Top Banner
Mathematical Background • Basic Building Blocks • SC Filters • SC Oscillators Analog and Mixed-Signal Center, TAMU Edgar Sánchez-Sinencio, ECEN 622 SWITCHED-CAPACITOR FUNDAMENTALS AND CIRCUITS
52

Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Mar 18, 2018

Download

Documents

doanhanh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

• Mathematical Background • Basic Building Blocks • SC Filters • SC Oscillators

Analog and Mixed-Signal Center, TAMU Edgar Sánchez-Sinencio, ECEN 622

SWITCHED-CAPACITOR FUNDAMENTALS AND CIRCUITS

Page 2: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

FUNDAMENTALS ON SC CIRCUITS

====

eqceqeq C

Cf

CCTCRRC 1

• very accurate!

• Bottlenecks: Switches and High-Speed Op Amps. Non-idealities enemies!

• The best approach in audio applications.

• Design is carried-out in the Z domain, same domain as for digital circuits.

• Conventional Programming is done via capacitor banks. Spread?

• New non-uniform sampling techniques opens practical application possibilities.

ECEN 622 (ESS)

τ

Page 3: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Examples of Analog and Digital Signals

Analog-to-Digital Converter

Low-Pass Sampling Circuit Quantizer Decoder

xin x1 x2

fc

y1 yo

xin

CT

x2 x1

CT1

yo 1’s and 0’s

SD

Page 4: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Analog and Digital Signals and Systems Concepts

Types of signals Mathematical Description • Continuous-Time (CT) Laplace --Continuous values in time --Continuous values in magnitude • Sampled Data (SD) Z-Transform --Continuous values in magnitude --Discrete values in time • Digital Z-Transform --Discrete values in magnitude --Discrete values in time

Page 5: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

OPERATOR Z-1 UNIT DELAY

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( )1111

1

0

1

1

1

0

0

11

−−−=−−−=

−==

=

∑∑

=

−−

−∞

=

+−∞

=

=

−−−

ynyYyZnyZYZ

ZnyZny

ZnyZZYZ

n

n

n

n

n

n

n

n

( ) ( ) 010for 0 If =−<= y,tnTy

( ) ( )[ ] ( )[ ]TnyYnTyZZYZ 111 −== −−

In general ( ) ( )[ ]TmnyYZYZ m

−=−

Page 6: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

STABILITY OF A SECOND-ORDER HOMOGENEOUS DIFFERENCE EQUATION

The C.E.

( ) ( ) ( ) 021 21 =−+−+ nyanyany

( )( ) 01 22

11 =++ −− ZaZaZY( )( ) 02121

2 =−−=++ ZZZZaZaZ

COMPLEX ROOTS

,a,aaaZ,Z 0a- 4

if42 2

21

2

211

21 <−±= jyxreZ,Z j ±== θ±21

,ayxr 222 =+=

2

1

2 aa

rxcos −==θ

The C. E. yields 02 22 =+θ− rZcosrZ

( )

φ+π=

fsnfcosKrny n 2

θ↔ ,ra,a 21

Conditions Inital ←φ,k

Natural Response

Page 7: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

a2 C 1 B A

C O M P L E X R O O T S

R E A L R O O T S -2 -1 1 2 a1

-1

a2=a1-1

a2, a1 Plane

Roots Realfor

4 221 aa >

=

θ=−2

2

1 2

ra

cosra For Complex Stable Roots

Relationship between the poles in the Z-Plane and coefficients a1 and a2.

B

Im C

A Re

Poles Inside Unit Circle Are Stable Roots

Z-Plane

+j

-1 1

-j

Page 8: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

MAPPING BETWEEN THE S- AND THE Z-PLANES FOR HIGH SAMPLING

TSp

p

pp

pp

pp

peZ

/Ts/Ts

Z

TsZ

TsZ

=

−+

=

+=

−=

4

3

2

1

Invariant Impulse

2121

Bilinear

1Forward

11

Backward ( ) ( )

( ) ( ) ( )

( ) ( )

++++≅

++++≅

+=

++++≅

<<

621

421

1

1

1s smallFor

32

32

32

p

4

3

2

1

TsTsTsZ

TsTsTsZ

TsZ

TsTsTsZ

.Ts,T

pppp

pppp

pp

pppp

p

Ignoring higher order effects

TsZZZZ ppppp +≅≅≅≅ 14321

For Very High Sampling Rate The Approximation For The

Mapping is the Same!

TsZ pp +≅ 1

Page 9: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

RELATIONS BETWEEN POLES IN THE S- AND Z- DOMAIN

(High Sampling)

( ) 022

22

=++=

ω+ω

+

bas

sQ

s nn

jbas

QQ

jQ

s

,

,

p

nnp

±−=

−ω

±ω

−=

21

2114

222

142

2

2 −ω

=

ω=

QQ

b

Qa

n

n

TsZrZcosrZ

bZbZ

ippi +=+θ−

=++

12

022

212 ( )

( ) ( )22

2121

1

1

1

21

bTaTr

rejbTaTZ

TSZj

p

,p,p

,

+−=

=±−=

+=θ±

Im

jb

Re

jb

ωn

-a

S-Plane

Im

Re

-jbT

r

1-aT 1

Z-Plane

jbT

θθ−

Page 10: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )

QQQr

rT

TrT

TrrT

TrTQ

TQ

TTQTr

n

Tn

n

n

n

n

n

nn

nn

n

21

22

then

1212Q

sQ'High

111

OR

12

1

12

222

222

1r

θ−=

θ−=

−ω

≅ω+−

ω≅

ω+−+ω

=ω+−

ω=

ω+ω

−≅ω+

ω−=

<<ω→

Also by a series expansion

21

2θ−≅θcos

Page 11: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Thus

Also see Table of mappings.

QQQb

rb

Qb

Qcosrb

θ−

θ+=

θ−≅

=

θ−θ−≅

θ−

θ−−≅θ=

2

22

2

22

21

2

1

41

21

2

21

2122

Page 12: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

In fact if we let,

Qb θ

−≅ 12

then ( ) 2

21 1 θ++= bb

and 122 1 bb ++=θ

21 bQ

−θ

Recall that high Q and high sampling rate conditions have been used. Thus

Page 13: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

MAPPINGS Forward Backward Bilinear Impulse Invariant Mixed

( ) ( ) ( ) ( )2

21

122 1 −− ++=→

ω+ω

+=

ZbZbZNZH

sQ

s

SNsHo

o

where

22

1 2rb

cosrb=

θ=

(See Table of Quadratic Mappings)

X

X r θ Oω

x

x QO

Page 14: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

( )22o

o sQ

s

ksHω+

ω+

= ( ) 22

111

Numerator−− ++

=ZbZb

ZHM A P P I N G

Table 2 Type of Mapping fo(HZ Q b1 b2

Forward

Backward

Bilinear a=2/T

Impluse invariant

( )T

bb 211 ++ ( )2

1

1

21

+++

bbb

QT02

ω+− ( )21 T

QT

oo ω+

ω−

Tb

bb

2

211 ++ ( )21

212

21

bbbbb

+++

−( )21

2

TQ

TQ

T

oo

o

ω+ω

+

ω+

−( )21

1

TQ

To

o ω+ω

+

21

2111

bbbba

+−++ ( )( )

( )2

2121

1211b

bbbb−

+−++ ( )22

222

oo

o

aQ

a

a

ω+ω

+

−ω

22

22

oo

oo

aQ

a

aQ

a

ω+ω

+

ω+ω

( )

T

blnbbcos 2

2

2

2

1141

2+

−− ( )

2

22

2

2

1141

2

bln

blnbbcos

+

−−

ω− −

ω

142

2 22 QQT

cose oQTo

QTo

eω−

22

1 2

rb

cosrb

=

θ−=

Im

Re

-

ωο

S-Plane

θ

Im

Re 1 -1

r

Z-Plane

( )2Tcota oo ωω≅

Page 15: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Type of Integrator

Magnitude, |H(ejωT)

Phase, Arg H(ejωΤ)

Mapping (Equivalent)

Transfer Function

R V1 Vo

V1 φ1 φ2

C1 Vo

V1 φ1 φ2 C1

Vo φ2 φ1

C2

V1 φ1

φ2

C1 Vo

φ2

φ1 C2

Inverting

(Forward)

Non-Inverting

Inverting (Backward)

ωωo 2

πIn the

S-Plane ( )

sCsRoω

−=−=21

1sH i.e.

( )22

at For 2

TsinT

V

o

o

ωω

ωω

φ

2π LDI ( ) 1

21

2

1

1 −

−−=

zz

CCzH

( )22

at For 1

TsinT

V

o

o

ωω

ωω

φ

22Tω

Forward ( ) 1

1

2

1

1 −

−−=

zz

CCzH

( )22

at For 2

TsinT

V

o

o

ωω

ωω

φ

( )22

at For 1

TsinT

V

o

o

ωω

ωω

φ

2π−

22Tω

−π−

LDI

Forward

( ) 1

21

2

1

1 −

−=

zz

CCzH

( ) 1

1

2

1

1 −

−=

zz

CCzH

( )22

at For 1

TsinT

V

o

o

ωω

ωω

φ

( )22

at For 2

TsinT

V

o

o

ωω

ωω

φ

Backward

LDI

( ) 1

21

2

1

1 −

−−=

zz

CCzH

( ) 1

21

2

1

1 −

−−=

zz

CCzH

22Tω

−π

Page 16: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Type of Filters in the Z-Domain Specifications

H(s) Mapping

S Z H(s)

i.e., consider

( )22

2

pp

po

sQ

s

HsH

ω+ω

+

ω±=

LP

Apply: A backward transformation

( )( ) 22

2

1

2

then1

ZZcosrrZKzH

,TZs

o+θ−

±=

−→ −

: A forward Transformation

( ) 22 2 ZZcosrrKzH o

+θ−

±=

: A Bilinear Transformation

( ) ( )22

2

21

ZZcosrrZKzH o

+θ−

+=

Use prewarping

Page 17: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

S-Plane

Backward

Forward

Bilinear

b)

c)

d)

Z-Plane [ ] 2ZKzN o±=

( ) oKzN ±=

( ) ( )21 ZzN +=

1

j

-1

Page 18: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Another Example.

Bandpass

( )22p

p

po

sQ

s

QH

sHω+

ω+

ω±

=

i) Backward Tansformation ( ) TZs 11 −−→

( )( )

( )2

1

2

21

11

1

1pi

i

pi

po

TZ

Q

TZ

ZQT

HzH ω+

−ω+

−ω

±=

( )

( )( )( )

( )( )

2

2

2

2

11

11

1

ZT

QT

TZZT

QT

TQTQ

ZTZH

zH

pp

pp

p

pp

po

+ω+

ω+

ω+−ω+

ω+

ω+ω+

−ω

=

BACKWARD FORWARD BILINEAR

Im Im Im

Re Re Re -1 1

Page 19: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

TYPE OF FILTER NUMERATOR

LP 20 (bilinear) ( )211 −+ zKO

2−zKO

( )11 1 −− + zzKO

( )11 −+ zKO1−zKO

( )( )11 11 −− +− zzKO

( )11 1 −− − zzKO

( )11 −− zKO

( )211 −− zKO

( )[ ]21121 −− +Θ−+ zzcosK OO

LP 02 (forward LP11 LP 10 LP 01 BP 20 (bilinear) BP 01 (forward) BP 00 (backward)

HP Notch (symmetric)

212 where

rcosrcos O+

θ=θ

212 withabove as Same

lyrespective locations, pole andzero theof angles theare and

rcosrcos O

O

+

θ>θ

θθ

212 withabove as Same

rcosrcos O+

θ<θ

( )212 2 −− +θ− zzcosrrKOAll pass Table Numerators of second-order transfer functions in the z-plane

High pass Notch

Low pass Notch

( ) 22121 −− +θ−= zrzcosrsD

Page 20: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Examples of Basic Implementations

• First-order Low Pass (Continuous-Time)

( ) ( )( )

( ) ( ) ( )tvKtvdt

tdv;sK

sVsV;

s1KsH inpop

o

p

p

in

o

p

ω=ω+ω+

ω=

ω+=

Continuous-time

C V1

R/K

+ Vo

_

R

pR1Cω

= ∞−O ∫∫

s-plane

pω−Re

patpoleoneatzeroone

ω−∞−

Stability implies to have poles in the left-half plane (LHP)

Im

Page 21: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

K

( )ωjH

pωω

( ) ( )( )[ ]

ω=

ωω−∠ωω+

=ωω+

−=ω=

js

tan1

Kj1

KjHsH p212pp

Frequency Response

h(t)

t

Impulse Response

( ) tp

peKth ωω −=

Page 22: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

• First-Order Low-Pass (Discrete-Time) Sampled-Data (i.e., Switched-Capacitor)

( ) ( )( ) ;

zK

z1K

zVzVzH 1

1p

1p1

1p11

in

o−− −ω

ω=

ω−==

Im j

Re p1 ω 1

Stability implies poles inside unity circle

[ ] ( ) ( )( ) ( ) ( )zVKzVzzV

zVKzVz

in1p1o1

o1p

in1p1o1

1p

ω=−ω

ω=−ω−

Taking the inverse z-transform ( ) ( ) ( )

( ) ( ) ( )nTvKnTvT1nv

nTvKT1nvnTv

in1p1opo

in1p1oo1p

ω−=ω−−

ω=−−ω

This difference equation represents the first-order low pass in the Z-domain. Note that

( ) ( )( ) ( )TbnxzXZ

T1nxzXZ

oob

oo1

−⇒

−⇒−

z-plane

Page 23: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

( )TjeH ω

2fc

f f

cf23

Frequency Response (A periodic transfer function!)

( ) ( )( ) Tsinj1Tcos

TsinjTcosK1Z

ZKzH

1p

1p1

1p

1p1

ω+−ωωω+ωω

=−ω

ω=

ω= jez

( )( )

−ωωω

−ωω+−ωω

ω= −ω

1TcosTsintanT

Tsin1Tcos

KeH

1p

12122

1p

1p1j

- + Vo

C Vin

1Φ1Φ

2Φ 2Φ

2Φ 2Φ

1Φ1Φ

C1

C2

where

CC1

CCK

21p

11p1

+=ω

phase

Page 24: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

What are the relationships between the s-plane and z-plane?

• There are a number of mappings between the two planes • The most popular and exact is the bilinear mapping.

( )( )s2T1

s2T1zor1z1z

T2

z1z1

T2s 1

1

−+

=+−

=+−

= −

• The commonly used for high-sampling rate is:

1sTzor

11z

T1

zz1

T1s 1

1

+=

−=

−= −

bilinear

forward s-plane z-plane

1 0 -1

Page 25: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Example. Approximate a first-order low-pass continuous-time to a discrete-time low-pass under high-sampling conditions.

( )p

p

p sK

s1KsH

ω+ω

=ω+

=

( )1zT1s −=

0 ∞−

pω−

( ) ( )T1zTK

T1zTK

zHp

p

p

p

ω−−ω

=ω+−

ω=

( )T1 pω−What is the 3dB cut-off frequency in both domains?

CTf pdB3 ω=

For H(z) is more complex than the computation of f3dB.

( ) ( )( ) ( ) 2eHeH

T1TsinjTcosTK

eH

TjTj

p

pTj

dB3ωω

ω

=

ω−−ω+ωω

=

dB3ω=ω

( )( )T12

TT22cos

T1

p

2pp1

dB3 ω−ω−ω−

=ω −

( )1ffs >>

Page 26: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Numerical example. Low-Pass (First Order)

2K

1.01020102T;f1T;KHz20ff

sr102

3

3

pssc

3p

=

π=××π

=ω===

×π=ω

For the continuous-time

( )

dB3

dB3

4142.12

2jH

KHz1f

ω=ω

==ω

=

For the sample-data ( )

( )KHz16.1f

T12TT22

cos2ff

dB3

p

2pp1s

dB3

ω−ω−ω−

π= −

Page 27: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Switched - Capacitor Filters • Use Z-transform mathematics

• Are described by difference equations

• Time constants are proportional to capacitor ratios

• Best implementation for audio applications

• Originally the basic goal was to replace resistors by switches and capacitors • This design approach is one of the most popular in the industry

Page 28: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

SC Advantages

• Reduced silicon area • Good accuracy. Time constants are

implemented with capacitor ratios (~0.1%) • Don’t require a low-impedance output stage

(OTA’s could be used) • Could be implemented using digital circuit

process technology • Very useful in the audio range

Page 29: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

NOTATION . Switches . . . . . .

Representation Network With No Switches

S W I T C H . . . n

1

3,1φ

n,4,1φ

1 2 3 n - 1 n

Phase Period Representation

t

0 n/T n/T2 n/T32

T)2n( −2

T)1n( − T

Clock Period X X

EXAMPLE n=2 NON-OVERLAPPING

t

φ 1

t

φ 2

2/T T 2/T3 T2 2/T5

PHASE PERIODS OF A CONVENTIONAL CLOCK SEQUENCE

Page 30: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

)t(YH

t

t

t

.5T T 1.5T 2T 3T 4T

)t(YoH

)t(Y 1Hφor

)t(YeH

)t(Y 2Hφor

S/H and its respective odd and even components

)t(y)t(y)t(y eH

oHH +=

)Z(Y)Z(Y)Z(Y eH

oHH +=

or

Page 31: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

. . Sample Data Circuit

)Z(Vin )Z(Vo

)Z(V)Z(V)Z(V oin

einin +=

)Z(V)Z(V)Z(V oo

eoo +=

)Z(V)Z(V)Z(H

in

o=

CONVENTIONAL NOTATION FOR TRANSFER FUNCTION IS:

)Z(V)Z(V)Z(H i

in

joij =

i and j can be either “e” or “o”. i,e.,

)Z(V)Z(V)Z(H e

in

ooeo =

Page 32: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

TWO-PHASE CLOCK GENERATOR SINGLE PHASE

. O . . . . 1φ

O O

. . . . 2φ

CLOCK SIGNALS

t 1φ

t 2φ

O

O O

O

NON-OVERLAPPING

Page 33: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

SWITCHED-CAPACITOR EQUIVALENT RESISTOR

1I

1V+

- 2V

+

-

2IR

Continuous (Conventional) Resistor

RVVI

IVV

IVVR 12

22

12

1

21 −=⇒

−=

−=

and are constant voltage sources 1V 2V1i

1V+

- 2V

+

-

2i

C

1φ 2φ

ott −

ott −T/2 T 3T/2 2T

Page 34: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

At time we apply the clocks. ott =

At 1φ

At 2φ

1V+

- 2V

+

- C

1V+

- 2V

+

- C

1V+

- 2V

+

- C

For the next period, at 1φ

1o CV)2/Tt(Q =+

12o CVCV)Tt(Q −=+

)VV(C)Tt(Q 12o −=+

)VV(C)2T3t(Q 21o −=+

dtdQi =

=1Q ∫2/T3to +

Tto +

dt)t(i1 = ∫2/T3to +

2/Tto +

dt)t(i1

Page 35: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

The average current becomes )aver(1I

T

)2T3t(Q

Io

)aver(1

+=

tQ

TVV(CI 21

)aver(1 ∆∆

=−

=

T1I )aver(1 = ∫

2/T3to +

2/T3to +dt)t(i1

)aver(1

21I

VVCT −

=

or

Comparing with the continuous time resistor

Cf1

CTR

Ceq ==

EXAMPLE. KHz128f,K250R C =Ω=

32AA

C

R ≅ pF25.3110128250

1fR

1C 6Ceq

=××

==

Continuous R “SC-R” AREA 5,776 178.57 2mils

Page 36: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

ACCURACY OF TIME CONSTANTS

CONTINUOUS TIME: . 21CR=τ

%65%40CdC

RdRd

22

11 ±→±→+=

ττ

where is interpreted as the accuracy of . ττd

τ

TEMPERATURE DEPENDANT!

DISCRETE TIME: . )

CC(TC

Cf1

12

21C

=⋅=τ

11

22

CdC

CdC

TdTd

−+=ττ

%1.0C

dCCdCd

11

22 →−≅

ττ

Page 37: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

LKCH KIRCHOFF “CHARGE” LAW

∑=

=n

1ii 0Q

jCjj VCQ =

jC

. . a b + - xV yV

jCV

0t1 >

12 tt >

2tt =at

))t(V)t(V()t(V)t(VV 1y1x2y2xC j−−−=

=jCVVoltage across the capacitor voltage difference (at present time) across the capacitor minus initial condition (at past time).

Page 38: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

CHARGE CONSERVATION ANALYSIS METHOD

)n(q)1n(q)n(q CML +−=

1n − 21n − n 2

1n + Tt

1V+ - 2V

+

-

1φ 2φ•

•••

••

1C 2C

•φ•EXAMPLE

for 2φ0)]2

1n(V)n(V[C)]21n(V)n(V[C o

1e21

o2

e22 =−−+−−

for 1φ)1n(V)2

1n(V0)]1n(V)21n(V[C e

2o2

e2

o22 −=−⇒=−−−

1φ 2φ

Page 39: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

THEN

)1n(vC)1n(vC)n(vC)n(vC o11

o22

o22

o21 −+−=+

1o11

o2

12

o221 Z)Z(VC)Z(VZC)Z(V)CC( −− =−+

1

1

1

1

2

1

21

1

1

1

oo

Z1Z

ZCC

CCC

ZCC

)Z(H −

α−α+=

−+

=

1

1

1

1

2

1

21

1

1

1

oo

Z1Z

ZCC

CCC

ZCC

)Z(H −

α−α+=

−+

=

)Z(VZ)Z(V

)Z(V)Z(V)Z(H o

in

21e

ooin

oooo

==

Page 40: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

)21n(V)n(V e

2e2 +=

)]21n(V)2

1n(V[C)]21n(V)2

1n(V[C o1

o21

o2

o22 −−++−−+

21o

1121o

2121

21o

22 Z)Z(VCZ)Z(VC]ZZ)][Z(V[C−−

=+−

21o

11o21

o2

12 Z)Z(VC)Z(VC)Z(V)Z1(C

−− =+−

1212

11

11

2

11

o1

o2

ZCCCZC

C)Z1(CZC

)Z(V

)Z(V−

−+=

+−=

21212

1

212

1o

1

o2

CST)CC()CC(C

CZ)CC(C

)Z(V)Z(V

−+++=

−+=

For high-sampling rate ST1Z +≅

1T <<ω

T)CC(C

511

T5)C

CC(1

1T5)CC(C

C)Z(V

)Z(V

121

112121

1o1

o2

+

+=

++

=++

=

ST1Z +≅

12

c12

1d3

CC1

f21

T)CC(C

21f

+⋅

π=

+⋅

π≅β

Aside:

12c

1221

d3

CCf

21

CTC

121

CR1

21f ⋅

π=⋅

π≅⋅

π≅β

Page 41: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Switched-Capacitor (SC) Filters How to design SC Filters ?

- Two basic approaches

Approximation Methods in the s-plane

H(s) H(z) mapping Select a RC-Active Filter Topology

Pick a SC Filter topology, and use coefficient matching to determine capacitor values

Use a high-sampling rate and substitute R’s by SC resistors

SC Filter Implementation

Filter Specifications

Page 42: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Systematic SC Filter Design

doesn’t meet specs does meet specs

Software tools: Fiesta, Cadence, etc.

Design specifications

Block, circuit diagrams Transfer function Design equations

SC Filter Design

Simulate Filter (SWITCAP, ASIZ, etc.)

Additional specifications

Design amplifiers,

switches, etc.

Verify design

Simulate SC at transistor level (if possible)

Layout circuit

Extract layout

Fabricate

Test

Page 43: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

What are the advantages and disadvantages of the two filter design procedures ?

•Mapping Techniques

+ Systematic and well documented (see Matlab)

+ It can use any sampling rate, including the (minimum) Nyquist rate.

- Difficult to implement by hand calculation

•Transforming R to SC resistors

+ It is, conceptually, easier to follow for analog designer

+ Its design is straightforward

- Yields not an optimal design for area, imposed high sampling rate involves larger capacitor ratios.

Page 44: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Switched-Capacitor Filters Components

1

1 2

2 vi

vo -

Basic Elements

Capacitors • polysilicon • metal1-metal2 • parasitics, clock-feedthrough

Switches • N-MOS • Transmission gates • Noise and on-resistance

OTAS • DC-gain • settling time (GBW, phase margin) • noise

Non-overlapping clock phases

Typical switched-capacitor integrator

+

CR

CF

Page 45: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Switched-Capacitor Filters: CAPACITORS

polysilicon

metal1-metal2

C1 CP1 CP2’’

CP2’

poly2

poly1

substrate

CP1, CP2’’ are very small (1-5 % of C1) CP2’ is around 10-30 % of C1

C1

CP1 CP2

metal2

metal1

substrate

Thick oxide

C1

CP1 CP2

Page 46: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

SWITCHES

N-MOS

• Transmission gates

G

1 2

B

•V1, V2 < VG-VT (VT ~ 1 V)

• Resistance

• Small resistance for low voltages but high resistance for large voltages

• Rail to rail operation, provided that VDD and IVSSI > VT

• Smaller resistance (fast response)

• 2 clock phases

• More parasitics

( )TGSoxn VVWCLRs

−µ≅

VDD

1 2 VSS

VDD

VSS

MOS transistors biased in triode region, ~100-100 kΩ Off resistances ~ G Ω

Page 47: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Switched-Capacitor Filters: SWITCHES

Transmission gates

( )Toxnn V1VVDDWC

LR−−µ

VDD

1 2 VSS

VDD

VSS

RnIIRp

Rn Rp

VDD VSS

V1,V2

Rn Rp

VDD=1V VSS=-1V

V1,V2

For V1, V2=0, W/L=1, µnCOX=10-4 Rn=10k/(VDD-1) If VDD, IVSSI<VT, the resistance is extremely high!!!

Page 48: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Switches (continues)

•CGS and CGD are Linear polysilicon capacitors, introduce offset voltage.

•CSB,DB are non-linear capacitors, introduce harmonic distortion components.

•Mobile charge introduces gain errors and harmonic distortion components.

G

D S

B

)VV(WLCeargchmobile

C

VSB21

WLC21C

WLC21WLCC

TGSOX

jBSF

0jBD,BS

OXDOXGD,GS

−=−

+=

+=

B B

mobile charge

G D S

B

Page 49: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Operational Transconductance Amplifier

PRACTICAL CONSIDERATIONS: • DC-gain. The inverting input is not a real virtual ground. vinvert=vo/Adc

• Settling time. C1 must be discharged during phase 1. The main limitation is due to limited output current and phase margin.

•Clock feedthrough. Can be alleviated by using especial clocking schemes.

• Noise. In most of the practical cases the dominant noise components are due to the Switches!!!

1

1 2

2 vi

vo -

C1

Cf

Page 50: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Switched-Capacitor Integrator Analysis

1 2

C1

vi vo

-

Basic Stray-Sensistive Integrator

Charge conservation Principle: Charge injected by C1 is equal to the charge absorved by CF (∆QCI=∆QCF)

Phase 1 CF

2/Tttt 00 +≤<

Phase 2 Ttt2/Tt 00 +≤<+

1 1 1 1 t

Vi(t0+T/2)

t0 2 2 2

∆V0

∆V0CF = -∆QC1 )2/NTt(vCF

1Cv 0i0 +−=∆

+

Page 51: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Switched-Capacitor Stray-Sensitive Integrator Analysis

1 2

C1

vi vo

-

Basic Integrator

( ) ( )[ ] ( ) ( )[ ] 0C)2/Tt(v0C)t(v0C0)2/Tt(vC00 f00f010i1 =+−−−+−+−−

( ) ( ))t(v)2/NTt(v

tv)t(v)2/NTt(v)2/NTt(v

tv)t(v

0CF0CF

0CFCF

0i01C

i1C

=+=

+=+=

Charge conservation Principle: Charge injected by C1 is equal to the charge absorved by CF (∆QCI=∆QCF)

Phase 1

Solving for phase 2 (t=t0+T)

CF 2/Tttt 00 +≤<

Phase 2 Ttt2/Tt 00 +≤<+

1

2/1

f

1

z1z

CC)z(H −

−−=

Page 52: Mathematical Background • Basic Building Blocks • SC Filters • SC …s-sanchez/622-SC-part1 2011.pdf ·  · 2014-10-01fundamentals on sc circuits ... a c 1 b c o m p l e x

Switched-Capacitor Integrators : Stray-Insensitive Integrators

1 1

2 2

vi vo

-

1

1 2

2 vi

vo -

Backward Integrator Forward Integrator

( ) ( ) ( )[ ] 0C0)2/TnT(vC0)nT(vC0)nT(v f0f0ini =−−−−+−

( ) ( ) f0f0 C0)TnT(vC0)2/TnT(v0 −−−−−=

Charge conservation ==> Phase 1

Phase 2

Solving for phase 1 [ ] 0C)TnT(v)nT(vC)nT(v f00ini =−−−

1f

in

z11

CC)z(H

−−−=

( ) ( ) ( )[ ] 0C)2/TnT(vC)nT(vC)2/TNT(v0 f0f0ini =−−+−−

)2/TNT(v)2/TNT(v)TnT(vC)2/TnT(vC0

icin

0f0f−=−

−−−=

Charge conservation ==> Phase 1

Phase 2

[ ] 0C)TnT(v)nT(vC)2/TnT(v f00ini =−−−−

1

2/1

f

in

z1z

CC)z(H

−=

Cin Cf

Cin

Cf