Top Banner
23

On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

Feb 27, 2019

Download

Documents

tranthuan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems
Page 2: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems
Page 3: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Consider a system of n ODEs

𝑑

π‘‘π‘‘πœ“ 𝑑 = 𝐴 𝑑 πœ“ 𝑑 , πœ“:ℝ ⟢ 𝑀𝑛×1 β„‚

where 𝐴:ℝ ⟢ 𝑀𝑛×𝑛 β„‚ is a continuous, (𝑛 Γ— 𝑛) matrix-valued function of real

parameter t, periodic with period T,

βˆ€ 𝑑 ∈ ℝ βˆ€ π‘˜ ∈ β„€ ∢ 𝐴 𝑑 + π‘˜π‘‡ = 𝐴 𝑑 .

Let Ξ¦ 𝑑 to be the fundamental matrix of this system, satisfying the following:

𝑑

𝑑𝑑Φ 𝑑 = 𝐴 𝑑 Ξ¦ 𝑑 , detΞ¦ 𝑑 β‰  0, πœ“ 𝑑 = Ξ¦ 𝑑 𝑐

WroΕ„skian

Any general solution

(c = π‘π‘œπ‘›π‘ π‘‘.) of

system of ODEs

Page 4: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Proposition 1.

a) There exists some 𝑑0 ∈ ℝ such that πœ“ 𝑑 = 𝐸 𝑑, 𝑑0 πœ“ 𝑑0 where

𝐸 𝑑, 𝑑0 ≔ Ξ¦ 𝑑 Ξ¦ 𝑑0βˆ’1 is called the resolvent matrix or state transition matrix.

b) Resolvent matrix is a fundamental matrix itself, i.e. it satisfies the same differential

equation

𝑑

𝑑𝑑𝐸 𝑑, 𝑑0 = 𝐴 𝑑 𝐸 𝑑, 𝑑0 .

Proposition 2. Resolvent matrix has some basic properties:

a) Divisibility: 𝐸 𝑑, 𝑑0 = π‘˜=1𝑛 𝐸 π‘‘π‘˜+1, π‘‘π‘˜ for any partition π‘‘π‘˜ , π‘‘π‘˜+1 of 𝑑0, 𝑑 , iff 𝑑0, 𝑑 =

π‘˜=1𝑛 π‘‘π‘˜ , π‘‘π‘˜+1 , and π‘‘π‘˜ , π‘‘π‘˜+1 ∩ π‘‘π‘˜β€² , π‘‘π‘˜β€²+1 = βˆ… for π‘˜ β‰  π‘˜β€²

b) 𝐸 𝑑, 𝑑0βˆ’1 = 𝐸 𝑑0, 𝑑

c) 𝐸 𝑑0, 𝑑0 = 𝑖𝑑𝑀𝑛 β„‚ .

Page 5: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Theorem 1 (Floquet’s).

If Ξ¦ 𝑑 is a fundamental matrix of a system of n ODEs and 𝐴 𝑑 is a T-periodic function of

codomain in the 𝑀𝑛 β„‚ linear space of n-by-n matrices, then a matrix Ξ¦ 𝑑 + 𝑇 is also a

fundamental matrix of this system.

Remark: If Ξ¦ 𝑑 + 𝑇 is a fundamental matrix then there exist two constant matrices 𝐢 and 𝐡such that

Ξ¦ 𝑑 + 𝑇 = Ξ¦ 𝑑 𝐢, 𝐢 = 𝑒𝐡𝑇 .

Assume a spectral decomposition 𝐡 = π‘˜ πœ‡π‘˜ πœ™π‘˜ , .β‹… πœ™π‘˜:

𝑒𝐡𝑇 =

π‘˜

πœ†π‘˜ πœ™π‘˜ , .β‹… πœ™π‘˜ , πœ†π‘˜ = π‘’πœ‡π‘˜π‘‡.

πœ‡π‘˜: β€œFloquet

exponents”

Page 6: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Let πœ“ 𝑑 to be a solution of a system of ODEs, i.e. let it fulfill𝑑

π‘‘π‘‘πœ“ 𝑑 = 𝐴 𝑑 πœ“ 𝑑 .

Define πœ“π‘˜ 𝑑 ≔ Ξ¦ 𝑑 πœ™π‘˜ . Then it follows from Floquet’s theorem that

Ξ¦ 𝑑 + 𝑇 πœ™π‘˜ = Ξ¦ 𝑑 π‘’π΅π‘‡πœ™π‘˜ = π‘’πœ‡π‘˜π‘‡πœ“π‘˜ 𝑑 = πœ“π‘˜ 𝑑 + 𝑇

Putting πœ™π‘˜ 𝑑 = πœ“π‘˜ 𝑑 π‘’βˆ’πœ‡π‘˜π‘‘ one gets a set of β€œbase solutions” of system of ODEs,

πœ“π‘˜ 𝑑 = π‘’πœ‡π‘˜π‘‘πœ™π‘˜ 𝑑 , πœ™π‘˜ 𝑑 + 𝑇 = πœ™π‘˜ 𝑑 .

T-periodic

Page 7: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Considering πœ“π‘˜ 𝑑0 + 𝑇 one obtains an eigenequation of Ξ¦ 𝑑0 + 𝑇 Ξ¦βˆ’1 𝑑0 :

πœ“π‘˜ 𝑑0 + 𝑇 = Ξ¦ 𝑑0 + 𝑇 Ξ¦βˆ’1 𝑑0 πœ™π‘˜ 𝑑0 = π‘’πœ‡π‘˜π‘‡πœ™π‘˜ 𝑑0

Floquet’s operator

𝐹 𝑑0 ≔ 𝐸 𝑑0 + 𝑇, 𝑑0

Floquet’s basis

{πœ™π‘˜β‰” πœ™π‘˜ 𝑑0 }

𝐸 𝑑0 + 𝑇, 𝑑0

Page 8: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

β€’ 𝐴 𝑑 = 𝐻 𝑑 – periodic, self-adjoint Hamiltonian of quantum-mechanical system

β€’ ODEs describe an evolution of wavefunction (state) πœ“ 𝑑 – SchrΓΆdinger equation:

𝑑

π‘‘π‘‘πœ“ 𝑑 = βˆ’

𝑖

ℏ𝐻 𝑑 πœ“ 𝑑 , 𝐻 𝑑 + 𝑇 = 𝐻 𝑑 .

β€’ Resolvent matrix – unitary propagator 𝑼 𝒕, π’•πŸŽ :

𝐸 𝑑, 𝑑0 = π‘ˆ 𝑑, 𝑑0 = Texp βˆ’π‘–

ℏ

𝑑0

𝑑

𝐻 𝑑′ 𝑑𝑑′ ,π‘‘π‘ˆ 𝑑, 𝑑0

𝑑𝑑= βˆ’

𝑖

ℏ𝐻 𝑑 π‘ˆ 𝑑, 𝑑0 .

β€’ Floquet’s operator 𝐹 𝑑0 = π‘ˆ 𝑑0 + 𝑇, 𝑑0 = π‘’βˆ’π‘–π‘‡

ℏ 𝐻:

𝑭 π’•πŸŽ π“π’Œ π’•πŸŽ = π’†βˆ’π’Šπ‘»β„ππ’Œπ“π’Œ π’•πŸŽ ,

πœ™π‘˜ ≔ πœ™π‘˜ 𝑑0 – Floquet basis, πœ–π‘˜ – set of Bohr-Floquet quasienergies.

Page 9: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems
Page 10: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Floquet Hamiltonian:

𝐻𝐹 π‘Ÿ, 𝑑 = 𝐻 π‘Ÿ, 𝑑 βˆ’ 𝑖ℏ𝑑

𝑑𝑑, π»πΉπœ“ π‘Ÿ, 𝑑 = 0

Main analysis based on SchrΓΆdinger equation for states πœ™π‘˜ π‘Ÿ, 𝑑 = πœ™π‘˜ π‘Ÿ, 𝑑 + 𝑇 :

π»πΉπœ™π‘˜ π‘Ÿ, 𝑑 = πœ–π‘˜πœ™π‘˜ π‘Ÿ, 𝑑

Solutions are not unique:

They generate the same physical state πœ“π‘˜ π‘Ÿ, 𝑑

πœ™π‘˜π‘› π‘Ÿ, 𝑑 ≔ πœ™π‘˜ π‘Ÿ, 𝑑 𝑒𝑖𝑛Ω𝑑 π»πΉπœ™π‘˜π‘› π‘Ÿ, 𝑑 = πœ–π‘˜ + 𝑛ℏΩ πœ™π‘˜ π‘Ÿ, 𝑑

πœ–π‘˜π‘›Higher Floquet

modes

Page 11: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Extended Hilbert space β„‹βŸΆβ„‹β€² = β„›βŠ—π’― (example: particle in free space)

𝒯 = β„’2 𝕋𝑇1 , 𝑑𝑑 = span πœ’π‘› 𝑑 ≔ 𝑒𝑖𝑛Ω𝑑

Space of square-integrable functions

with period T = 2πœ‹/Ξ©, defined over a

circle 𝕋1.

πœ’π‘›, πœ’π‘›β€² =1

𝑇 𝕋1πœ’π‘› 𝑑 πœ’π‘›β€² 𝑑 𝑑𝑑 = 𝛿𝑛𝑛′

π‘ž

πœ’π‘žβˆ— β‹… πœ’π‘ž = 𝑖𝑑𝒯

β„› = β„’2 ℝ3, 𝑑𝑉 = span π‘“π‘˜: ℝ3 β†’ β„‚

Space of square-integrable functions

defined over ℝ3.

π‘“π‘˜ , π‘“π‘˜β€² =

ℝ3

π‘“π‘˜ π‘Ÿ π‘“π‘˜β€² π‘Ÿ 𝑑𝑉 π‘Ÿ = π›Ώπ‘˜π‘˜β€²

𝑛

π‘“π‘˜βˆ— β‹… π‘“π‘˜ = 𝑖𝑑ℛ

β„›βŠ—π’― = span π‘’π‘˜π‘› ≔ π‘“π‘˜ βŠ—πœ’π‘› , π‘’π‘˜π‘› π‘Ÿ, 𝑑 = π‘“π‘˜ π‘Ÿ 𝑒𝑖𝑛Ω𝑑

π‘˜π‘›

π‘’π‘˜π‘›βˆ— β‹… π‘’π‘˜π‘› = π‘–π‘‘β„›βŠ—π’― , π‘’π‘˜π‘›

βˆ— π‘’π‘˜β€²π‘›β€² = π›Ώπ‘˜π‘˜β€²π›Ώπ‘›π‘›β€² , π‘’π‘˜π‘›βˆ— ∈ β„› βŠ—π’― βˆ—

Page 12: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Structure of Hamiltonian: 𝐻 π‘Ÿ, 𝑑 = 𝐻0 π‘Ÿ + 𝑉 π‘Ÿ, 𝑑 , 𝑉 π‘Ÿ, 𝑑 + 𝑇 = 𝑉 π‘Ÿ, 𝑑 .

Idea: We are applying a transformation of variables:

πœƒ = Ω𝑑, πœƒ = Ξ©

𝐻 π‘Ÿ, πœƒ, πœƒ = 𝐻0 π‘Ÿ + 𝑉 π‘Ÿ, πœƒ + πœƒπ‘πœƒ

Canonical

quantization:

πœƒ β†’ πœƒ,

π‘πœƒ β†’ βˆ’π‘–β„πœ•

πœ•πœƒ,

πœƒ, π‘πœƒ = 𝑖ℏ

𝐻 π‘Ÿ, πœƒ, πœƒ = 𝐻0 π‘Ÿ + 𝑉 π‘Ÿ, πœƒ βˆ’ π‘–β„Ξ©πœ•

πœ•πœƒ, 𝐻 π‘Ÿ, πœƒ, πœƒ πœ™π‘˜π‘› π‘Ÿ, πœƒ = πœ–π‘˜π‘›πœ™π‘˜π‘› π‘Ÿ, πœƒ

Page 13: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

𝐻 π‘Ÿ, πœƒ, πœƒ πœ™π‘˜π‘› π‘Ÿ, πœƒ = πœ–π‘˜π‘›πœ™π‘˜π‘› π‘Ÿ, πœƒ , πœ–π‘˜π‘› = πœ–π‘˜ + 𝑛ℏΩ

πœ™π‘˜π‘› ∈ β„› βŠ—π’―, 𝒯 = β„’2 𝕋2πœ‹1 ,

1

Ξ©π‘‘πœƒ

Square-integrable functions of period

2πœ‹ over a unit circle 𝕋1 = πœƒ = 𝛺𝑑

How to include multi-mode setting?

Ansatz: add a sufficient number of new πœƒπ‘– variables, such that

𝐻 π‘Ÿ, πœƒ, πœƒ = 𝐻0 π‘Ÿ + 𝑉 π‘Ÿ, πœƒ1, … , πœƒπ‘ βˆ’ 𝑖ℏ

𝑗=1

𝑁

Ξ©π‘—πœ•

πœ•πœƒπ‘—, Ω𝑖 =

2πœ‹

𝑇𝑖

Page 14: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

New SchrΓΆdinger equation:

𝐻 π‘Ÿ, πœƒ1, πœƒ2, … , πœƒπ‘ πœ™π‘˜π‘›1𝑛2…𝑛𝑁 π‘Ÿ, πœƒ1, πœƒ2, … , πœƒπ‘ = πœ–π‘˜π‘›1𝑛2β€¦π‘›π‘πœ™π‘˜π‘›1𝑛2…𝑛𝑁 π‘Ÿ, πœƒ1, πœƒ2, … , πœƒπ‘

Periodicity of πœ™ functions:

πœ™π‘˜π‘›1𝑛2…𝑛𝑁 π‘Ÿ, πœƒ1 + 2πœ‹, πœƒ2 + 2πœ‹,… , πœƒπ‘ + 2πœ‹ = πœ™π‘˜π‘›1𝑛2…𝑛𝑁 π‘Ÿ, πœƒ1, πœƒ2, … , πœƒπ‘

Extension of Hilbert space of πœ™ functions:

πœ™π‘˜π‘›1𝑛2…𝑛𝑁 ∈ β„› βŠ—π’―1βŠ—π’―2βŠ—β‹―βŠ—π’―π‘, 𝒯𝑗 = β„’2πœ‹2 𝕋1,

1

π›Ίπ‘—π‘‘πœƒπ‘—

𝑗=1

𝑁

β„’2πœ‹2 𝕋1,

1

π›Ίπ‘—π‘‘πœƒπ‘— ≑ β„’2 𝕋1 Γ— 𝕋1 Γ—β‹―Γ— 𝕋1, π‘‘πœ = β„’2 𝕋𝑁, π‘‘πœ , π‘‘πœ =

𝑗=1

π‘π‘‘πœƒπ‘—

𝛺𝑗

Product measure

Page 15: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Qpen problem:

How to incorporate the multi-mode Floquet theory into Open Quantum Systems

realm?

Possible answer for 𝑁 = 2 (2-dimensional torus)

(H. R. Jauslin and J. L. Lebowitz, Chaos 1, 114 (1991))

Generalized Floquet operator 𝐹 πœƒ1 : β„› βŠ— 𝒯1 βŸΆβ„›βŠ—π’―1,

𝐹 πœƒ1 = 𝑋 βˆ’π‘‡2 π‘ˆ 𝑇2, 0 , 𝑋 βˆ’π‘‡2 πœ™ πœƒ1 0 = πœ™ πœƒ1 0 βˆ’ 𝑇2 .

Page 16: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Theorem 2.

If πœ™ ∈ β„›βŠ—π’―1 is an eigenfunction of Floquet operator, πΉπœ™ = π‘’βˆ’π‘–πœ†π‘‡2πœ™, then the

function πœ“ ∈ β„›βŠ—π’―1βŠ—π’―2 defined

πœ“ πœƒ1, πœƒ2 = π‘’π‘–πœƒ2πœ†π‘ˆ 0,βˆ’πœƒ2 πœ™ πœƒ1 βˆ’ πœƒ2

is an eigenfunction of 𝐻 π‘Ÿ, πœƒ1, πœƒ2, πœƒ1, πœƒ2 with eigenvalue (quasienergy) πœ†.

Proof in: H. R. Jauslin and J. L. Lebowitz, Chaos 1, 114 (1991)

Problem:

Spectrum of 𝐻 may become very complex (p.p., a.c. or s.c.), even in finite

dimensional case.

Page 17: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems
Page 18: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

𝑆, ℋ𝑆

𝑅1, ℋ𝑅1

𝑅2, ℋ𝑅2

𝑅3, ℋ𝑅3𝑅4, ℋ𝑅4

𝑅𝑁,

ℋ𝑅𝑁

β„‹ = ℋ𝑆 βŠ—β„‹π‘…1 βŠ—β‹―βŠ—β„‹π‘…π‘

𝐻 = 𝐻𝑆 +

𝑗=1

𝑁

𝐻𝑅𝑗 +

𝑗=1

𝑁

𝑉𝑗

𝐻𝑆 ≑ 𝐻𝑆 βŠ— 𝐼𝑅1 βŠ—β‹―βŠ— 𝐼𝑅𝑁

𝐻𝑅𝑗 ≑ 𝐼𝑆 βŠ—β‹―βŠ—π»π‘…π‘— βŠ—β‹―βŠ— 𝐼𝑅𝑁

𝑉𝑗 = πœ†π‘—

𝛼

𝑆𝑗,𝛼 βŠ—π‘…π‘—,𝛼

𝑆𝑗,𝛼:ℋ𝑆 βŸΆβ„‹π‘†, 𝑅𝑗,𝛼:ℋ𝑅𝑗 βŸΆβ„‹π‘…π‘—

𝑉1

𝑉2

𝑉3

𝑉4

𝑉𝑁

Page 19: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

β„’πœŒ 𝑑 =π‘‘πœŒ 𝑑

𝑑𝑑=

𝑗,π‘˜

πœ”

π‘žβˆˆβ„€

πΊπ‘˜π‘—πœ” + π‘žΞ© 𝑆𝑗,π‘˜ π‘ž, πœ” 𝜌 𝑑 𝑆𝑗,π‘˜

βˆ— π‘ž, πœ” βˆ’1

2𝑆𝑗,π‘˜βˆ— π‘ž, πœ” 𝑆𝑗,π‘˜ π‘ž, πœ” , 𝜌 𝑑 ,

πΊπ‘˜π‘—πœ” =

βˆ’βˆž

∞

π‘’π‘–πœ”π‘‘ 𝑅𝑗,π‘˜ 𝑑 𝑅𝑗,π‘˜ 𝑑𝑑 , 𝐺 βˆ’πœ” = π‘’βˆ’β„πœ”π‘˜π΅π‘‡πΊ πœ”

On the dynamics of periodically perturbed quantum systems

KMS condition

(in equilibrium)

Floquet Theorem β„±πœ™π‘˜ = π‘’βˆ’π‘–β„πœ–π‘˜π‘‡πœ™π‘˜

πœ–π‘˜ quasienergies

πœ™π‘˜ Floquet basis

Fourier transform of

𝑆𝑗,π‘˜ 𝑑

Bohr frequencies

πœ” =1

β„πœ–π‘˜ βˆ’ πœ–π‘™

πœ” + π‘žΞ© , π‘ž ∈ β„€

Bohr – Floquet

quasifrequencies

𝑉𝑗 𝑑 = π‘ˆβˆ— 𝑑 π‘‰π‘—π‘ˆ 𝑑 = πœ†π‘—

π‘˜

𝑆𝑗,π‘˜ 𝑑 βŠ— 𝑅𝑗,π‘˜ 𝑑 , π‘ˆ 𝑑 = Ξ€ exp βˆ’π‘–

ℏ

0

𝑑

𝐻𝑆 𝑑′ 𝑑𝑑′

Page 20: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Λ𝑑,𝑑0 = Ξ€exp

𝑑0

𝑑

β„’ 𝑑′ 𝑑𝑑′ ≑ 𝒰 𝑑, 𝑑0 π‘’π‘‘βˆ’π‘‘0 β„’

Dynamical map reconstructed from its interaction picture:

𝒰 𝑑, 𝑑0 – one-parameter unitary map defined on C*-algebra of operators 𝔄,

𝒰:𝔄 Γ— 0,∞ ⟢ 𝔄 defined as 𝒰 𝑑 𝐴 = π‘ˆ 𝑑 π΄π‘ˆβˆ— 𝑑 .

𝜌 𝑑 = Λ𝑑 𝜌0 = π‘ˆ 𝑑 π‘’π‘‘β„’πœŒ0 π‘ˆβˆ— 𝑑

𝜌 𝑑 in interaction

picture

𝜌 𝑑 in SchrΓΆdinger

picture

Page 21: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

9 Floquet quasifrequencies: 0,±Ω𝑅 , Β±Ξ©,Β± Ξ© βˆ’ Ω𝑅 , Β± Ξ© + Ω𝑅

Interaction with molecular gas Interaction with

electromagnetic field

π‘…π‘’π‘š,

β„‹π‘’π‘š

𝑅𝑔, ℋ𝑔

Two-level system

ℋ𝑆 ≑ β„‚2

Bosonic heat bath

(EM field)

β„±+ β„‹π‘β„Ž =

𝑁=0

∞1

𝑁!β„‹π‘β„Ž

βŠ—π‘

+

𝑉𝑒

laser, Ξ©πœ”0

Dephasing bath

(molecular gas),

ℋ𝑔 ≑ β„’2 ℝ3, 𝑑𝑉 π‘Ÿ

𝑉𝑔

𝑉𝑔 = 𝜎3βŠ—πΉπ‘”

𝐹𝑔:ℋ𝑔 βŸΆβ„‹π‘”

𝑉𝑒 = 𝜎1βŠ— π‘Žβˆ— 𝑓 + π‘Ž 𝑓

Page 22: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

Markovian master equation

in interaction picture:

𝑑

π‘‘π‘‘πœŒ 𝑑 = β„’π‘π‘œπ‘ π‘œπ‘›π‘–π‘ + β„’π‘‘π‘’π‘β„Žπ‘Žπ‘ π‘–π‘›π‘” 𝜌 𝑑

π‘‘πœŒ11 𝑑

𝑑𝑑= βˆ’ 𝛼 + 𝑒

βˆ’Ξ©βˆ’Ξ©π‘…π‘‡π‘’ π›Ώβˆ’ + 𝛿+ 𝜌11 𝑑 + 𝑒

βˆ’Ξ©π‘…π‘‡π‘‘π›Ό + π›Ώβˆ’ + 𝑒

βˆ’Ξ©+Ω𝑅𝑇𝑒 𝛿+ 𝜌22 𝑑

𝛾 =1

2𝛼0 + 𝛼 1 + 𝑒

βˆ’Ξ©π‘…π‘‡π‘‘ + 𝛿0 1 + 𝑒

βˆ’Ξ©π‘‡π‘’ + π›Ώβˆ’ 1 + 𝑒

βˆ’Ξ©βˆ’Ξ©π‘…π‘‡π‘’ + 𝛿+ 1 + 𝑒

βˆ’Ξ©+Ω𝑅𝑇𝑒

π‘‘πœŒ22 𝑑

𝑑𝑑= βˆ’

π‘‘πœŒ11 𝑑

𝑑𝑑,

π‘‘πœŒ21 𝑑

𝑑𝑑= βˆ’π›ΎπœŒ21 𝑑 ,

π‘‘πœŒ12 𝑑

𝑑𝑑= βˆ’π›ΎπœŒ12 𝑑 .

𝛿± =Ω𝑅 Β± Ξ”

2Ω𝑅

2

𝐺𝑒 Ξ© Β± Ω𝑅 , 𝛼0 =2Ξ”

Ω𝑅

2

𝐺𝑔 0 , 𝛼 =2𝑔

Ω𝑅

2

𝐺𝑔 Ω𝑅 ,

Page 23: On the Dynamics of Periodically Perturbed Quantum SystemsΒ Β· On the dynamics of periodically perturbed quantum systems ... On the dynamics of periodically perturbed quantum systems

On the dynamics of periodically perturbed quantum systems

1. U. Vogl, M. Weitz: β€œLaser cooling by collisional redistribution of radiation”,

Nature 461, 70-73 (3 Sep. 2009).

2. R. Alicki, K. Lendi: β€œQuantum Dynamical Semigroups and Applications”,

Lecture Notes in Physics; Springer 2006.

3. R. Alicki, D. Gelbwaser-Klimovsky, G. Kurizki: β€œPeriodically driven quantum

open systems: Tutorial”, arXiv:1205.4552v1.

4. K. Szczygielski, D. Gelbwaser-Klimovsky, R. Alicki: β€œMarkovian master

equation and thermodynamics of a two-level system in a strong laser

field”, Phys. Rev. E 87, 012120 (2013)

5. D. Gelbwaser-Klimovsky, K. Szczygielski, R. Alicki: β€œLaser cooling by

collisional redistribution of radiation: Theoretical model” (in preparation)

6. R. Alicki, D. A. Lidar, P. Zanardi: β€œInternal consistency of fault-tolerant

quantum error correction in light of rigorous derivations of the quantum

Markovian limit” Phys. Rev. A 73, 052311 (2006)