Top Banner
INTEGRATION BY SUBSTITUTION Section 6.2a
16

Integration by Substitution

Feb 22, 2016

Download

Documents

menefer

Integration by Substitution. Section 6.2a. The New Method. A change of variables can often turn an unfamiliar integral into one that we can evaluate…. This method is called the substitution method of integration. The New Method. Generally, this method is used when integrating a composite - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Integration by Substitution

INTEGRATION BY SUBSTITUTION

Section 6.2a

Page 2: Integration by Substitution

A change of variables can often turn anunfamiliar integral into one that we canevaluate…

This method is called thesubstitution method of integration.

The New Method

Page 3: Integration by Substitution

The New MethodGenerally, this method is used when integrating a compositefunction, and the derivative of the inside function is alsopresent in the integrand:

f g x g x dx f u du

1. Substitute u = g(x), du = g (x)dx

F u C 2. Evaluate by finding an antiderivative F (u) of f (u)

F g x C 3. Replace u by g(x)

Page 4: Integration by Substitution

Initial Practice ProblemsEvaluate 52x dxLet 2u x Then 2du d x dx

Substitute: 5 52x dx u du 6

6u C

626

xC

(Substitute)

Page 5: Integration by Substitution

Initial Practice ProblemsEvaluate 4 1x dx

Let 4 1u x Then 4du dx14

dx du

Substitute: 1 2 14 14

x dx u du

1 214u du 3 21 2

4 3u C

3 216u C 3 21 4 1

6x C

Page 6: Integration by Substitution

Initial Practice ProblemsEvaluate cos 7 5x dx

Let 7 5u x Then 7du dx17

dx du

Substitute: 1cos 7 5 cos7

x dx u du

1 cos7

u du 1 sin7

u C

1 sin 7 57

x C

Page 7: Integration by Substitution

Initial Practice ProblemsEvaluate tan x dxLet cosu x Then sindu xdx

Substitute:sincosx dudxx u

duu

ln u C

sincosx dxx

1ln Cu

1lncos

Cx

ln sec x C

Page 8: Integration by Substitution

Substitution in Definite IntegralsInstead of the last step we’ve been using (re-substitution???):

Substitute , and integrate with u g x du g x dxrespect to u from to . u g a u g b

b g b

a g af g x g x dx f u du

Page 9: Integration by Substitution

Evaluating Definite IntegralsEvaluate

4 2

0tan secx xdx

Let tanu x Then 2secdu xdx

Also, notice: 0 tan 0 0u tan 14 4

u

Substitute:4 12

0 0tan secx xdx udu

12

02u

1 102 2

Page 10: Integration by Substitution

Two Possible Methods?Evaluate

1 2 3

13 1x x dx

Let 3 1u x Then 23du x dx

Also, notice: 1 0u 1 2u

23 2

0

23u

4 23

Method 1

Substitute: 1 22 3

1 03 1x x dx udu

Page 11: Integration by Substitution

Two Possible Methods?Evaluate

1 2 3

13 1x x dx

Let 3 1u x Then 23du x dx

13 2

1

23

x

x

u

13 23

1

2 13x

Substitute:1 12 3

1 13 1

x

xx x dx udu

4 23

Method 2

Page 12: Integration by Substitution

Guided PracticeEvaluate the given integral.

2

3

9

1

r dr

r

31u r 36 1 r C 23du r dr

213du r dr

1 2193

u du

1 23 2u C

Page 13: Integration by Substitution

Guided PracticeEvaluate the given integral.

sinu xcosdu xdx

4u du51

5u C

4sin cosx x dx

5sin5x C

Page 14: Integration by Substitution

Guided PracticeEvaluate the given integral.

7

0 2dxx 2u x

9ln 1.5042

du dx

0 2u

7 9u

9

2

1 duu

9

2ln u

ln 9 ln 2

Page 15: Integration by Substitution

Guided PracticeEvaluate the given integral.

tanu x2secdu xdx

14

u

14

u

1 2

1u du

4 2 2

4tan secx xdx

23

13

13u

1 13 3

Page 16: Integration by Substitution

Guided PracticeEvaluate the given integral.

lnu x1du dxx

1u e

6 ln 6u

ln6

1

1 duu

ln 6

1ln u

ln ln 6 ln1

6

lne

dxx x

ln ln 6 0.583