (Calibration? Blackbody distortion, tSZ contamination?) 2 Kosowsky Kahniashvili, ’2011, L. Amendola, Catena, Masina,

CMB

CMB & Propermotion

Anomalies

Frequencydependence

Conclusions

1 Can we reliably and precisely measure β via `, `± 1couplings (to confirm local origin):

Separately in Doppler and Aberration?Also in Polarization?

2 Agreement with other measurements? (Radio dipole orother large scale observations...)

3 Anomalies:Properly remove boost effects (if local!)Are they present in Polarization?

4 Never use linearized temperature ∆I(n) = H∆T (n), toavoid spurious frequency dependence (calibration,maps...)