Top Banner
The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658
225

The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Oct 30, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Atoms of Space and Gravity

T. Padmanabhan

IUCAA, Pune

T.P., arXiv:1603.08658

Page 2: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Major Challenges to GR

SINGULARITIES: BLACK HOLES,UNIVERSE

COSMOLOGICAL CONSTANT

THE THERMODYNAMIC CONNECTION

Page 3: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Question

These challenges involve ~!

AP lanck =G~

c3; Λ

(G~

c3

)

≈ 10−123; kBT =~

c

(g

)

HOW DO WE PUT TOGETHER

THE PRINCIPLES OF

QUANTUM THEORY AND GRAVITY?

Page 4: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Everybody Wants To Quantize Gravity!

Page 5: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Everybody Wants To Quantize Gravity!

Page 6: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

... But Nobody Has Succeeded!

Page 7: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

... But Nobody Has Succeeded!

The perturbative approach does not work

Virtually every interesting question about

gravity is non-perturbative by nature

No guiding principle; metric is assumed to be aquantum variable

Page 8: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

GR: THE NEXT 100 YEARSNeeds another paradigm shift

Page 9: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

GR: THE NEXT 100 YEARSNeeds another paradigm shift

The equations governing classical

gravity has the same conceptual

status as those describing

elasticity/hydrodynamics.

Page 10: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

BACKGROUND

Related Ideas: Cai, Damour, Hu,

Jacobson, Liberati, Sakharov,

Thorne, Visser, Volovik,.... and

many others

Page 11: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

THIS TALK

I will describe the work by me +collaborators (2004-16)

Part 1: Review of older results

Part 2: Recent Progress (2014-16)

Page 12: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

THE PARADIGMNon-negotiable ingredient - 1

Spacetime dynamics should/can

be described in a thermodynamic

language; not in a geometrical

language.

Page 13: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Evolution of spacetimeReview: TP, [arXiv:1410.6285]

Evolution arises from departure from

‘holographic equipartition’:

T ime evolution ∝ Heating/Cooling

∝ (Nsur − Nbulk)

All static geometries have

Nsur = Nbulk

See e.g. TP, [gr-qc/0308070]; [arXiv:0911.5004]; [arXiv:0912.3165]; [arXiv:1003.5665]; [arXiv:1312.3253]; [arXiv:1405.5535];Chakraborty, T. P, [arXiv:1408.4679]

Page 14: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

THE PARADIGMNon-negotiable ingredient - 2

The gravity-thermodynamics

connection transcends GR even

when the entropy is not

proportional to area.

Page 15: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Lanczos-Lovelock modelsReview: T. P, Kothawala, [arXiv:1302.2151]

All these results generalize to the

Lanczos-Lovelock models of gravity with:

sd2x = −1

2

√σdD−2x

4L2P

P abcd ǫabǫ

cd

The thermodynamic connection

transcends GR!

See e.g., Paranjape et al, [hep-th/0607240]; Kothawala, TP [arXiv:0904.0215]; Kolekar et al. [arXiv:1111.0973],[arXiv:1201.2947], Chakraborty, T. P, [arXiv:1408.4679]; [arXiv:1408.4791]

Page 16: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

THE PARADIGMNon-negotiable ingredient - 3

You should get more than whatyou put in!

Page 17: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

THE PARADIGMNon-negotiable ingredient - 3

You should get more than whatyou put in!

Leads to significant new insights about:(i) classical gravity (ii) the microscopic

structure of spacetime and (iii)cosmological constant.

See e.g., T.P, Hamsa Padmanabhan, [arXiv:1404.2284]; T.P, [arXiv:1603.08658]

Page 18: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

More IS Different

Page 19: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

More IS Different

The key new variable which distinguishes

thermodynamics from point mechanics

Heat Density = H =Q

V=

TS

V=

1

V(E − F )

TS

V= Ts = p + ρ = Tabℓ

aℓb

Normal matter has a heat density

Page 20: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Fluid called Spacetime

Spacetime also has a heat density!

Page 21: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Fluid called Spacetime

Spacetime also has a heat density!

One can associate a T and s with every

event in spacetime just as you could with

a glass of water!

Page 22: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Fluid called Spacetime

Spacetime also has a heat density!

One can associate a T and s with every

event in spacetime just as you could with

a glass of water!

This fact transcends black hole physics

and Einstein gravity.

Page 23: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Fluid called Spacetime

Spacetime also has a heat density!

One can associate a T and s with every

event in spacetime just as you could with

a glass of water!

The T is independent of the theory of

gravity; s depends on/determines the

theory.

Page 24: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Spacetime in Arbitrary Coordinates

t

x

ArbitraryEvent

Null raysthrough P

P

Page 25: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Local Inertial Observers

Rxx ∼ 1

limit of validity oflocal inertial frame

P

T

X

Validity of laws of SR ⇒ How gravity affects matter

Matter equations of motion ⇔ ∇aTab = 0

Page 26: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Spacetimes, Like Matter, can be Hot

The most beautiful result in

the interface of quantum theory and gravity

Page 27: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Spacetimes, Like Matter, can be Hot

The most beautiful result in

the interface of quantum theory and gravity

OBSERVERS WHO PERCEIVE A HORIZON

ATTRIBUTE A TEMPERATURE TO SPACETIME

kBT =~

c

(g

)

[Davies (1975), Unruh (1976)]

Page 28: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Spacetimes, Like Matter, can be Hot

The most beautiful result in

the interface of quantum theory and gravity

OBSERVERS WHO PERCEIVE A HORIZON

ATTRIBUTE A TEMPERATURE TO SPACETIME

kBT =~

c

(g

)

[Davies (1975), Unruh (1976)]

This allows you to associate a heat density

H = Ts with every event of spacetime!

Page 29: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

OBSERVER

X

T

HORIZON

FLAT SPACETIME

accelerated

Page 30: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Local Rindler Observers

Local Rinderobserver

T

X

Rxx ∼ 1limit of validity oflocal inertial frame

P

κ−1 ≪ R−1/2

Page 31: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

PP

Vacuum fluctuations Thermal fluctuations⇐⇒

Page 32: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

PP

Vacuum fluctuations Thermal fluctuations⇐⇒

A VERY NON-TRIVIAL EQUIVALENCE!

Page 33: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

PP

Vacuum fluctuations Thermal fluctuations⇐⇒

A VERY NON-TRIVIAL EQUIVALENCE!

QFT in FFF introduces ~; we now have (~/c) in the temperature

Page 34: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

General CovarianceDemocracy of all observers

Regions of spacetime can be inaccessible

to certain class of observers in any

spacetime!

Page 35: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

General CovarianceDemocracy of all observers

Regions of spacetime can be inaccessible

to certain class of observers in any

spacetime!

Take non-inertial frames seriously: not

“just coordinate relabeling”.

Page 36: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Local Rindler Horizon

Page 37: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Local Rindler Horizon

Heat transfered due to matter crossing a null

surface: [T. Jacobson, gr-qc/9504004]

Qm =

dV (Tabℓaℓb); Hm ≡ Tabℓ

aℓb

Page 38: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Local Rindler Horizon

Heat transfered due to matter crossing a null

surface: [T. Jacobson, gr-qc/9504004]

Qm =

dV (Tabℓaℓb); Hm ≡ Tabℓ

aℓb

Note: Null horizon ⇔ Euclidean origin

X2 − T 2 = 0 ⇔ X2 + T 2E = 0

Page 39: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

X

T

κ = πt

κ = − πt

TE

X

x

tκE

T = x sinhκt, X = x coshκt TE = x sin κtE, X = x cos κtE

X2 − T 2 = 0 ⇔ X2 + T 2E = 0

Page 40: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

κ−1 ≪ R−1/2

Local Rinderobserver

TE

X

Rxx ∼ 1limit of validity oflocal inertial frame

κtE

x

P

Page 41: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

X2 − T 2 = σ2 ⇔ X2 + T 2E = σ2

X2 − T 2 = 0 ⇔ X2 + T 2E = 0

Page 42: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Importance Of Being Hot

Page 43: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Importance Of Being Hot

You could have figured out that

water is made of discrete atoms

without ever probing it at

Angstrom scales!

Page 44: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Matter

Page 45: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Matter

Boltzmann: If you can heat it,

it must have micro-structure!

To store energy ∆E at temperature T , you need

∆n =∆E

(1/2)kBT

degrees of freedom. Microphysics leaves its

signature at the macro-scales

Page 46: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Spacetime

Boltzmann: If you can heat it,

it must have micro-structure!

You can heat up spacetime!

Do we have an equipartition law for the

microscopic spacetime degrees of freedom?

Can you count the atoms of space?

Page 47: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Quantum of AreaTP, [gr-qc/0308070]; [0912.3165]; [1003.5665]

Equipartition with a surface-bulk correspondence

Ebulk =

∂V

dA

L2P

(1

2kBTloc

)

≡1

2kB

∂VdnTloc

Associates dn = dA/L2P microscopic degrees of

freedom (‘atoms’) with an area dA

Page 48: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Quantum of AreaTP, [gr-qc/0308070]; [0912.3165]; [1003.5665]

Equipartition with a surface-bulk correspondence

Ebulk =

∂V

dA

L2P

(1

2kBTloc

)

≡1

2kB

∂VdnTloc

Associates dn = dA/L2P microscopic degrees of

freedom (‘atoms’) with an area dA

Extends to all Lanczos-Lovelock models with

dn = (32πP abcd ǫabǫ

cd) dA/L2P

Page 49: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

Page 50: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

z

x

Equipotential surface

y

t = constant

Page 51: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

z

x

Nsur =A

L2P

Equipotential surface

y

t = constant

Page 52: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

n

z

x

Equipotential surface

y

t = constant

Page 53: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

n

g

z

x

Equipotential surface

y

t = constant

Page 54: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

z

x

Equipotential surface

y

t = constant

Page 55: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

z

x

Equipotential surface

y

t = constant

Page 56: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

z

x

Nsur =A

L2P

Equipotential surface

y

t = constant

Tloc =gloc

2π;

Page 57: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

z

x

Nsur =A

L2P

Equipotential surface

Tav =1A

da Tlocy

t = constant

Tloc =gloc

2π;

Page 58: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

z

x

Nsur =A

L2P

Equipotential surface

Tav =1A

da Tlocy

t = constant

Tloc =gloc

2π;

Nbulk =|E|

[(1/2)kBTav]

Page 59: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Holographic EquipartitionTP [gr-qc/0308070], [arXiv:0912.3165], [arXiv:1003.5665]

z

x

Nsur =A

L2P

Equipotential surfaceNsur= Nbulk !

Tav =1A

da Tlocy

t = constant

Tloc =gloc

2π;

Nbulk =|E|

[(1/2)kBTav]

Page 60: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

NEWTONIAN EXAMPLEGauss Law Holography

Nsur =A

L2P

= Nbulk =E

[(1/2)kBTav]

Page 61: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

NEWTONIAN EXAMPLEGauss Law Holography

E =1

2L2P

da kBTloc

Page 62: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

NEWTONIAN EXAMPLEGauss Law Holography

E =1

2L2P

da kBTloc

ρ dV =1

2L2P

da

(~

c

)(g

)

Page 63: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

NEWTONIAN EXAMPLEGauss Law Holography

E =1

2L2P

da kBTloc

ρ dV =1

2L2P

da~

c

(−g · n2π

)

Page 64: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

NEWTONIAN EXAMPLEGauss Law Holography

E =1

2L2P

da kBTloc

ρ dV =1

2L2P

da~

c

(−g · n2π

)

= −~

4πcL2P

dV ∇ · g

Page 65: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

NEWTONIAN EXAMPLEGauss Law Holography

E =1

2L2P

da kBTloc

ρ dV =1

2L2P

da~

c

(−g · n2π

)

= −~

4πcL2P

dV ∇ · g

∇ · g = −4πcL2P

~ρ = −4πG

c2

)

Page 66: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Geometry ⇔ ThermodynamicsK. Parattu, B.R. Majhi, T.P. [arXiv:1303.1535]

Page 67: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Geometry ⇔ ThermodynamicsK. Parattu, B.R. Majhi, T.P. [arXiv:1303.1535]

qab ≡√

−ggab

Page 68: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Geometry ⇔ ThermodynamicsK. Parattu, B.R. Majhi, T.P. [arXiv:1303.1535]

qab ≡√

−ggab

pabc ≡ −Γa

bc +1

2(Γd

bdδac + Γd

cdδab )

These variables have a thermodynamic

interpretation

(qδp, pδq) ⇔ (sδT, Tδs)

Page 69: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Geometry = ThermodynamicsK. Parattu, B.R. Majhi, T.P. (2013) [arXiv:1303.1535]

On any null surface: (δpabc, δq

bc) ⇔ (δT, δs)

Page 70: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Geometry = ThermodynamicsK. Parattu, B.R. Majhi, T.P. (2013) [arXiv:1303.1535]

On any null surface: (δpabc, δq

bc) ⇔ (δT, δs)

1

16πL2P

Hd2x⊥ ℓc

(pcabδq

ab)=

Hd2x⊥ T δs

Page 71: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Geometry = ThermodynamicsK. Parattu, B.R. Majhi, T.P. (2013) [arXiv:1303.1535]

On any null surface: (δpabc, δq

bc) ⇔ (δT, δs)

1

16πL2P

Hd2x⊥ ℓc

(pcabδq

ab)=

Hd2x⊥ T δs

1

16πL2P

Hd2x⊥ ℓc

(qabδpc

ab

)=

Hd2x⊥ s δT

Page 72: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

What makes Spacetime Evolve ?TP, Gen.Rel.Grav (2014) [arXiv:1312.3253]

Page 73: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

What makes Spacetime Evolve ?TP, Gen.Rel.Grav (2014) [arXiv:1312.3253]

z

x

Tav =1A

da Tlocy

Tloc =gloc

2π;

Nbulk =|E|

[(1/2)kBTav]

t = constant

Nsur =A

L2P

Equipotential surface

Page 74: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

What makes Spacetime Evolve ?TP, Gen.Rel.Grav (2014) [arXiv:1312.3253]

z

x

Tav =1A

da Tlocy

Tloc =gloc

2π;

Nbulk =|E|

[(1/2)kBTav]

t = constant

Nsur =A

L2P

Equipotential surface

∫dσa

8πL2P

qℓm£ξ paℓm

= −12kBTav (Nsur − Nbulk)

Page 75: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

What Makes Spacetime Evolve ?T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

Page 76: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

What Makes Spacetime Evolve ?T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

∫dΣa

8πL2P

[qℓm£ξ p

aℓm] = −1

2kBTav (Nsur − Nbulk)

Page 77: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

What Makes Spacetime Evolve ?T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

∫dΣa

8πL2P

[qℓm£ξ p

aℓm]

︸ ︷︷ ︸

time evolution of spacetime

= heating of spacetime

= −1

2kBTav (Nsur − Nbulk)

Page 78: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

What Makes Spacetime Evolve ?T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

∫dΣa

8πL2P

[qℓm£ξ p

aℓm]

︸ ︷︷ ︸

time evolution of spacetime

= heating of spacetime

= −1

2kBTav (Nsur − Nbulk)

︸ ︷︷ ︸

deviation from

holographic equipartition

Page 79: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

What Makes Spacetime Evolve ?T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

∫dΣa

8πL2P

[qℓm£ξ p

aℓm]

︸ ︷︷ ︸

time evolution of spacetime

= heating of spacetime

= −1

2kBTav (Nsur − Nbulk)

︸ ︷︷ ︸

deviation from

holographic equipartition

Evolution of spacetime is described in

thermodynamic language; not in geometric

language!

Page 80: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

COSMIC EXPANSION: A QUEST FOR

HOLOGRAPHIC EQUIPARTITIONT.P., [1207.0505]

dRH

dt= (1 − ǫNbulk

Nsur

) ǫ = ±1

Nsur = 4πR2

H

L2P

; Nbulk = −ǫE

(1/2)kBT; T =

H

Remarkably enough, this leads to the standard

FRW dynamics!

Page 81: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Momentum of Gravity

Page 82: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Momentum of Gravity

Provides insights into classical GR!

Page 83: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Momentum of Gravity

Provides insights into classical GR!

For matter, ∇aTab = 0 but

∇aPa[v] ≡ −∇a(T

ab v

b) 6= 0.

Why?

Page 84: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Momentum of Gravity

Provides insights into classical GR!

For matter, ∇aTab = 0 but

∇aPa[v] ≡ −∇a(T

ab v

b) 6= 0.

Why?

Because you did not add the momentum

density of spacetime!

∇a(Pa[v] + Ga[v]) = 0

Page 85: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Momentum of GravityT.P. [arXiv:1506.03814]

Page 86: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Momentum of GravityT.P. [arXiv:1506.03814]

−gP a[v] ≡ −√

−gRva − qij£vp

aij

Page 87: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Momentum of GravityT.P. [arXiv:1506.03814]

−gP a[v] ≡ −√

−gRva − qij£vp

aij

Restores momentum conservation to nature!

∇a(Pa + Ma) = 0 for all observers imply field

equations

Page 88: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Momentum of GravityT.P. [arXiv:1506.03814]

−gP a[v] ≡ −√

−gRva − qij£vp

aij

Restores momentum conservation to nature!

∇a(Pa + Ma) = 0 for all observers imply field

equations

Variational principle has a physical meaning:

Qtot = −∫

dV ℓa [P a(ξ) + Ma(ξ)]

Page 89: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Fluid Mechanics Of SpacetimeS. Chakraborty, K. Parattu, and T.P. [arXiv:1505.05297]; S. Chakraborty, T.P. [arXiv:1508.04060]

Page 90: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Fluid Mechanics Of SpacetimeS. Chakraborty, K. Parattu, and T.P. [arXiv:1505.05297]; S. Chakraborty, T.P. [arXiv:1508.04060]

Three projections P aℓa, P aka, P aqba on a

null surface give

Navier-Stokes equation [T.P., arXiv:1012.0119]

TdS = dE + PdV [T.P., gr-qc/0204019; D. Kothawala, T.P., arXiv:0904.0215]

Evolution equation for the null surface

Page 91: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Page 92: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Field equations arise from maximizing

entropy/heat density of gravity plus

matter on all null surfaces.

Page 93: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Field equations arise from maximizing

entropy/heat density of gravity plus

matter on all null surfaces.

Q =

dV (Hg + Hm)

Page 94: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Field equations arise from maximizing

entropy/heat density of gravity plus

matter on all null surfaces.

Q =

dV (Hg + Hm)

Works for a wide class gravitational theories;

entropy decides the theory.

Page 95: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Hm = T ab ℓaℓ

b

Hg = −(

1

16πL2P

)

(4P abcd ∇aℓ

c∇bℓd)

Page 96: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Hm = T ab ℓaℓ

b

Hg = −(

1

16πL2P

)

(4P abcd ∇aℓ

c∇bℓd)

P abcd ∝ δaba2b2...ambm

cdc2d2...cmdmRc2d2

a2b2. . . Rcmdm

ambm

The P abcd is the entropy tensor of the spacetime

which determines the theory [Iyer and Wald (1994)]

Page 97: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Page 98: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

The demand δQ/δℓa = 0 for all null ℓa leads to:

Eab ≡ P ai

jkRjkbi − 1

2δabR = (8πL2

P )Tab + Λδa

b ,

Page 99: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

The demand δQ/δℓa = 0 for all null ℓa leads to:

Eab ≡ P ai

jkRjkbi − 1

2δabR = (8πL2

P )Tab + Λδa

b ,

These are Lanczos-Lovelock models of gravity.

In d = 4, it uniquely leads to GR

Gab = (8πL2

P )Tab + Λδa

b

Page 100: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Thermodynamic variational principleT.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

The demand δQ/δℓa = 0 for all null ℓa leads to:

Eab ≡ P ai

jkRjkbi − 1

2δabR = (8πL2

P )Tab + Λδa

b ,

These are Lanczos-Lovelock models of gravity.

In d = 4, it uniquely leads to GR

Gab = (8πL2

P )Tab + Λδa

b

On-shell value of Qtot

Qon−shelltot =

d2x(Tloc s)∣∣∣

λ2

λ1

Page 101: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Algebraic Aside

Page 102: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Algebraic Aside

Interestingly enough:

2P abcd ∇an

c∇bnd = Rabn

anb+

ignorable

total divergence

Page 103: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Algebraic Aside

Interestingly enough:

2P abcd ∇an

c∇bnd = Rabn

anb+

ignorable

total divergence

Alternative, dimensionless, form in GR:

Kg ≡ − 1

8π(L2

PRabnanb)

Page 104: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Newton’s Law of GravitationT.P. [hep-th/0205278]

Page 105: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Newton’s Law of GravitationT.P. [hep-th/0205278]

Three constants: ~, c, L2P

Page 106: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Newton’s Law of GravitationT.P. [hep-th/0205278]

Three constants: ~, c, L2P

Temperature ⇒ (~/c); Entropy ⇒ L2P

Page 107: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Newton’s Law of GravitationT.P. [hep-th/0205278]

Three constants: ~, c, L2P

Temperature ⇒ (~/c); Entropy ⇒ L2P

F =

(c3L2

P

~

)(m1m2

r2

)

Page 108: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Newton’s Law of GravitationT.P. [hep-th/0205278]

Three constants: ~, c, L2P

Temperature ⇒ (~/c); Entropy ⇒ L2P

F =

(c3L2

P

~

)(m1m2

r2

)

Gravity, like matter, is intrinsically

quantum and cannot exist in the

limit of ~ → 0!

Page 109: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

WHY?

Page 110: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

WHY?

Can we understand these results from a

deeper level? Can we get something

new?

Page 111: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Degrees of Freedom

Ωtot =∏

φA

x

ρg(GN , φA) ρm(Tab, φA)

≡∏

na

exp∑

x

(ln ρg + ln ρm)

Page 112: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Degrees of Freedom

Ωtot =∏

φA

x

ρg(GN , φA) ρm(Tab, φA)

≡∏

ℓa

exp

dV (Hg(GN , ℓa) + Hm(Tab, ℓa))

Page 113: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Degrees of Freedom

Ωtot =∏

φA

x

ρg(GN , φA) ρm(Tab, φA)

≡∏

ℓa

exp

dV (Hg(GN , ℓa) + Hm(Tab, ℓa))

ln ρm ≡ L4PHm = L4

PTabℓaℓb

ln ρg ≡ L4PHg ≈ −L2

P

8πRabℓ

aℓb

Page 114: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Degrees of Freedom

Ωtot =∏

φA

x

ρg(GN , φA) ρm(Tab, φA)

≡∏

ℓa

exp

dV (Hg(GN , ℓa) + Hm(Tab, ℓa))

Rabℓaℓ

b = (8πL2P )T

ab ℓaℓ

b

Page 115: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Degrees of Freedom

Ωtot =∏

φA

x

ρg(GN , φA) ρm(Tab, φA)

≡∏

ℓa

exp

dV (Hg(GN , ℓa) + Hm(Tab, ℓa))

Gab = (8πL2

P )Tab + (const)δa

b

Page 116: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Two Key Principles

Variational principle must remain

invariant under T ab → T a

b + (const)δab .

Quantum spacetime has a zero-point

length.

Page 117: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Guiding Principle For Dynamics

Page 118: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Guiding Principle For Dynamics

Matter equations of motion remain

invariant when a constant is added to the

Lagrangian

Gravity must respect this symmetry

Page 119: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Guiding Principle For Dynamics

The variational principle for the dynamics

of spacetime must be invariant under

T ab → T a

b + (constant) δab

Page 120: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Guiding Principle For Dynamics

The variational principle for the dynamics

of spacetime must be invariant under

T ab → T a

b + (constant) δab

The variational principle cannot have

metric as the dynamical variable!

Page 121: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Heat density of matter

Minimal possibility: The matter should

enter ρm through

Hm ≡ Tabℓaℓb

This has a natural interpretation of heat

density contributed by matter on null

surfaces

Page 122: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Local Rindler Horizon

Page 123: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Local Rindler Horizon

Heat density (energy per unit area per unit

affine time) of the null surface, contributed by

matter crossing a local Rindler horizon:

Hm ≡ dQm√γd2xdλ

= Tabℓaℓb

This fixes the matter sector and leads to:

Ωtot =∏

exp

dV(Hg + Tabℓ

aℓb)

Page 124: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Macroscopic Nature Of Gravity

Gravity responds to heat density

(Ts = p + ρ) — not energy density!

Page 125: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Macroscopic Nature Of Gravity

Gravity responds to heat density

(Ts = p + ρ) — not energy density!

Cosmological constant arises as an

integration constant

Page 126: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Macroscopic Nature Of Gravity

Gravity responds to heat density

(Ts = p + ρ) — not energy density!

Cosmological constant arises as an

integration constant

Its value is determined by a new

conserved quantity for the universe!

Page 127: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Challenge

Page 128: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Challenge

How can we get Hg from a microscopic

theory without knowing the full QG?

Page 129: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Challenge

How can we get Hg from a microscopic

theory without knowing the full QG?

We need to recognize discreteness and

yet use continuum mathematics!

Page 130: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms Of A Fluid

Page 131: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms Of A Fluid

Continuum fluid mechanics: ρ(xi),U(xi), ....ignores discreteness and velocity dispersion.

Page 132: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms Of A Fluid

Continuum fluid mechanics: ρ(xi),U(xi), ....ignores discreteness and velocity dispersion.

Kinetic theory: dN = f(xi, pi)d3xd3p

Page 133: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms Of A Fluid

Continuum fluid mechanics: ρ(xi),U(xi), ....ignores discreteness and velocity dispersion.

Kinetic theory: dN = f(xi, pi)d3xd3p

• Recognizes discreteness, yet uses continuummaths!

Page 134: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms Of A Fluid

Continuum fluid mechanics: ρ(xi),U(xi), ....ignores discreteness and velocity dispersion.

Kinetic theory: dN = f(xi, pi)d3xd3p

• Recognizes discreteness, yet uses continuummaths!

• Atom at xi has an extra attribute pi.

Page 135: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms Of A Fluid

Continuum fluid mechanics: ρ(xi),U(xi), ....ignores discreteness and velocity dispersion.

Kinetic theory: dN = f(xi, pi)d3xd3p

• Recognizes discreteness, yet uses continuummaths!

• Atom at xi has an extra attribute pi.

• Many atoms with different pi can exist at same xi

Page 136: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Atoms Of Space

Page 137: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Atoms Of Space

Q =

dV (Hg + Hm)

The distribution function for ‘atoms of

space’ provides the microscopic origin for

the variational principle

Page 138: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

The Atoms Of Space

Q =

dV (Hg + Hm)

The distribution function for ‘atoms of

space’ provides the microscopic origin for

the variational principle

Points in a renormalized spacetime has

zero volume but finite area!

Page 139: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Space

Page 140: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Space

The Hg is proportional to the number of “atoms of

space at” xi with “momentum” ni.

We expect Hg to be proportional to the volume or

the area measure “associated with” the event xi in

the spacetime

Page 141: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Space

The Hg is proportional to the number of “atoms of

space at” xi with “momentum” ni.

We expect Hg to be proportional to the volume or

the area measure “associated with” the event xi in

the spacetime

Use equi-geodesic surfaces to make this idea

precise

Page 142: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Geodesic IntervalD. Kothawala, T.P. [arXiv:1405.4967]; [arXiv:1408.3963]

Page 143: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Geodesic IntervalD. Kothawala, T.P. [arXiv:1405.4967]; [arXiv:1408.3963]

The geodesic interval σ2(x, x′) and metric gab has

same information about geometry:

σ(x, x′) =

∫ x′

x

gabnanbdλ

Page 144: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Geodesic IntervalD. Kothawala, T.P. [arXiv:1405.4967]; [arXiv:1408.3963]

The geodesic interval σ2(x, x′) and metric gab has

same information about geometry:

σ(x, x′) =

∫ x′

x

gabnanbdλ

1

2∇a∇bσ

2 = gab −λ2

3Eab +

λ2

12ni∇iEab + O(λ4)

nj = ∇jσ, Eab ≡ Rakbjnknj

Page 145: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

x

σ

σ σ

equi-geodesicsurface

S(x′;σ)

x′

ds2 = dσ2 + σ2dΩ2(S3)

√g ∝ σ3

√h ∝ σ3

Page 146: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

equi-geodesic

surface

x′

x

na

σ

σ

σ S(x′;σ)

ds2 = dσ2 + hαβdxαdxβ

The√g =

√h will pick up curvature corrections

Page 147: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

equi-geodesic

surface

x′

x

na

σ

σ

σ S(x′;σ)

ds2 = dσ2 + hαβdxαdxβ

√h(x, x′) =

√g(x, x′) = σ3

(

1− σ2

6E)√

hΩ; E ≡ Rabnanb

Page 148: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Zero-Point LengthT.P. Ann.Phy. (1985), 165, 38; PRL (1997), 78, 1854

Page 149: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Zero-Point LengthT.P. Ann.Phy. (1985), 165, 38; PRL (1997), 78, 1854

Discreteness arises through a quantum of area,

which is a QG effect

Page 150: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Zero-Point LengthT.P. Ann.Phy. (1985), 165, 38; PRL (1997), 78, 1854

Discreteness arises through a quantum of area,

which is a QG effect

Quantum spacetime has a zero-point length:

D. Kothawala, T.P. [arXiv:1405.4967]; [arXiv:1408.3963]

σ2(x, x′) → S(σ2) = σ2(x, x′) + L20

gab(x) → qab(x, x′;L2

0)

In conventional units, L20 = (3/4π)L2

P .

Page 151: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Area Of A PointT.P. [arXiv:1508.06286]

Page 152: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Area Of A PointT.P. [arXiv:1508.06286]

√q = σ

(σ2 + L2

0

)[

1 − 1

6E(σ2 + L2

0

)]√

Page 153: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Area Of A PointT.P. [arXiv:1508.06286]

√q = σ

(σ2 + L2

0

)[

1 − 1

6E(σ2 + L2

0

)]√

√h =

(σ2 + L2

0

)3/2[

1 −1

6E(σ2 + L2

0

)]√

Page 154: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Area Of A PointT.P. [arXiv:1508.06286]

√q = σ

(σ2 + L2

0

)[

1 − 1

6E(σ2 + L2

0

)]√

√h =

(σ2 + L2

0

)3/2[

1 −1

6E(σ2 + L2

0

)]√

Points have no volume but finite area:

√h = L3

0

[

1 − 1

6EL2

0

]√

Page 155: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Space

Page 156: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Space

The number of atoms of space at xi scales as

area measure of the equigeodesic surface

when x′ → x

ρg(xi, ℓa) ∝ lim

σ→0

h(x, σ) ≈ 1 − 1

8πL2

PRabℓaℓb

Page 157: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Space

The number of atoms of space at xi scales as

area measure of the equigeodesic surface

when x′ → x

ρg(xi, ℓa) ∝ lim

σ→0

h(x, σ) ≈ 1 − 1

8πL2

PRabℓaℓb

Euclidean origin maps to local Rindler horizon.

The σ2 → 0 limit picks the null vectors!

Page 158: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Null horizon ⇔ Euclidean origin

Page 159: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Atoms of Space

The number of atoms of space at xi scales as

area measure of the equigeodesic surface

when x′ → x

ρg(xi, ℓa) ∝ lim

σ→0

h(x, σ) ≈ 1 − 1

8πL2

PRabℓaℓb

Euclidean origin maps to local Rindler horizon.

The σ2 → 0 limit picks the null vectors!

The variational principle leads to

Gab = κTab + Λgab

Page 160: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Quantum of InformationT.P. [arXiv:1508.06286]

Spacetime becomes two-dimensional

close to Planck scales!

Page 161: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Quantum of InformationT.P. [arXiv:1508.06286]

Spacetime becomes two-dimensional

close to Planck scales!

See e.g., Carlip et al., [arXiv:1103.5993]; [arXiv:1009.1136]; G.

Calcagni et al, [arXiv:1208.0354]; [arXiv:1311.3340]; J. Ambjorn, et

al. [arXiv:hep-th/0505113]; L. Modesto, [arXiv:0812.2214]; V. Husain

et al., [arXiv:1305.2814] .... etc.

Page 162: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Quantum of InformationT.P. [arXiv:1508.06286]

Spacetime becomes two-dimensional

close to Planck scales!

Basic quantum of information to count

spacetime degrees of freedom is

IQG =4πL2

P

L2P

= 4π

Page 163: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Possible new insightRedefining Cosmology

May be we should not describe the

cosmos as a specific solution to

gravitational field equations.

Page 164: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strange Universe

Page 165: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strange Universe

Three phases, three energy-density

scales, with no relation to each other!

Page 166: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strange Universe

Three phases, three energy-density

scales, with no relation to each other!

ρinf < (1.94× 1016 GeV)4

Page 167: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strange Universe

Three phases, three energy-density

scales, with no relation to each other!

ρinf < (1.94× 1016 GeV)4

ρeq =ρ4m

ρ3R

= [(0.86 ± 0.09) eV]4

Page 168: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strange Universe

Three phases, three energy-density

scales, with no relation to each other!

ρinf < (1.94× 1016 GeV)4

ρeq =ρ4m

ρ3R

= [(0.86 ± 0.09) eV]4

ρΛ = [(2.26± 0.05) × 10−3eV]4

Page 169: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strange Universe

Page 170: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strange Universe

Hope: High energy physics will

(eventually!) fix ρ1/4inf ≈ 1015GeV and

ρ1/4eq ∝

[nDM

mDM +nB

mB

]

≈ 0.86 eV

Page 171: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strange Universe

Hope: High energy physics will

(eventually!) fix ρ1/4inf ≈ 1015GeV and

ρ1/4eq ∝

[nDM

mDM +nB

mB

]

≈ 0.86 eV

But we have no clue why

ρΛL4P ≈ 1.4 × 10−123 ≈ 1.1 × e−283.

Page 172: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Evolution

The FRW universe is described by the

two equations (with T = H/2π)

dVH

dt= L2

P (Nsur − Nbulk)

UH ≡ ρVH = TS

Page 173: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658
Page 174: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658
Page 175: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Accessibility of Cosmic Information

Page 176: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Accessibility of Cosmic Information

x(a2, a1) =

∫ t2

t1

dt

a(t)=

∫ a2

a1

da

a2H(a)

Page 177: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Accessibility of Cosmic Information

x(a2, a1) =

∫ t2

t1

dt

a(t)=

∫ a2

a1

da

a2H(a)

Boundary of accessible cosmic

information for eternal observer

x(∞, a) ≡ x∞(a) =

∫ ∞

a

da

a2H(a)

Page 178: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Accessibility of Cosmic Information

x(a2, a1) =

∫ t2

t1

dt

a(t)=

∫ a2

a1

da

a2H(a)

Boundary of accessible cosmic

information for eternal observer

x(∞, a) ≡ x∞(a) =

∫ ∞

a

da

a2H(a)

This is infinite if Λ = 0; finite if Λ 6= 0

Page 179: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

ΛH−1

aX

+ matter dominated

radiation

accelerationlate time

aYa

eq

Y

ln L

ln a

−1H

X

inflation

H−1eq

inf

Page 180: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

ΛH−1

aX

+ matter dominated

radiation

aY

accelerationlate time

Y

ln L

ln a

−1infH

X

inflation

Page 181: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

k

aA

aB a

C

ΛH−1

aX

+ matter dominated

radiation

aY

accelerationlate time

A

CY

ln L

ln a

B

−1infH

X

inflation

Page 182: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

aF aΛ

ln L ln L

A

B

ln a ln a

12

Page 183: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

k

aA

aB a

C

ΛH−1

aX

+ matter dominated

radiation

aY

accelerationlate time

A

CY

ln L

ln a

B

−1infH

X

inflation

Page 184: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

k−

aP

ΛH−1

aX

+ matter dominated

radiation

aY

accelerationlate time

P

Y

ln L

ln a

−1infH

X

inflation

Page 185: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

k− k+

aP

aQ

ΛH−1

aX

+ matter dominated

radiation

aY

accelerationlate time

P

Y Q

ln L

ln a

−1infH

X

inflation

Page 186: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

COSMIC PARALLELOGRAM

FaIa vacaaΛ

TCMB = T dS

T.P. arXiv 0705.2533; arXiv 1207.0505

Bjorken, astro−ph/0404233;

A

ln a

D

C

ln L

B

Page 187: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

COSMIC PARALLELOGRAM

FaIa vacaaΛ

TCMB = T dS

A

ln a

D

C

ln L

B

Q Q Q

T.P. arXiv 0705.2533; arXiv 1207.0505

Bjorken, astro−ph/0404233;

Page 188: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

− dominatedΛinflation

radi

atio

ndo

min

ated

dom

inat

edm

atte

r

ln L

1ln aaarh Λ

Page 189: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

− dominatedΛ

Λ−1H

−1Hinf

−1Heq

Hubble radius [H(a)]−1

inflation

radi

atio

ndo

min

ated

dom

inat

edm

atte

r

ln L

1ln aaarh Λ

Page 190: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

− dominatedΛ

Λ−1H

−1Hinf

−1Heq

Hubble radius [H(a)]−1

inflation

radi

atio

ndo

min

ated

dom

inat

edm

atte

r

ln L

1ln aaarh Λ

Page 191: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

− dominatedΛ

Λ−1H

−1Hinf

−1Heq

Hubble radius [H(a)]−1

inflation

radi

atio

ndo

min

ated

dom

inat

edm

atte

r

ln L

1ln aaa*

arh Λ

Edge of visible universe r (a)

Page 192: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

− dominatedΛ

Λ−1H

−1Hinf

−1Heq

Hubble radius [H(a)]−1

inflation

radi

atio

ndo

min

ated

dom

inat

edm

atte

r

ln L

1ln aaa*

arh Λ

Edge of visible universe r (a)

Cosm

ic

infor

mat

ion

Page 193: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmInT.P, Hamsa Padmanabhan [arXiv:1404.2284]

Page 194: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmInT.P, Hamsa Padmanabhan [arXiv:1404.2284]

A measure of cosmic information

accessible to eternal observer (‘CosmIn’)

Ic = Number of modes (geodesics) which

cross the Hubble radius during the

radiation + matter dominated phase .

Ic =2

3πln

(arh

a∗

)

Page 195: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmInT.P, Hamsa Padmanabhan [arXiv:1404.2284]

A measure of cosmic information

accessible to eternal observer (‘CosmIn’)

Ic = Number of modes (geodesics) which

cross the Hubble radius during the

radiation + matter dominated phase .

Ic =1

9πln

(

4

27

ρ3/2inf

ρΛ ρ1/2eq

)

Page 196: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

CosmIn and the ΛT.P, Hamsa Padmanabhan [arXiv:1404.2284]

ρΛ =4

27

ρ3/2inf

ρ1/2eq

exp (−9πIc)

Page 197: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

− dominatedΛ

Λ−1H

−1Hinf

−1Heq

Hubble radius [H(a)]−1

inflation

radi

atio

ndo

min

ated

dom

inat

edm

atte

r

ln L

1ln aaa*

arh Λ

Edge of visible universe r (a)

Cosm

ic

infor

mat

ion

Page 198: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

− dominatedΛ

Λ−1H

−1Hinf

−1Heq

Hubble radius [H(a)]−1

inflation

radi

atio

ndo

min

ated

dom

inat

edm

atte

r

ln L

1ln aaa*

arh Λ

Edge of visible universe r (a)

Quantum gravity limit:Planck scale (L )P

PL

Cosm

ic

infor

mat

ion

Page 199: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

CosmIn and the Λ

ρΛ =4

27

ρ3/2inf

ρ1/2eq

exp (−9πIc)

Page 200: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

CosmIn and the Λ

ρΛ =4

27

ρ3/2inf

ρ1/2eq

exp (−9πIc)

Using Ic = IQG = 4π gives

the numerical value of ρΛ

Page 201: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

TAKE-HOME MESSAGE

The Magical Relation!

ρΛ =4

27

ρ3/2inf

ρ1/2eq

exp(−36π2)

Hamsa Padmanabhan, T.P, CosMIn: Solution to the Cosmological constant

problem [arXiv:1302.3226]

Page 202: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Β = 3.835 ´ 107 ,

Ρinf1 4

= 1.157 ´ 1015 GeV

ΡL =4 Ρinf

3 2

27 Ρeq1 2

exp I -36 Π 2 M

0.5 1.0 1.5 2.0 2.50.6

0.8

1.0

1.2

1.4

1.6

Ρeq Ρeq

ΡLΡL

Page 203: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Β = 3.835 ´ 107 ,

Ρinf1 4

= 1.157 ´ 1015 GeV

ΡL =4 Ρinf

3 2

27 Ρeq1 2

exp I -36 Π 2 M

0.5 1.0 1.5 2.0 2.50.6

0.8

1.0

1.2

1.4

1.6

Ρeq Ρeq

ΡLΡL

Page 204: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

0.5 1.0 1.5 2.0 2.50.6

0.8

1.0

1.2

1.4

1.6

Ρeq Ρeq

ΡLΡL

Page 205: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Ρinf1 4

= 1.084 ´ 1015 GeV

Ρinf1 4

= 1.241 ´ 1015 GeV

0.5 1.0 1.5 2.0 2.50.6

0.8

1.0

1.2

1.4

1.6

Ρeq Ρeq

ΡLΡL

Page 206: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Key Open QuestionPossibility for Matter Sector

Matter and Geometry need to emerge together for proper

interpretation of T abnanb at the microscopic scale. How do we do

this?

Page 207: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Key Open QuestionPossibility for Matter Sector

Matter and Geometry need to emerge together for proper

interpretation of T abnanb at the microscopic scale. How do we do

this?

P (xi, na) ∝ exp[µf(xi, na)]

Page 208: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Key Open QuestionPossibility for Matter Sector

Matter and Geometry need to emerge together for proper

interpretation of T abnanb at the microscopic scale. How do we do

this?

P (xi, na) ∝ exp[µf(xi, na)]

〈nanb〉 ≈ (4π/µL2P )R

−1ab

Page 209: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Key Open QuestionPossibility for Matter Sector

Matter and Geometry need to emerge together for proper

interpretation of T abnanb at the microscopic scale. How do we do

this?

P (xi, na) ∝ exp[µf(xi, na)]

〈nanb〉 ≈ (4π/µL2P )R

−1ab

2µL4P 〈Tabn

anb〉 ≈ 2µL4P 〈Tab〉〈nanb〉 = 1

Page 210: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Summary

Page 211: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Summary

Demand that: (i) Gravity is immune to zero-level of energy.(ii) The number of atoms of spacetime at a point to beproportional to the area measure in a spacetime with

zero-point length. Then:

Page 212: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Summary

Demand that: (i) Gravity is immune to zero-level of energy.(ii) The number of atoms of spacetime at a point to beproportional to the area measure in a spacetime with

zero-point length. Then:

Gravitational dynamics arises from a thermodynamicvariational principle principle.

Page 213: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Summary

Demand that: (i) Gravity is immune to zero-level of energy.(ii) The number of atoms of spacetime at a point to beproportional to the area measure in a spacetime with

zero-point length. Then:

Gravitational dynamics arises from a thermodynamicvariational principle principle.

The evolution equation has a purely thermodynamicinterpretation related to the information content of thespacetime.

Page 214: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Summary

Demand that: (i) Gravity is immune to zero-level of energy.(ii) The number of atoms of spacetime at a point to beproportional to the area measure in a spacetime with

zero-point length. Then:

Gravitational dynamics arises from a thermodynamicvariational principle principle.

The evolution equation has a purely thermodynamicinterpretation related to the information content of thespacetime.

The cosmological constant is related to the amount ofinformation accessible to an eternal observer.

Page 215: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Summary

Demand that: (i) Gravity is immune to zero-level of energy.(ii) The number of atoms of spacetime at a point to beproportional to the area measure in a spacetime with

zero-point length. Then:

Gravitational dynamics arises from a thermodynamicvariational principle principle.

The evolution equation has a purely thermodynamicinterpretation related to the information content of thespacetime.

The cosmological constant is related to the amount ofinformation accessible to an eternal observer.

At Planck scales spacetime is 2-dimensional with 4πunits of information; this allows the determination of thevalue of the cosmological constant.

Page 216: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

References

T.P, General Relativity from a Thermodynamic Perspective, Gen. Rel.

Grav., 46, 1673 (2014) [arXiv:1312.3253].

Review: T.P, The Atoms Of Space, Gravity and the Cosmological

Constant , IJMPD, 25, 1630020 (2016) [arXiv:1603.08658].

Acknowledgements

Sunu Engineer Krishna Parattu Aseem Paranjape

Dawood Kothawala Sumanta Chakraborty Hamsa Padmanabhan

Bibhas Majhi James Bjorken Donald Lynden-Bell

THANK YOU FOR YOUR TIME!

Page 217: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strangeer Universe

Compute the combination:

I =1

9πln

(

4

27

ρ3/2inf

ρΛ ρ1/2eq

)

Page 218: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strangeer Universe

Compute the combination:

I =1

9πln

(

4

27

ρ3/2inf

ρΛ ρ1/2eq

)

You will find that

I ≈ 4π(1 ± O

(10−3

))= IQG

Page 219: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Our strangeer Universe

Compute the combination:

I =1

9πln

(

4

27

ρ3/2inf

ρΛ ρ1/2eq

)

You will find that

I ≈ 4π(1 ± O

(10−3

))= IQG

Why?

Page 220: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

a

Infl

ati

on

dominated

matter dominated

radiation1

arh

Λ-

do

min

ate

dHeq x

Page 221: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

a

Infl

ati

on

[aH(a)]−1

Hubble radius

dominated

matter dominated

comoving

radiation1

arh

Λ-

do

min

ate

dHeq x

Page 222: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

a

Infl

ati

on

[aH(a)]−1

Hubble radius

dominated

matter dominated

comoving

radiation1

arh

Λ-

do

min

ate

dHeq x

Page 223: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

visible universe

edge of the

x∞(a)

a

Infl

ati

on

[aH(a)]−1

Hubble radius

dominated

matter dominated

comoving

radiation1

a∗

arh

Λ-

do

min

ate

dHeq x

Page 224: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

visible universe

edge of the

x∞(a)

a

co

sm

icin

form

ati

on

=⇒

Infl

ati

on

[aH(a)]−1

Hubble radius

dominated

matter dominated

comoving

radiation1

a∗

arh

Λ-

do

min

ate

dHeq x

Page 225: The Atoms of Space and Gravity - agenda.infn.it · The Atoms of Space and Gravity T. Padmanabhan IUCAA, Pune T.P., arXiv:1603.08658

Cosmic Information: CosmIn

visible universe

edge of the

x∞(a)

a

(Lp/a)

co

sm

icin

form

ati

on

=⇒

Infl

ati

on

[aH(a)]−1

Hubble radius

dominated

matter dominated

comoving

radiation1

a∗

arh

Λ-

do

min

ate

d

comoving Planck scale

quantum gravity limit:

Heq x