Top Banner
405 Advances in Production Engineering & Management ISSN 18546250 Volume 13 | Number 4 | December 2018 | pp 405–416 Journal home: apem‐journal.org https://doi.org/10.14743/apem2018.4.299 Original scientific paper Effect of process parameters on the surface roughness of aluminum alloy AA 6061T6 sheets in frictional stir incremental forming Azpen, Q. a,* , Baharudin, H. b , Sulaiman, S. c , Mustapha, F. d a,b,c Universiti Putra Malaysia, Faculty of Engineering, Department of Mechanical and Manufacturing Engineering, Serdang, Malaysia d Universiti Putra Malaysia, Faculty of Engineering, Department of Aerospace Engineering, Serdang, Malaysia a Middle Technical University, Institute of Technology, Baghdad, Iraq ABSTRACT ARTICLE INFO Incremental Sheet Forming (ISF) is characterized by essential flexibility, great formability, and low forming forces and cost compared to the conventional sheet metal forming processes. ISF was born as an advance sheet metal form‐ ing process to perfectly fit previous requirements. Nevertheless, growing demand to apply the lightweight materials in several fields was placed this developed process in a critical challenge to manufacture the materials with unsatisfied formability especially at room temperature. Thus, utilizing the heat at warm and hot condition in some ISF processes has been introduced to solve this problem. Among all heat‐assisted ISF processes, frictional stir‐ assisted Single Point Incremental Forming (SPIF) was presented to deal with these materials. In this work, this emerging process was utilized to manufac‐ turing products from AA6061‐T6 aluminum alloy. Experimental tests were performed to study the influence of main parameters like tool rotation speed, feed rate, step size and tool size on the surface roughness of the produced parts. A Taguchi method and varying wall angle conical frustum (VWACF) test were used in the present work. The results find that tool diameter has a sig‐ nificant impact on the internal surface roughness produced via the forming process with a percentage contribution of 93.86 %. The minimum value of the surface roughness was 0.3 µm. © 2018 CPE, University of Maribor. All rights reserved. Keywords: Friction stir forming; Incremental sheet forming (ISF); Heat‐assisted ISF; Surface roughness; Aluminum alloy (AA6061‐T6) *Corresponding author: [email protected] (Azpen, Q.) Article history: Received 11 July 2018 Revised 26 August 2018 Accepted 28 August 2018 1. Introduction Currently, there is a growing market in the manufacturing of customized, rapid prototyping and low‐cost sheet parts with small to medium batches (particularly in transportation, artificial med‐ ical alternatives, and aerospace industries) [1, 2]. The main reason for employing tool rotational speed in SPIF is to improve the formability of lightweight and hard‐to‐form materials which characterized by low formability at room temperature [3‐5]. In addition, it leads to decrease the forces via the forming process [6‐8]. Indeed, there are some drawbacks and tradeoffs that influ‐ ence as a result of employing the spindle speed in SPIF. Low surface quality, lubricant failure, and high tool wear rate are the disadvantages of frictional stir incremental forming process [9]. In addition, SPIF at high rotation speed promotes the probability for developing tool marks on the worked sheets [10].
12

of parameters on the surface roughness of AA 6061 T6 ...

Mar 17, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: of parameters on the surface roughness of AA 6061 T6 ...

 

 

 

   

405 

AdvancesinProductionEngineering&Management ISSN1854‐6250

Volume13|Number4|December2018|pp405–416 Journalhome:apem‐journal.org

https://doi.org/10.14743/apem2018.4.299 Originalscientificpaper

  

Effect of process parameters on the surface roughness of aluminum alloy AA 6061‐T6 sheets in frictional stir incremental forming 

Azpen, Q.a,*, Baharudin, H.b, Sulaiman, S.c, Mustapha, F.d a,b,cUniversiti Putra Malaysia, Faculty of Engineering, Department of Mechanical and Manufacturing Engineering, Serdang, Malaysia dUniversiti Putra Malaysia, Faculty of Engineering, Department of Aerospace Engineering, Serdang, Malaysia aMiddle Technical University, Institute of Technology, Baghdad, Iraq 

  

A B S T R A C T   A R T I C L E   I N F O

IncrementalSheetForming(ISF)ischaracterizedbyessentialflexibility,greatformability, and low forming forces and cost compared to the conventionalsheetmetalformingprocesses.ISFwasbornasanadvancesheetmetalform‐ing process to perfectly fit previous requirements. Nevertheless, growingdemand to apply the lightweightmaterials in several fieldswas placed thisdeveloped process in a critical challenge tomanufacture thematerialswithunsatisfied formability especially at room temperature. Thus, utilizing theheatatwarmandhotconditioninsomeISFprocesseshasbeenintroducedtosolve this problem. Among all heat‐assisted ISF processes, frictional stir‐assistedSinglePointIncrementalForming(SPIF)waspresentedtodealwiththesematerials.Inthiswork,thisemergingprocesswasutilizedtomanufac‐turing products from AA6061‐T6 aluminum alloy. Experimental tests wereperformedtostudytheinfluenceofmainparametersliketoolrotationspeed,feed rate, step size and tool size on the surface roughness of the producedparts.ATaguchimethodandvaryingwallangleconicalfrustum(VWACF)testwereusedinthepresentwork.Theresultsfindthattooldiameterhasasig‐nificant impact on the internal surface roughness produced via the formingprocesswithapercentagecontributionof93.86%.Theminimumvalueofthesurfaceroughnesswas0.3µm.

©2018CPE,UniversityofMaribor.Allrightsreserved.

  Keywords:Frictionstirforming;Incrementalsheetforming(ISF);Heat‐assistedISF;Surfaceroughness;Aluminumalloy(AA6061‐T6)

*Correspondingauthor:[email protected](Azpen,Q.)

Articlehistory:Received11July2018Revised26August2018Accepted28August2018

  

1. Introduction 

Currently,thereisagrowingmarketinthemanufacturingofcustomized,rapidprototypingandlow‐costsheetpartswithsmalltomediumbatches(particularlyintransportation,artificialmed‐icalalternatives,andaerospaceindustries)[1,2].Themainreasonforemployingtoolrotationalspeed in SPIF is to improve the formability of lightweight and hard‐to‐formmaterials whichcharacterizedbylowformabilityatroomtemperature[3‐5].Inaddition,itleadstodecreasetheforcesviatheformingprocess[6‐8].Indeed,therearesomedrawbacksandtradeoffsthatinflu‐enceasa resultofemploying thespindlespeed inSPIF.Lowsurfacequality, lubricant failure,andhightoolwearratearethedisadvantagesoffrictionalstirincrementalformingprocess[9].Inaddition,SPIFathighrotationspeedpromotestheprobabilityfordevelopingtoolmarksontheworkedsheets[10].

Page 2: of parameters on the surface roughness of AA 6061 T6 ...

Azpen, Baharudin, Sulaiman, Mustapha  

406  Advances in Production Engineering & Management 13(4) 2018

ThesurfacefinishorsurfaceroughnessisaseriousdrawbackinISF,whichlimitstheexpansionofthisprocessindifferentapplications.Toobtainabettersurfacetexture,itisimportanttocon‐trolseveralprocessesandmaterialfactorslikeformingangle,toolrotation,toolsizeandshape,stepsize,sheetthickness,andfrictionandlubricant.Thus,theresearchersconsideredtheinflu‐encesofthesemainfactorsonthefinalsurfacetopographyoftheproducedpartsinSPIF.AstudyconductedbyDuranteetal.[6]aimedtoinvestigatetheinfluenceofthetoolrotationalspeedsanditsdirectionsonthesurfacetextureofaluminumalloyAA7075‐T0formedbySPIF.Theexperimentalresultsprovedthatnosignificanteffectofthesetwoparameterswaspresentin the studied speed rangebetween0‐600rpm, and theobtainedvariedvaluesof the surfaceroughnessweremainlydependentonwhetherthetoolwasrotatedornot.

DuringSPIFof thealuminumalloyAA3003‐H14,amodelwasestablishedbyHamiltonandJeswiet[11]whichcanbeemployedtoimprovetheexternalsurfaceofmanufacturingSPIFpartsbyselectingadequateformingparametersviaaprocesssuchasfeedrateandtoolrotationspeedathighspeeds.Thispresentedmodelcanpredicttheorangepeeleffectandprovideagoodguidetoenhancethesurfacequality.Inaddition,thesurfaceroughnessforthepartswithhighrotationspeed/feedrateislessthanthoseofwithalowratio.

GoodsurfaceroughnessresultswereobtainedduringthemanufacturingofmedicalpartsbySPIFfromtheknowntitaniumalloyTi‐6Al‐4VbyOlesksiketal.[12].Theobtainedsurfacefinishoftheformedpartswereinfluencedbytheformingtoolroughnessandfrictioncaseatthetool‐sheetzone.

In fact, the final formed angle in SPIF is used as an index for both formability and surfaceroughnesswherethechangeinstretchingvalueintheformedpartleadstothechangeinboththeformingangleandsurfacefinish.Inthisway,Bhattacharyaetal.[13]investigatedtheimpactof toolsize(4mm,6mm ,and8mm),stepsize(0.2mm,0.8mm,and1mm),andwallangle(20ᵒ,40ᵒ,and60ᵒ)onthesurfaceroughnessofaluminumalloyAA5052viaSPIF.Theresultsofexperimentsshowedthatthesurfacequalityoftheformedpartsdecreasesastotheincreaseintoolsizesforallstepsizes.Inaddition,surfacefinishdecreasesduetotheincreasingoftheform‐ingangle.

PalumboandBrandizzi[14]provedthatboththesurfaceroughnessandthepart’saccuracyare influencedby the tool rotationspeedwhen the formingof the titaniumalloyTi6Al4Vwasstudied.Thespindlerotationrangeof800‐1600rpmwaswithtwovaluesofstepsizes;0.5mmand1mm.ThevalueofRabecame011.9μmcomparedtotheinitialsheetroughnessof0.5μm.Ambrogio et al. [15] performed an experimental study on three aluminum alloys, AA1050‐0,AA5754,andAA6082‐T6,withdifferentsheetthicknesses.Itwasproventhatthestepsize,form‐ingangle,andsheetthicknesshaveasignificantimpactonthesurfaceroughnessoftheshapedparts,whileithadaninsignificantimpactonthefeedrate.

Inthisregard,Silvaetal.[16]studiedtheinfluenceofboththestepsizeandfeedrateonthesurfaceroughnessofSAE1008steelmaterial.Itwasshownthatanadequateroughnesscouldbeobtainedwithafeedrateandstepsizeof8400mm/minand0.2mm,respectively.Lasunonetal.[17] examined the effect of some factors on the surface finish. Their results proved that theforming angle, step size, and its interaction affected the achieved surface texture,while therewaslittleinfluenceonthefeedrate.

The good surface finish canbe achieveddependingon the tool trajectory.Usually, the tooltrajectorywith a constant step depth leavesmarks at the end of each circle of the path and,therefore,producesapoorsurfacequality;especiallywithhighstepvaluescomparedtothespi‐raltoolpath[18].Skjoedtetal.[19]provedthatscarringcanberemovedbyusingaspiraltra‐jectoryduringSPIF.Luetal.[20]givenatoolpathalgorithmbasedonspecifiedcriticaledges.Asuperior surface roughness canbeobtainedbyusing this algorithmwith respect to the tradi‐tionaltoolpathemployedinISF.

AnempiricalresearchwasconductedbyLiuetal.[21]toinvestigatetheinfluenceoftoolsize,feedrate,stepsize,andsheetthicknessonthesurfacetextureofthefinalpartmadefromalumi‐num alloy AA7075‐T0. The response surfacemethodology and Box‐Behnken designwere ap‐pliedtoanalyzetheresults.Bettersurfaceroughnesswasachievedwithparametervaluesof25

Page 3: of parameters on the surface roughness of AA 6061 T6 ...

Effect of process parameters on the surface roughness of aluminum alloy AA 6061‐T6 sheets in frictional stir incremental … 

Advances in Production Engineering & Management 13(4) 2018  407

mmfortoolsize,6000mm/minforfeedrate,0.39mmforstepsize,and1.6mmforsheetthick‐ness.

Mugendiranetal.[22]builtaquadraticmodelwithsecondorderbasedonthreeprocesspa‐rameters(toolrotation,feedrate,andtooldiameter)toestimatetheinfluenceofthementionedvariablesonboththesurfacefinishandwallthicknessdistributionduringtheformingofalumi‐numalloyAA5052.OptimumvaluesofsurfaceroughnessRaandfinalsheetthickness(t)were2.45μmand0.753mm,respectively.Theseoptimalvalueswereobtainedatrotationspeed,feedrate,andstepsizeof1931rpm,654mm/rev,and0.65mm,respectively.

AnotherstudywasconductedbyLuetal.[23]todeterminetheimpactofthetooldesignonthesurfacequalityoffouraluminumalloysnamedAA6111,AA5052,AA2024,andAA1100.Theobtained results concluded thatbetter surface roughness couldbeachievedwithnewobliqueroller‐ball tool(ORB)ratherthantheconventional tool.TheemploymentofORBhelpedinre‐ducingthefrictionatthetool‐sheetzoneandat thesametime,reducedtheformingloadsandincreasedtheformabilityofthestudiedmaterials.

AdetailedexperimentalstudybyAzevedoetal. [24]aimedtoestimatetheeffectofseveraltypesoflubricantsonthesurfaceroughnessforsteelDP780andaluminumalloyAA1050‐T4.Itwasconcludedthattheexistenceoflubricantisanimportantfactortoobtainbettersurfacetex‐ture.Thisfindingsupportedtheresultsofpreviousstudies[25‐27].

Inthiswork,frictionstir‐assistedSPIFwasutilizedtomanufacturingAA6061‐T6sheetsthathavebeenutilizedinseveralapplicationsinindustrialsectors.Besidesthementionedbenefits,friction stir‐assisted SPIF shows superior profits,where, it does not need an exterior heatingsource and the surface finish is better than the other two heat‐assisted ISF types: electric‐assistedISFandlaser‐assistedISF.

2. Materials and methods  

2.1 Material 

Uniaxial tensile test was achieved to get the stress‐strain curve of AA 6060‐T6 sheet with athicknessof2mm.Fig.1presentsthespecimendimensionswhichareaccordingtoASTME8Mstandard.

Fig.2andTable1describethetruestress‐straincurveandthechemicalcompositionofthematerial used, respectively. It is clear that thematerial has a suitable total strain at fracture,whichispreferredinincrementalsheetmetalforming.

Fig.1Specimendimensionsoftheuniaxialtensiletest(dimensionsinmm)

Table1Chemicalcomposition(wt%)ofthematerial

Material Si Fe Cu Mn Mg Cr Ni Zn Ti AlAA6061‐T6 0.52 0.19 0.27 0.07 0.91 0.1 ‐ 0.02 0.01 97.91

Page 4: of parameters on the surface roughness of AA 6061 T6 ...

Azpen, Baharudin, Sulaiman, Mustapha  

408  Advances in Production Engineering & Management 13(4) 2018

0.00 0.04 0.08 0.12 0.160

50

100

150

200

250

300

350

Tru

e st

ress

(Mp

a)

T rue strain (% ) Fig.2Thestress‐straincurveofAA6061‐T6

2.2 Experimental setup 

Thenecessarytaskofthejig,whichuseintheformingprocess,istightlyholdthesheetspecimenwith both clamping and backing plates. Forming jig includedof four clamping plates, backingplate,fourcolumnsandbaseplate.Thedimensionsofthebackingplateare170×170×20mmwithacentralholeof70mmindiameter,whichrepresenttheouterdiameteroffinalproduct.Inordertogetasmoothmaterialforming,theinnerdiameterofthebackingplatewasfilletedwith60mmradius.Ontheotherside,thealuminumsheetiswithdimensionsof150×150×2mm.ThewholejigassemblewasmountedtothebedofCNCmillingmachine(OKUMAMX45VA).Fig.3displaystheexperimentalsetupoftheformingjig.

Two forming toolswithhemispherical endswereemployed in theexperimental tasks.Thetoolsarewithtwodifferentdiameters,10mmand15mmandwithasameoflengthof110mm.Moreover, these toolswere hardened and temperedwith 60HRC andmade from high‐speedsteel(HSS)material.Inordertodecreasefrictioneffectatthecontactzonetherebyincreasethetoolslifeandsurfacequalityofthefinalproduct,tooltipswerepolished.Fig.4explainsthedi‐mensionsofthetoolsusedintheexperiments.

 Fig.3Theformingjig

Page 5: of parameters on the surface roughness of AA 6061 T6 ...

Effect of process parameters on the surface roughness of aluminum alloy AA 6061‐T6 sheets in frictional stir incremental … 

Advances in Production Engineering & Management 13(4) 2018  409

Fig.4Theformingtools(alldimensionsinmm)

2.3 Experiments 

Avaryingwallangleconicalfrustumtest(VWACF)wasusedtoachievethetestsbecauseofitshomogenousgeometrywiththesymmetricalparts[38].Theintendedmodeloftheproductwasdesigned to getmaximumdiameters (outer and inner of 70mm and 12mm, respectively), aheightof41mmandaradiuswith60mmofthevaryingslops.Fig.5explainsthedesigneddi‐mensionsofthetargetedcone.

Fig.5Theconicalprofile(dimensioninmm)

Aspiraltrajectoryoftheformingtoolwithacertainstepsizewasdesignedtogeneratethetoolpath.Thispathcanbecharacterizedbyapurestretchdeformationduringtheformingpro‐cess,whichhelpstocreateasheetthicknessthatuniformlydistributed[39].Moreover,itassiststoremovethepeaksoftheformingforcesandatthesametime,nostretchmarkscanleaveontheworkingsheetsurface.Ontheotherhand,thesesocketsregularlyhappenwithcountertype.TheCAD/CAMwasused tocreate theproductprofileandgenerate thespiral toolpathbyNCcode,asdisplayedinFig.6.

Page 6: of parameters on the surface roughness of AA 6061 T6 ...

Azpen, Baharudin, Sulaiman, Mustapha  

410  Advances in Production Engineering & Management 13(4) 2018

Fig.6GeneratingthetoolpathbyCATIA

Thecontinualmotionoftheformingtoolviaformingprocess leadstoa localheatingatthecontact zone due to the local friction. In addition, this heating increases the rate of the toolswear. This will affect both surface roughness and geometric accuracy of the produced parts.Theseharmfuleffectscanbepreventedbyusingdifferenttypesoflubricants.Inthisstudy,lub‐ricant SAE 0W‐40was employed to diminish the friction effects. Taguchi technique was em‐ployedtohelpinthedesignofthetestswithaminimumnumberofrunstosavethetimeandoverallcost[40,41].Designofexperiment(DoE)whichcomprisesofselectionprocessparame‐tersandtheirinfluentiallevelsthatdependedonthepreviousstudies.Fromthesestudies,itwasconcluded these factors and their levels are extremely affected by thematerial properties. Inordertofindthecorrectandsuitableprocessparameter levelsthatcanbeusedtoobtainsuc‐cessfulsetsofexperiments,manyprimarytrialswereconducted.Fig.7(a)and(b),andFig.8(a)and(b)showthefirstfailedtrailsduetotheuseofhighrotationspeedandfeedrate,andsmalltoolsize,respectively.

(a) (b)

Fig.7Samplesfailedduetousehighlevelsofrotationspeedsandfeedrates

Page 7: of parameters on the surface roughness of AA 6061 T6 ...

Effect of process parameters on the surface roughness of aluminum alloy AA 6061‐T6 sheets in frictional stir incremental … 

Advances in Production Engineering & Management 13(4) 2018  411

(a) (b)

Fig.8Samplesfailedduetouseasmalltoolsize

Table2Processfactorsandtheirlevels

Description Factor Level1 Level2 Level3 Level4Toolrotationspeed(rpm) ω 50 400 800 1200Feedrate(mm/min) f 250 500 ‐ ‐Stepsize(mm) z 0.2 0.5 ‐ ‐Toolsize(mm) D 10 15 ‐ ‐

 Table3OrthogonalarrayL8(41.23)oftheexperimentstests

Test ω(rpm) f (mm/min) z (mm) D(mm)1 1 1 1 12 1 2 2 23 2 1 1 24 2 2 2 15 3 1 2 16 3 2 1 27 4 1 2 28 4 2 1 1

Tables2and3representtheprocessparameters,theirlevels,andtheorthogonalarray,respec‐tively.

3. Results and discussion 

Anumberofexperimentaltestswerecarryouttoassesstheeffectofthetoolrotationspeed(ω),feedrate(f),stepsize(z)andtoolsize(D)onthefinalsurfacetexturecreatedthroughtheSPIF.The experiments were stopped when the parts fracture.Where Fig. 9 (a), (b), (c) and (d) isdemonstratedthesamplesthatsucceededwiththecorrectselectionofparameterlevelsaccord‐ingtothementioneddesignedarray.

Oneof themaindrawbacks thataccompany incrementalsheet forming is thepoorsurfacequality of the produced components [23]. Thus, appropriate combination and optimization offormingparametersisachallengeandanimperativeissuetomanufacturepartswithexcellentsurface finishandotherdesirableprocess aspects; suchas formability and forming forces.Toachieve this goal, the Taguchi technique togetherwith analysis of varianceANOVA,were em‐ployedtoexaminetheinfluenceofthetoolrotation,feedrate,stepsize,andtoolsizeontheob‐tained surface roughness. These four forming parameters have significant effects on SPIF, asmentionedintheliterature.

TheexperimentalresultsforthesurfaceroughnessRaandthecongruousS/Nratiosarerec‐ordedinTable4.Moreover,thesurfaceroughnessvaluesfortheAA6061‐T6sheetsasreceivedare0.175µmand0.411µm,withandacrosstherollingdirection,respectively.

Page 8: of parameters on the surface roughness of AA 6061 T6 ...

Azpen, Baharudin, Sulaiman, Mustapha  

412  Advances in Production Engineering & Management 13(4) 2018

(a)(b)

(c)(d)

Fig.9Samplesthatsucceededwiththecorrectselectionofparameterlevels

Table4TheDoEmatrixandtheresultsforsurfaceroughnessandS/Nratios

Runω

(rpm)f

(mm/min)z

(mm)D

(mm)Acrosstheformingtoolpath

Ra(µm) S/Nratio1 50 250 0.2 10 1.62 ‐4.19032 50 500 0.5 15 0.719 2.86543 400 250 0.2 15 0.581 4.71654 400 500 0.5 10 1.536 ‐3.72785 800 250 0.5 10 1.44 ‐3.16726 800 500 0.2 15 0.3 10.45767 1200 250 0.5 15 0.469 6.57658 1200 500 0.2 10 1.391 ‐2.8665

Fig.10Themaineffectsofthevariousparametersonthesurfacefinish

Page 9: of parameters on the surface roughness of AA 6061 T6 ...

Effect of process parameters on the surface roughness of aluminum alloy AA 6061‐T6 sheets in frictional stir incremental … 

Advances in Production Engineering & Management 13(4) 2018  413

ThemaineffectoftheconsideredfactorsonthesurfacefinishispresentedFig.10.Moreorfewerimpactsofthelevelsoftheseparametersontheoutputresponsecanbenoted.Thisgraphshowstheeffectoftoolsizeisasignificantonthesurfaceroughness.Theotherparameterssuchasrotationspeed,feedrate,andstepsizehavealessornegligibleeffectontheoutput.

Fig.11MaineffectforSNratiosforthesurfaceroughness

Fig.12Theinteractioneffectofvariousfactorsonthesurfaceroughness

Table5AnalysisofvarianceforthesurfaceroughnessSource DF AdjSS AdjMS F‐Value P‐Value Significant Contribution(%)

Regression 4 2.01239 0.50310 47.35 0.005 Yes ω 1 0.08094 0.08094 7.62 0.070 ‐ 3.96f 1 0.00336 0.00336 0.32 0.613 ‐ 0.16z 1 0.00925 0.00925 0.87 0.420 ‐ 0.45D 1 1.91884 1.91884 180.59 0.001 Yes 93.86

Error 3 0.03188 0.01063 1.56Total 7 2.04427 100

Table6StatisticalresultsofthedevelopedregressionequationofthesurfacesroughnessTerm Coef SECoef T‐Value P‐Value VIF

Constant 3.581 0.237 15.08 0.001 ‐ω ‐0.000234 0.000085 ‐2.76 0.070 1.00f ‐0.000164 0.000292 ‐0.56 0.613 1.00z 0.227 0.243 0.93 0.420 1.00D ‐0.1959 0.0146 ‐13.44 0.001 1.00

0 200 400 600 800 1000 1200

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ra

(In

sid

e),µ

m

Rotation speed (), rpm

f-250 f-500 Z=0.2 Z=0.5 D=10 D=15

Page 10: of parameters on the surface roughness of AA 6061 T6 ...

Azpen, Baharudin, Sulaiman, Mustapha  

414  Advances in Production Engineering & Management 13(4) 2018

Theoptimal conditionof the surface roughnessRa of theAA6061‐T6 sheet formedby fric‐tional‐stirassistedSPIFwasdeterminedbytheTaguchianalysis.Consistentwith thismethod,thegreaterthevalueoftheS/Nratioisthesuperiortheaggregateperformanceis.Thecaseindi‐catesthattheparameterlevelswiththehighestS/Nratioshouldbedesignatedasthebestlev‐els.Inthisstudy,theoptimalconditionfortheprocessparameters,whichprovidedaminimumRa,waswithintherunnumber6,asshowninTable4,andFigs.11and12.

Theanalysisof varianceANOVAhelped to create these relative impactsofparameters andtheir percentages contribution to the surface roughness, shown inTable5whileTable6pre‐sentsthecoefficientsoftheregressionequation.

This regression equationwas established based on the experimental results of the surfaceroughnessRa;the(Eq.1)candescribeit.

Inside μ 3.581 0.000234 0.000164 0.227 0.1959 (1)

ThefittingoftheregressionmodelisgivenbythedeterminationcoefficientR2.Thevalueofthiscoefficientreferstotheclosefittingoftheregressionequation.ThevaluesoftheR2,adjust‐edR2,andpredictedR2are98.44%,96.36%,and87.86%,respectively.Therefore,regardingthevaluesof thesecoefficients, theestablishedregressionequation fitswellanddescribes thesurfaceroughnessresponse.Lastly,normaldistributionplot,Fig.13,clarifiedthattheresidualstrackthenormaldistribution.Itcanbenotedthattheregressionequationhasagoodfittotheirexperimentaldataandarereliabletouse.

Fig.13Normaldistributionofthesurfaceroughness

4. Conclusion 

Inthepresentstudy,frictionstir‐assistedSPIFwasperformedtodeformAA606‐T6sheets.Thepurpose is to study the impactof certainprocess factorson thesurface roughnessof thepro‐ducedparts.Theresultscanbeconcludedinthefollowingworthypoints:

Thediameteroftheformingtoolhaveasignificantimpactontheinternalsurfacerough‐ness produced via the forming process of AA6061‐T6. To attain an acceptable surfaceroughness,thepercentagecontributionofthisparameterwas93.86%.

Anoptimalprocessparameterswasachievedforthesurfaceroughnessduringtheform‐ingprocess.Theminimumvalueofthesurfaceroughnesswas0.3µmatω=800rpm,f=500mm/min,z=0.2,andD=15mm.

ThevalueofthedeterminationcoefficientR2oftheestablishedregressionequationofthesurfaceroughnesswas98.44%.Thishighvaluerefertotheclosefittingofthesuggestedequation to describe the expected experimental data; it alsomeans the response valueshighlyadheretothenormaldistribution.

Page 11: of parameters on the surface roughness of AA 6061 T6 ...

Effect of process parameters on the surface roughness of aluminum alloy AA 6061-T6 sheets in frictional stir incremental …

Acknowledgments The authors would like to thank Iraqi Government for the PhD scholarship and Research Management Centre, Universiti Putra Malaysia with the research grant (GP-IPS/2016/9479500), which enable the research to be car-ried out successfully.

References [1] Ambrogio, G., Filice, L., Gagliardi, F. (2012). Formability of lightweight alloys by hot incremental sheet forming,

Materials & Design, Vol. 34, 501-508, doi: 10.1016/j.matdes.2011.08.024. [2] Bao, W., Chu, X., Lin, S., Gao, J. (2015). Experimental investigation on formability and microstructure of AZ31B

alloy in electropulse-assisted incremental forming, Materials & Design, Vol. 87, 632-639, doi: 10.1016/j.matdes. 2015.08.072.

[3] Nee, A.Y.C. (2015). Handbook of manufacturing engineering and technology, Springer, London, UK, doi: 10.1007/ 978-1-4471-4670-4.

[4] Xu, D., Lu, B., Cao, T., Chen, J., Long, H., Cao, J. (2014). A comparative study on process potentials for frictional stir-and electric hot-assisted incremental sheet forming, Procedia Engineering, Vol. 81, 2324-2329, doi: 10.1016/j.proeng.2014.10.328.

[5] Asghar, J., Reddy, N.V. (2013). Importance of tool configuration in incremental sheet metal forming of difficult to form materials using electro-plasticity, In: World Congress on Engineering, WCE 2013, London, United Kingdom.

[6] Durante, M., Formisano, A., Langella, A., Minutolo, F.M.C. (2009). The influence of tool rotation on an incremental forming process, Journal of Materials Processing Technology, Vol. 209, No. 9, 4621-4626, doi: 10.1016/j. jmatprotec.2008.11.028.

[7] Baharudin, B.T.H.T., Azpen, Q.M., Sulaima, S., Mustapha, F. (2017). Experimental investigation of forming forces in frictional stir incremental forming of aluminum alloy AA6061-T6, Metals, Vol. 7, No. 11, 484, doi: 10.3390/met7110484.

[8] Bagudanch, I., Centeno, G., Vallellano, C., Garcia-Romeu, M.L. (2013). Forming force in single point incremental forming under different bending conditions, Procedia Engineering, Vol. 63, 354-360, doi: 10.1016/j.proeng. 2013.08.207.

[9] Hagan, E., Jeswiet, J. (2004). Analysis of surface roughness for parts formed by computer numerical controlled incremental forming, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manu-facture, Vol. 218, No. 10, 1307-1312, doi: 10.1243/0954405042323559.

[10] Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., Allwood, J. (2005). Asymmetric single point incremental forming of sheet metal, CIRP Annals, Vol. 54, No. 2, 88-114, doi: 10.1016/S0007-8506(07)60021-3.

[11] Hamilton, K., Jeswiet, J. (2010). Single point incremental forming at high feed rates and rotational speeds: Surface and structural consequences, CIRP Annals, Vol. 59, No. 1, 311-314, doi: 10.1016/j.cirp.2010.03.016.

[12] Oleksik, V., Pascu, A., Deac, C., Fleacă, R., Bologa, O., Racz, G. (2010). Experimental study on the surface quality of the medical implants obtained by single point incremental forming, International Journal of Material Forming, Vol. 3, Supplement 1, 935-938, doi: 10.1007/s12289-010-0922-x.

[13] Bhattacharya, A., Maneesh, K., Venkata Reddy, N., Cao, J. (2011). Formability and surface finish studies in single point incremental forming, Journal of Manufacturing Science and Engineering, Vol. 133, No. 6, doi: 10.1115/ 1.4005458.

[14] Palumbo, G., Brandizzi, M. (2012). Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed, Materials & Design, Vol. 40, 43-51, doi: 10.1016/j.matdes.2012.03.031.

[15] Ambrogio, G., Filice, L., Gagliardi, F. (2012). Improving industrial suitability of incremental sheet forming pro-cess, The International Journal of Advanced Manufacturing Technology, Vol. 58, No. 9-12, 941-947, doi: 10.1007/ s00170-011-3448-6.

[16] Silva, P.J., Leodido, L.M., Silva, C.R.M. (2013). Analysis of incremental sheet forming parameters and tools aimed at rapid prototyping, Key Engineering Materials, Vol. 554-557, 2285-2292, doi: 10.4028/www.scientific.net/ KEM.554-557.2285.

[17] Lasunon, O.U. (2013). Surface roughness in incremental sheet metal forming of AA5052, Advanced Materials Research, Vol. 753-755, 203-206, doi: 10.4028/www.scientific.net/AMR.753-755.203.

[18] Filice, L., Fratini, L., Micari, F. (2002). Analysis of material formability in incremental forming, CIRP Annals, Vol. 51, No. 1, 199-202, doi: 10.1016/S0007-8506(07)61499-1.

[19] Skjoedt, M., Hancock, M.H., Bay, N. (2007). Creating helical tool paths for single point incremental forming, Key Engineering Materials, Vol. 344, 583-590, doi: 10.4028/www.scientific.net/KEM.344.583.

[20] Lu, B., Chen, J., Ou, H., Cao, J. (2013). Feature-based tool path generation approach for incremental sheet forming process, Journal of Materials Processing Technology, Vol. 213, No. 7, 1221-1233, doi: 10.1016/j.jmatprotec. 2013.01.023.

[21] Liu, Z., Liu, S., Li, Y., Meehan, P.A. (2014). Modeling and optimization of surface roughness in incremental sheet forming using a multi-objective function, Materials and Manufacturing Processes, Vol. 29, No. 7, 808-818, doi: 10.1080/10426914.2013.864405.

Advances in Production Engineering & Management 13(4) 2018 415

Page 12: of parameters on the surface roughness of AA 6061 T6 ...

Azpen, Baharudin, Sulaiman, Mustapha

[22] Mugendiran, V., Gnanavelbabu, A., Ramadoss, R. (2014). Parameter optimization for surface roughness and wall thickness on AA5052 aluminium alloy by incremental forming using response surface methodology, Procedia Engineering, Vol. 97, 1991-2000, doi: 10.1016/j.proeng.2014.12.442.

[23] Lu, B., Fang, Y., Xu, D.K., Chen, J., Ou, H., Moser, N.H., Cao, J. (2014). Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool, International Journal of Machine Tools and Manufacture, Vol. 85, 14-29, doi: 10.1016/j.ijmachtools.2014.04.007.

[24] Azevedo, N.G., Farias, J.S., Bastos, R.P., Teixeira, P., Davim, J.P., de Sousa, R.J.A. (2015). Lubrication aspects during single point incremental forming for steel and aluminum materials, International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 3, 589-595, doi: 10.1007/s12541-015-0079-0.

[25] Reddy, N.V., Cao, J. (2008). Incremental sheet metal forming: A review, In: Proceedings of the Indo-US workshop on Smart Machine Tools, Intelligent Manufacturing Systems at Multiscale Manufacturing, PSG college of Technolo-gy, Combotore, India.

[26] Petek, A., Kuzman, K., Kopač, J. (2009). Deformations and forces analysis of single point incremental sheet metal forming, Archives of Materials Science and Engineering, Vol. 35, No. 2, 35-42.

[27] Buffa, G., Campanella, D., Fratini, L. (2013). On the improvement of material formability in SPIF operation through tool stirring action, The International Journal of Advanced Manufacturing Technology, Vol. 66, No. 9-12, 1343-1351, doi: 10.1007/s00170-012-4412-9.

416 Advances in Production Engineering & Management 13(4) 2018