Top Banner
. . . . . . Section 5.5 Integration by Substitution, Part Deux V63.0121, Calculus I April 29, 2009 Announcements I Class on Monday will be review
56

Lesson 27: Integration by Substitution, part II (Section 10 version)

Jul 03, 2015

Download

Education

More examples and strategies.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Section5.5IntegrationbySubstitution, PartDeux

V63.0121, CalculusI

April29, 2009

Announcements

I ClassonMondaywillbereview

Page 2: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Yes, thereisclassonMonday

I NonewmaterialI WewillreviewthecourseI Wewillanswerquestions, sobringsome

Page 3: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Finalstuff

I Oldfinalsonline, includingFall2008I Reviewsessions: May5and6, 6:00–8:00pm, SILV 703I FinalisMay8, 2:00–3:50pminCANT 101/200

.

.Imagecredit: Pragmagraphr

Page 4: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

ResurrectionPolicyIfyourfinalscorebeatsyourmidtermscore, wewilladd10%toitsweight, andsubtract10%fromthemidtermweight.

..Imagecredit: ScottBeale/LaughingSquid

Page 5: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Outline

Recall: Themethodofsubstitution

Multiplesubstitutions

OddandevenfunctionsExamples

Moreexamplesandadvice

CourseEvaluations

Page 6: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

LastTime: TheSubstitutionRule

TheoremIf u = g(x) isadifferentiablefunctionwhoserangeisaninterval Iand f iscontinuouson I, then∫

f(g(x))g′(x)dx =

∫f(u)du

or ∫f(u)

dudx

dx =

∫f(u)du

Page 7: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

LastTime: TheSubstitutionRuleforDefiniteIntegrals

TheoremIf g′ iscontinuousand f iscontinuousontherangeof u = g(x),then ∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(u)du.

I Theintegralonthelefthappensin“x-land”, soitslimitsarevaluesof x

I Theintegralontherighthappensin“u-land”, soitslimitsneedtobevaluesof u

I Toconvert x to u, simplyapplythesubstitution u = g(x).

Page 8: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

LastTime: TheSubstitutionRuleforDefiniteIntegrals

TheoremIf g′ iscontinuousand f iscontinuousontherangeof u = g(x),then ∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(u)du.

I Theintegralonthelefthappensin“x-land”, soitslimitsarevaluesof x

I Theintegralontherighthappensin“u-land”, soitslimitsneedtobevaluesof u

I Toconvert x to u, simplyapplythesubstitution u = g(x).

Page 9: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Outline

Recall: Themethodofsubstitution

Multiplesubstitutions

OddandevenfunctionsExamples

Moreexamplesandadvice

CourseEvaluations

Page 10: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Anexponentialexample

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. Wehave∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 8

3

√u + 1du

Nowlet y = u + 1, dy = du. So

12

∫ 8

3

√u + 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94

=13

(27− 8) =193

Page 11: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Anexponentialexample

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. Wehave∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 8

3

√u + 1du

Nowlet y = u + 1, dy = du. So

12

∫ 8

3

√u + 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94

=13

(27− 8) =193

Page 12: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Anexponentialexample

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. Wehave∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 8

3

√u + 1du

Nowlet y = u + 1, dy = du. So

12

∫ 8

3

√u + 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94

=13

(27− 8) =193

Page 13: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1

, sothat du = 2e2x dx. Then∫ ln√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 14: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1, sothat du = 2e2x dx.

Then∫ ln√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 15: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1, sothat du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 16: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1, sothat du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 17: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Anotherwaytoskinthatcat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1, sothat du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√udu

=13u3/2

∣∣∣∣94

=13

(27− 8) =193

Page 18: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

A thirdskinnedcat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u =

√e2x + 1, sothat

u2 = e2x + 1

=⇒ 2udu = 2e2x dx

Thus ∫ ln√8

ln√3

e2x√

e2x + 1dx =

∫ 3

2u · udu =

13u3

∣∣∣∣32

=193

Page 19: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

A thirdskinnedcat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u =

√e2x + 1, sothat

u2 = e2x + 1 =⇒ 2udu = 2e2x dx

Thus ∫ ln√8

ln√3

e2x√

e2x + 1dx =

∫ 3

2u · udu =

13u3

∣∣∣∣32

=193

Page 20: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

A thirdskinnedcat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u =

√e2x + 1, sothat

u2 = e2x + 1 =⇒ 2udu = 2e2x dx

Thus ∫ ln√8

ln√3

e2x√

e2x + 1dx =

∫ 3

2u · udu =

13u3

∣∣∣∣32

=193

Page 21: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Outline

Recall: Themethodofsubstitution

Multiplesubstitutions

OddandevenfunctionsExamples

Moreexamplesandadvice

CourseEvaluations

Page 22: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example

Find∫ π

−πsin(x)dx

Solution

∫ π

−πsin(x) = − cos(x)|π−π = cos(x)|−π

π = cos(−π) − cos(π) = 0

Thisisobviousfromthegraph:

. .x

.y

Page 23: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example

Find∫ π

−πsin(x)dx

Solution

∫ π

−πsin(x) = − cos(x)|π−π = cos(x)|−π

π = cos(−π) − cos(π) = 0

Thisisobviousfromthegraph:

. .x

.y

Page 24: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example

Find∫ π

−πsin(x)dx

Solution

∫ π

−πsin(x) = − cos(x)|π−π = cos(x)|−π

π = cos(−π) − cos(π) = 0

Thisisobviousfromthegraph:

. .x

.y

Page 25: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

EvenandOddFunctions

DefinitionA function f is even ifforall x,

f(−x) = f(x)

A function f is odd ifforall x,

f(−x) = −f(x).

Thesepropertiesarerevealedinthegraph.I Anoddfunctionhasrotationalsymmetryabouttheorigin.I Anevenfunctionhasreflectivesymmetryinthe y-axis

Page 26: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

EvenandOddFunctions

DefinitionA function f is even ifforall x,

f(−x) = f(x)

A function f is odd ifforall x,

f(−x) = −f(x).

Thesepropertiesarerevealedinthegraph.I Anoddfunctionhasrotationalsymmetryabouttheorigin.I Anevenfunctionhasreflectivesymmetryinthe y-axis

Page 27: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

EvenandOddFunctions

DefinitionA function f is even ifforall x,

f(−x) = f(x)

A function f is odd ifforall x,

f(−x) = −f(x).

Thesepropertiesarerevealedinthegraph.

I Anoddfunctionhasrotationalsymmetryabouttheorigin.I Anevenfunctionhasreflectivesymmetryinthe y-axis

Page 28: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

EvenandOddFunctions

DefinitionA function f is even ifforall x,

f(−x) = f(x)

A function f is odd ifforall x,

f(−x) = −f(x).

Thesepropertiesarerevealedinthegraph.I Anoddfunctionhasrotationalsymmetryabouttheorigin.

I Anevenfunctionhasreflectivesymmetryinthe y-axis

Page 29: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

EvenandOddFunctions

DefinitionA function f is even ifforall x,

f(−x) = f(x)

A function f is odd ifforall x,

f(−x) = −f(x).

Thesepropertiesarerevealedinthegraph.I Anoddfunctionhasrotationalsymmetryabouttheorigin.I Anevenfunctionhasreflectivesymmetryinthe y-axis

Page 30: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

EvenandOddfunctionspictured

. .x

.y.odd

.x

.y.even

Page 31: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Examplesofsymmetricfunctions

Evenandoddfunctionsabound.I x 7→ xn isoddwhen n isoddandevenwhen n iseven.Funny, that!

I sin isoddand cos iseven.

Page 32: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Combiningsymmetricfunctions

Theorem

(a) Thesumofevenfunctionsiseven. Thesumofoddfunctionsisodd.

(b) Theproductofevenfunctionsiseven. Theproductofoddfunctionsiseven. Theproductofanoddfunctionandanevenfunctionisanoddfunction.

(c) If g iseven, then f ◦ g iseven. Thecompositionoftwooddfunctionsisodd. Thecompositionofanevenfunctionandanoddfunctioniseven.

Page 33: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Integratingsymmetricfunctions

TheoremLet a beanynumber.

(a) If f isodd, then ∫ a

−af(x)dx = 0.

(b) If f iseven, then ∫ a

−af(x)dx = 2

∫ a

0f(x)dx.

Page 34: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Integratingsymmetricfunctions

TheoremLet a beanynumber.

(a) If f isodd, then ∫ a

−af(x)dx = 0.

(b) If f iseven, then ∫ a

−af(x)dx = 2

∫ a

0f(x)dx.

Page 35: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Proof(odd f).

Tocompute∫ a

−af(x)dx, let u = −x. Then du = −dx andwehave

∫ a

−af(x)dx = −

∫ −a

af(−u)du

=

∫ −a

af(u)du

= −∫ a

−af(u)du.

Theonlynumberwhichisequaltoitsownnegativeiszero.

Page 36: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Proof(even f).Withthesamesubstitutionwehave∫ 0

−af(x)dx = −

∫ 0

af(−u)du

= −∫ 0

af(u)du

=

∫ a

0f(u)du.

So ∫ a

−af(x)dx =

∫ 0

−af(x)dx +

∫ a

0f(x)dx = 2

∫ a

0f(x)dx.

Page 37: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

ExampleCompute ∫ e

√π+1

−e√

π−1sin(x)

√1 + cos3(x)dx.

SolutionTheintegrandisodd! Sotheansweriszero.

Page 38: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

ExampleCompute ∫ e

√π+1

−e√

π−1sin(x)

√1 + cos3(x)dx.

SolutionTheintegrandisodd! Sotheansweriszero.

Page 39: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

ExampleCompute ∫ 2

−2

(x4 + x2 + 3

)dx.

Page 40: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

SolutionBecausetheintegrandisevenwecansimplifyourarithmetic. It’sespeciallynicetopluginzerosincetheresultisoftenzero.∫ 2

−2

(x4 + x2 + 3

)dx = 2

∫ 2

0

(x4 + x2 + 3

)dx

= 2[x5

5+

x3

3+ 3x

]20

= 2[25

5+

23

3+ 3(2)

]= 2

[325

+83

+ 6]

=215

(32 · 3 + 8 · 5 + 6 · 15)

=2 · 22615

Page 41: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Outline

Recall: Themethodofsubstitution

Multiplesubstitutions

OddandevenfunctionsExamples

Moreexamplesandadvice

CourseEvaluations

Page 42: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫x3

(5x4 + 2)2dx

SolutionLet u = 5x4 + 2, so du = 20x3 dx. Then∫

x3

(5x4 + 2)2dx =

120

∫1u2

du

= − 120

· 1u

+ C

= − 120(5x4 + 2)

+ C

Page 43: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫x3

(5x4 + 2)2dx

SolutionLet u = 5x4 + 2, so du = 20x3 dx. Then∫

x3

(5x4 + 2)2dx =

120

∫1u2

du

= − 120

· 1u

+ C

= − 120(5x4 + 2)

+ C

Page 44: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫sin(sin(θ)) cos(θ)dθ

SolutionLet u = sin(θ), so du = cos(θ)dθ. Then∫

sin(sin(θ)) cos(θ)dθ =

∫sin(u)du

= − cos(u) + C

= − cos(sin(θ)) + C

Page 45: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫sin(sin(θ)) cos(θ)dθ

SolutionLet u = sin(θ), so du = cos(θ)dθ. Then∫

sin(sin(θ)) cos(θ)dθ =

∫sin(u)du

= − cos(u) + C

= − cos(sin(θ)) + C

Page 46: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫ex + e−x

ex − e−x dx

SolutionThenumeratoristhederivativeofthedenominator! Letu = ex − e−x, so du =

(ex + e−x) dx. Then∫

ex + e−x

ex − e−x dx =

∫1udu

= ln |u| + C = ln∣∣ex − e−x

∣∣ + C

Page 47: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫ex + e−x

ex − e−x dx

SolutionThenumeratoristhederivativeofthedenominator! Letu = ex − e−x, so du =

(ex + e−x) dx. Then∫

ex + e−x

ex − e−x dx =

∫1udu

= ln |u| + C = ln∣∣ex − e−x

∣∣ + C

Page 48: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫3x

1 + 9xdx

SolutionNotice 9x = (32)x = 32x = (3x)2. Solet u = 3x,du = (ln 3) · 3x dx. Then∫

3x

(1 + 9x)dx =

1ln 3

∫1

1 + u2du

=1ln 3

arctan(u) + C

=1ln 3

arctan(3x) + C

Page 49: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫3x

1 + 9xdx

SolutionNotice 9x = (32)x = 32x = (3x)2. Solet u = 3x,du = (ln 3) · 3x dx. Then∫

3x

(1 + 9x)dx =

1ln 3

∫1

1 + u2du

=1ln 3

arctan(u) + C

=1ln 3

arctan(3x) + C

Page 50: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫sec2

√x√

xdx

SolutionLet u =

√x, so du =

12√xdu. Then

∫sec2

√x√

xdx = 2

∫sec2(u)du

= 2 tan(u) + C

= 2 tan(√

x)

+ C

Page 51: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫sec2

√x√

xdx

SolutionLet u =

√x, so du =

12√xdu. Then

∫sec2

√x√

xdx = 2

∫sec2(u)du

= 2 tan(u) + C

= 2 tan(√

x)

+ C

Page 52: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫dx

x ln x

SolutionLet u = ln x, so du =

1xdx. Then∫dx

x ln x=

∫1udu

= ln |u| + C

= ln |ln x| + C

Page 53: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Example∫dx

x ln x

SolutionLet u = ln x, so du =

1xdx. Then∫dx

x ln x=

∫1udu

= ln |u| + C

= ln |ln x| + C

Page 54: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Whatdowesubstitute?

I Linearfactors (ax + b) areeasysubstitutions: u = ax + b,du = a dx

I Lookfor function/derivativepairs intheintegrand, onetomake u andonetomake du:

I xn and xn−1 (fudgethecoefficient)I sineandcosine(fudgetheminussign)I ex and exI ax and ax (fudgethecoefficient)

I√x and

1√x(fudgethefactorof 2)

I ln x and1x

Page 55: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

Outline

Recall: Themethodofsubstitution

Multiplesubstitutions

OddandevenfunctionsExamples

Moreexamplesandadvice

CourseEvaluations

Page 56: Lesson 27: Integration by Substitution, part II (Section 10 version)

. . . . . .

CourseEvaluations

I PleasefilloutCAS anddepartmentalevaluationsI CAS goestoSILV 909(needavolunteer)I departmentalgoestoWWH 627(needanothervolunteer)I Thankyouforyourinput!