Top Banner
. . . . . . Section 5.5 Integration by Substitution Math 1a Introduction to Calculus April 21, 2008 Announcements Midterm III is Wednesday 4/30 in class Friday 5/2 is Movie Day! Problem Sessions Sunday, Thursday, 7pm, SC 310 Office hours Tues, Weds, 2–4pm SC 323 Final (tentative) 5/23 9:15am . Image: Flickr user kchbrown
32

Lesson 29: Integration by Substitution

Jun 24, 2015

Download

Education

The method of substitution undoes the chain rule.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 29: Integration by Substitution

. . . . . .

Section5.5IntegrationbySubstitution

Math1aIntroductiontoCalculus

April21, 2008

Announcements

◮ MidtermIII isWednesday4/30inclass◮ Friday5/2isMovieDay!◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ Final(tentative)5/239:15am

.

.Image: Flickruserkchbrown

Page 2: Lesson 29: Integration by Substitution

. . . . . .

Announcements

◮ MidtermIII isWednesday4/30inclass◮ Friday5/2isMovieDay!◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ Final(tentative)5/239:15am

Page 3: Lesson 29: Integration by Substitution

. . . . . .

HappyPatriot’sDay!

Listen, mychildren, andyoushallhearOfthemidnightrideofPaulRevere,OntheeighteenthofApril, inSeventy-Five;HardlyamanisnowaliveWhoremembersthatfamousdayandyear.

—HenryWadsworthLongfellow

Page 4: Lesson 29: Integration by Substitution

. . . . . .

RevereandDawes

Page 5: Lesson 29: Integration by Substitution

. . . . . .

Outline

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegrals

SubstitutionforDefiniteIntegralsTheoryExamples

Worksheet

Page 6: Lesson 29: Integration by Substitution

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Theorem(TheFundamentalTheoremofCalculus)

1. Let f becontinuouson [a,b]. Then

ddx

∫ x

af(t)dt = f(x)

2. Let f becontinuouson [a,b] and f = F′ forsomeotherfunction F. Then ∫ b

aF′(x)dx = F(b) − F(a).

Page 7: Lesson 29: Integration by Substitution

. . . . . .

Techniquesofantidifferentiation?

Sofarweknowonlyafewrulesforantidifferentiation. Somearegeneral, like∫

[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx

Someareprettyparticular, like∫1

x√x2 − 1

dx = arcsec x + C.

Whatarewesupposedtodowiththat?

Page 8: Lesson 29: Integration by Substitution

. . . . . .

Techniquesofantidifferentiation?

Sofarweknowonlyafewrulesforantidifferentiation. Somearegeneral, like∫

[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx

Someareprettyparticular, like∫1

x√x2 − 1

dx = arcsec x + C.

Whatarewesupposedtodowiththat?

Page 9: Lesson 29: Integration by Substitution

. . . . . .

Techniquesofantidifferentiation?

Sofarweknowonlyafewrulesforantidifferentiation. Somearegeneral, like∫

[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx

Someareprettyparticular, like∫1

x√x2 − 1

dx = arcsec x + C.

Whatarewesupposedtodowiththat?

Page 10: Lesson 29: Integration by Substitution

. . . . . .

Sofarwedon’thaveanywaytofind∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, wecanbesmartandusethe“anti”versionofoneofthemostimportantrulesofdifferentiation: thechainrule.

Page 11: Lesson 29: Integration by Substitution

. . . . . .

Sofarwedon’thaveanywaytofind∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, wecanbesmartandusethe“anti”versionofoneofthemostimportantrulesofdifferentiation: thechainrule.

Page 12: Lesson 29: Integration by Substitution

. . . . . .

Outline

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegrals

SubstitutionforDefiniteIntegralsTheoryExamples

Worksheet

Page 13: Lesson 29: Integration by Substitution

. . . . . .

SubstitutionforIndefiniteIntegrals

ExampleFind ∫

x√x2 + 1

dx.

SolutionStareatthislongenoughandyounoticethetheintegrandisthederivativeoftheexpression

√1 + x2.

Page 14: Lesson 29: Integration by Substitution

. . . . . .

SubstitutionforIndefiniteIntegrals

ExampleFind ∫

x√x2 + 1

dx.

SolutionStareatthislongenoughandyounoticethetheintegrandisthederivativeoftheexpression

√1 + x2.

Page 15: Lesson 29: Integration by Substitution

. . . . . .

Solution(Moreslowly, now)

Let u = x2 + 1. Thendudx

= 2x andso

ddx

√u =

12√ududx

=x√

x2 + 1

Thus ∫x√

x2 + 1dx =

√1 + x2 + C.

Page 16: Lesson 29: Integration by Substitution

. . . . . .

Solution(Sametechnique, newnotation)Let u = x2 + 1. Then du = 2x dx and

√1 + x2 =

√u. Sothe

integrandbecomescompletelytransformedinto∫x√

x2 + 1dx =

∫1√u

(12du

)=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 17: Lesson 29: Integration by Substitution

. . . . . .

TheoremoftheDay

Theorem(TheSubstitutionRule)If u = g(x) isadifferentiablefunctionwhoserangeisaninterval Iand f iscontinuouson I, then∫

f(g(x))g′(x)dx =

∫f(u)du

or ∫f(u)

dudx

dx =

∫f(u)du

Page 18: Lesson 29: Integration by Substitution

. . . . . .

Example

Find∫

tan x dx.

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx

= −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 19: Lesson 29: Integration by Substitution

. . . . . .

Example

Find∫

tan x dx.

SolutionLet u = cos x. Then du = − sin x dx.

So∫tan x dx =

∫sin xcos x

dx

= −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 20: Lesson 29: Integration by Substitution

. . . . . .

Example

Find∫

tan x dx.

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx

= −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 21: Lesson 29: Integration by Substitution

. . . . . .

Outline

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegrals

SubstitutionforDefiniteIntegralsTheoryExamples

Worksheet

Page 22: Lesson 29: Integration by Substitution

. . . . . .

Theorem(TheSubstitutionRuleforDefiniteIntegrals)If g′ iscontinuousand f iscontinuousontherangeof u = g(x),then ∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(u)du.

Page 23: Lesson 29: Integration by Substitution

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution(SlowWay)

Firstcomputetheindefiniteintegral∫

cos2 x sin x dx andthen

evaluate. Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x + C.

Therefore ∫ π

0cos2 x sin x dx = −1

3 cos3 x

∣∣π0 = 2

3 .

Page 24: Lesson 29: Integration by Substitution

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution(SlowWay)

Firstcomputetheindefiniteintegral∫

cos2 x sin x dx andthen

evaluate.

Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x + C.

Therefore ∫ π

0cos2 x sin x dx = −1

3 cos3 x

∣∣π0 = 2

3 .

Page 25: Lesson 29: Integration by Substitution

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution(SlowWay)

Firstcomputetheindefiniteintegral∫

cos2 x sin x dx andthen

evaluate. Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x + C.

Therefore ∫ π

0cos2 x sin x dx = −1

3 cos3 x

∣∣π0 = 2

3 .

Page 26: Lesson 29: Integration by Substitution

. . . . . .

Solution(FastWay)Doboththesubstitutionandtheevaluationatthesametime.

Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du

=

∫ 1

−1u2 du

= 13u

3∣∣1−1 =

23

.

Page 27: Lesson 29: Integration by Substitution

. . . . . .

Solution(FastWay)Doboththesubstitutionandtheevaluationatthesametime. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1.

So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du

=

∫ 1

−1u2 du

= 13u

3∣∣1−1 =

23

.

Page 28: Lesson 29: Integration by Substitution

. . . . . .

Solution(FastWay)Doboththesubstitutionandtheevaluationatthesametime. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du

=

∫ 1

−1u2 du

= 13u

3∣∣1−1 =

23

.

Page 29: Lesson 29: Integration by Substitution

. . . . . .

ExampleFind ∫ 3π/2

πcot5

6

)sec2

6

)dθ.

Page 30: Lesson 29: Integration by Substitution

. . . . . .

SolutionLet φ =

θ

6. Then dφ =

16dθ.

∫ 3π/2

πcot5

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φdφ

= 6∫ π/4

π/6

sec2 φdφ

tan5 φ

Nowlet u = tanφ. So du = sec2 φdφ, and

6∫ π/4

π/6

sec2 φdφ

tan5 φ= 6

∫ 1

1/√3u−5 du

= 6(−14u−4

)∣∣∣∣11/

√3

=32

[9− 1] = 12.

Page 31: Lesson 29: Integration by Substitution

. . . . . .

SolutionLet φ =

θ

6. Then dφ =

16dθ.

∫ 3π/2

πcot5

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φdφ

= 6∫ π/4

π/6

sec2 φdφ

tan5 φ

Nowlet u = tanφ. So du = sec2 φdφ, and

6∫ π/4

π/6

sec2 φdφ

tan5 φ= 6

∫ 1

1/√3u−5 du

= 6(−14u−4

)∣∣∣∣11/

√3

=32

[9− 1] = 12.

Page 32: Lesson 29: Integration by Substitution

. . . . . .

Outline

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegrals

SubstitutionforDefiniteIntegralsTheoryExamples

Worksheet