Top Banner
Volker Krey 1 , Christoph Bertram 2 , Jiyong Eom 3 , Nils Johnson 1 , David Mccollum 1 1) International Institute for Applied Systems Analysis (IIASA), Energy program, Laxenburg, Austria 2) Potsdam Institute for Climate Impact Research, Potsdam, Germany 3) KAIST Business School, Graduate school of green growth, Seoul, Republic of Korea The energy transformation in 2°C pathways: upscaling technology, investment needs, stranded assets, and the role of energy demand
15

Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Apr 14, 2017

Download

Science

Ingrid LE RU
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Volker Krey1, Christoph Bertram2,

Jiyong Eom3, Nils Johnson1, David

Mccollum1

1) International Institute for Applied Systems Analysis (IIASA), Energy program,

Laxenburg, Austria

2) Potsdam Institute for Climate Impact Research, Potsdam, Germany

3) KAIST Business School, Graduate school of green growth, Seoul, Republic

of Korea

The energy transformation

in 2°C pathways:

upscaling technology,

investment needs,

stranded assets, and

the role of energy demand

Page 2: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

2050

2100

2030

Source: AMPERE, Riahi et al. (2015)

Page 3: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Implications of Delaying Action to 2030

Double-challenge:

• Acceleration of the low-

carbon transformation

• Dealing with

consequences of fossil-

fuel “lock-in”

stranded assets in the

order of 100s of GW coal

power plants

Stranded assets (coal power plants)

*Current global electricity generation in 2010 = 2.5 TWyr

Source: AMPERE, Bertram et al. (2015)

*

Page 4: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Upscaling rates of low-carbon

technologies (2030-2050) Annual capacity additions under 2°C target (450 ppm CO2-eq)

Source: after van der Zwaan et al. (2013); data: Eom et al. (2015), AMPERE database;

history: Platts (2014), GWEC, Greentechmedia

0

50

100

150

200

His

tory

(19

80's

)

Imm

edia

te

2030

Del

ay

His

tory

(20

14)

Imm

edia

te

2030

Del

ay

His

tory

(20

14)

Imm

edia

te

2030

Del

ay

His

tory

Imm

edia

te

2030

Del

ay

His

tory

Imm

edia

te

2030

Del

ay

Nuclear Wind Solar Coal CCS Gas CCS

Ann

ual c

apac

ity a

dditi

ons

[GW

/yr]

348 901

dem

onst

ratio

n

dem

onst

ratio

n

Page 5: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Billio

n U

SD

pe

r ye

ar

IMAG

E

MESSA

GE

REM

IND

TIAM

-ECN

WIT

CH

GEA

IEA

IMAG

E

MESSA

GE

REM

IND

TIAM

-ECN

WIT

CH

IMAG

E

MESSA

GE

REM

IND

TIAM

-ECN

WIT

CH

GEA

0

500

1000

1500

2000

2500

3000

3500

0

RefPol RefPol-450

2010 2010-2050 2010-2050

Energy Efficiency

Others

Liquids - Biofuels

Liquids - Fossil Fuels

Electricity - T&D and Storage

Electricity - Nuclear

Electricity - Renewables

Electricity - Fossil Fuels

Extraction - Others

Extraction - Fossil Fuels

Total: ~$1000 billion/yr (2% of global GDP)

• Fossil: ~$500 billion/yr

• Renewables: ~$250 billion/yr

• Other (Nuclear, T&D): ~$300 billion/yr

Sectoral Energy Investments

Source: LIMITS, McCollum et al. (2013)

Page 6: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Billio

n U

SD

pe

r ye

ar

IMAG

E

MESSA

GE

REM

IND

TIAM

-ECN

WIT

CH

GEA

IEA

IMAG

E

MESSA

GE

REM

IND

TIAM

-ECN

WIT

CH

IMAG

E

MESSA

GE

REM

IND

TIAM

-ECN

WIT

CH

GEA

0

500

1000

1500

2000

2500

3000

3500

0

RefPol RefPol-450

2010 2010-2050 2010-2050

Energy Efficiency

Others

Liquids - Biofuels

Liquids - Fossil Fuels

Electricity - T&D and Storage

Electricity - Nuclear

Electricity - Renewables

Electricity - Fossil Fuels

Extraction - Others

Extraction - Fossil Fuels

(current climate

policies, >3 ºC)

(stringent climate

policies, <2 ºC)

Sectoral Energy Investments

So

urc

e:

LIM

ITS

, M

cC

ollu

m e

t a

l. (

201

3)

Page 7: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Billio

n U

SD

pe

r ye

ar

IMAG

E

MESSA

GE

REM

IND

TIAM

-ECN

WIT

CH

GEA

IEA

IMAG

E

MESSA

GE

REM

IND

TIAM

-ECN

WIT

CH

IMAG

E

MESSA

GE

REM

IND

TIAM

-ECN

WIT

CH

GEA

0

500

1000

1500

2000

2500

3000

3500

0

RefPol RefPol-450

2010 2010-2050 2010-2050

Energy Efficiency

Others

Liquids - Biofuels

Liquids - Fossil Fuels

Electricity - T&D and Storage

Electricity - Nuclear

Electricity - Renewables

Electricity - Fossil Fuels

Extraction - Others

Extraction - Fossil Fuels

(current climate

policies, >3 ºC)

(stringent climate

policies, <2 ºC)

Sectoral Energy Investments

So

urc

e:

LIM

ITS

, M

cC

ollu

m e

t a

l. (

201

3)

Page 8: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

An

nu

al In

ve

stm

en

t in

Re

ne

wa

ble

En

erg

y, N

ucle

ar

En

erg

y, a

nd

Effic

ien

cy fro

m 2

01

0-2

05

0 [b

illio

n U

SD

/yr]

CHIN

A+

NORTH

_AM

INDIA

+

EUROPE

LATI

N_A

M

RES

T_ASIA

REF_E

CO

N

AFR

ICA

MID

DLE

_EAST

PAC

_OECD

0

100

200

300

400

500

RefPol-450

RefPol

Dev

elop

ing

Indu

stria

lized

Wor

ld0

500

1000

1500

2000

165

110 120

45 65 80

50 60 60 20

545

245

790

(current climate policies, >3 ºC)

(stringent climate policies, <2 ºC)

Source: LIMITS, McCollum et al. (2013)

Clean-energy Investment “Gap”

Page 9: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Stranded investments due to premature

shut-down of coal power plants

51 53 55 57 59 60 61 58

Increasing 2030 GHG emissions (GtCO2)

Efficiency

*Total energy-related investments are currently about 1000 billion

*

Source: AMPERE, Johnson et al. (2015)

Page 10: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Ch

ina

So

uth

Asia

US

A +

Can

ad

a

Afr

ica

Eu

rop

e

ME

NA

Rest of the world

Stranded investments by region

Source: AMPERE, Johnson et al. (2015)

Page 11: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

1850 1900 1950 2000 2050

EJ

0

200

400

600

800

1000

1200 Savings

Geothermal

Solar

Wind

Hydro

Nuclear

Gas wCCS

Gas woCCS

Oil

Coal wCCS

Coal woCCS

Biomass wCCS

Biomass woCCS

Supply Side Technology Variations

Source: GEA, Riahi et al. (2012)

Feasibility of 450 ppm target under constrained Portfolio

Primary Energy – Slow Energy Intensity Improvement

Un

restr

icte

d P

ort

foli

o

No

Nu

cle

ar

No

BE

CC

S

No

Sin

ks

Lim

ite

d B

ioe

ne

rgy

Lim

ite

d R

en

ew

ab

les

No

CC

S

No

Nu

cle

ar

& C

CS

Lim

. B

io-e

ne

rgy &

Re

ne

wa

ble

s

No

BE

CC

S,

Sin

k &

lim

Bio

en

erg

y

XXXXXXXX

Page 12: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

1850 1900 1950 2000 2050

EJ

0

200

400

600

800

1000

1200 Savings

Geothermal

Solar

Wind

Hydro

Nuclear

Gas wCCS

Gas woCCS

Oil

Coal wCCS

Coal woCCS

Biomass wCCS

Biomass woCCS

Feasibility of 450 ppm target under constrained Portfolio

Primary Energy – Medium Energy Intensity Improvement

Source: GEA, Riahi et al. (2012)

Un

restr

icte

d P

ort

foli

o

No

Nu

cle

ar

No

BE

CC

S

No

Sin

ks

Lim

ite

d B

ioe

ne

rgy

Lim

ite

d R

en

ew

ab

les

No

CC

S

No

Nu

cle

ar

& C

CS

Lim

. B

io-e

ne

rgy &

Re

ne

wa

ble

s

No

BE

CC

S,

Sin

k &

lim

Bio

en

erg

y

XXXX

Page 13: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

1850 1900 1950 2000 2050

EJ

0

200

400

600

800

1000

1200 Savings

Geothermal

Solar

Wind

Hydro

Nuclear

Gas wCCS

Gas woCCS

Oil

Coal wCCS

Coal woCCS

Biomass wCCS

Biomass woCCS

Un

restr

icte

d P

ort

foli

o

No

Nu

cle

ar

No

BE

CC

S

No

Sin

ks

Lim

ite

d B

ioe

ne

rgy

Lim

ite

d R

en

ew

ab

les

No

CC

S

No

Nu

cle

ar

& C

CS

Lim

. B

io-e

ne

rgy &

Re

ne

wa

ble

s

No

BE

CC

S,

Sin

k &

lim

Bio

en

erg

y

Feasibility of 450 ppm target under constrained Portfolio

Primary Energy – Rapid Energy Intensity Improvement

Source: GEA, Riahi et al. (2012)

Page 14: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Working Group III contribution to the IPCC Fifth Assessment Report

Mitigation Costs: role of technology and end-use efficiency

Source: IPCC WGIII AR5, Figure 6.24

Page 15: Krey v 20150709_1730_upmc_jussieu_-_amphi_herpin

Thank you! References

• Riahi et al. (2012) Energy Pathways for Sustainable Development.

The Global Energy Assessment: Toward a More Sustainable

Future. IIASA, Laxenburg, Austria and Cambridge University Press,

Cambridge, UK.

• McCollum et al. (2013) Energy investments under climate policy: a

comparison of global models. Clim. Change Econ., 04:1340010.

• Riahi et al. (2015) Locked into Copenhagen pledges —

Implications of short-term emission targets for the cost and

feasibility of long-term climate goals. TFSC, 90(PA):8-23.

• Bertram et al. (2015) Carbon lock-in through capital stock inertia

associated with weak near-term climate policies. TFSC, 90(PA):62-

72.

• Eom et al. (2015) The impact of near-term climate policy choices on

technology and emission transition pathways. TFSC, 90(PA):73-88.

• Johnson et al. (2015) Stranded on a low-carbon planet:

implications of climate policy for the phase-out of coal-based power

plants. TFSC, 90(PA):89-102.