Top Banner
1. http://www.cesar.umd.edu/cesar/drugs/ritalin.pdf >> pdf Ritalin 2. http://www.ncbi.nlm.nih.gov/pubmed/19445548 Paediatr Drugs. 2009;11(3):203-26. doi: 10.2165/00148581-200911030- 00005. Atomoxetine: a review of its use in attention- deficit hyperactivity disorder in children and adolescents. Garnock-Jones KP 1 , Keating GM . Author information 1 Wolters Kluwer Health mid R: Adis, Auckland, New Zealand, an editorial office of Wolters Kluwer Health, Philadelphia, Pennsylvania, USA. [email protected] Abstract Atomoxetine (Strattera(R)) is a selective norepinephrine (noradrenaline) reuptake inhibitor that is not classified as a stimulant, and is indicated for use in patients with attention- deficit hyperactivity disorder (ADHD). Atomoxetine is effective and generally well tolerated. It is significantly more effective than placebo and standard current therapy and does not differ significantly from or is noninferior to immediate-release methylphenidate; however, it is significantly less effective than the extended-release methylphenidate formulation OROS(R) methylphenidate (hereafter referred to as osmotically released methylphenidate) and extended-release mixed amfetamine salts. Atomoxetine can be administered either as a single daily dose or split into two evenly divided doses, has a negligible risk of abuse or misuse, and is not a controlled substance in the US. Atomoxetine is particularly useful for patients at risk of substance abuse, as well as those who have co-morbid anxiety or tics, or who do not wish to take a controlled substance. Thus, atomoxetine is a useful option in the treatment of ADHD in children and adolescents. The mechanism of action of atomoxetine is unclear, but is thought to be related to its selective inhibition of presynaptic norepinephrine reuptake in the prefrontal cortex. Atomoxetine has a high affinity and selectivity for norepinephrine transporters, but little or no affinity for various neurotransmitter receptors. Atomoxetine has a demonstrated ability to selectively inhibit norepinephrine uptake in humans and animals, and studies have shown that it preferentially binds to areas of known high distribution of noradrenergic neurons, such as the fronto- cortical subsystem. Atomoxetine was generally associated with statistically, but not clinically, significant increases in both heart rate and blood pressure in pediatric patients with ADHD. While there was an initial loss in expected height and weight among
79
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

1. http://www.cesar.umd.edu/cesar/drugs/ritalin.pdf >> pdf Ritalin2. http://www.ncbi.nlm.nih.gov/pubmed/19445548Paediatr Drugs.2009;11(3):203-26. doi: 10.2165/00148581-200911030-00005.

Atomoxetine: a review of its use in attention-deficit hyperactivity disorder in children and adolescents.

Garnock-Jones KP1,Keating GM.

Author information 1Wolters Kluwer Health mid R: Adis, Auckland, New Zealand, an editorial office of Wolters Kluwer Health, Philadelphia, Pennsylvania, USA. [email protected]

Abstract

Atomoxetine (Strattera(R)) is a selective norepinephrine (noradrenaline) reuptake inhibitor that is not classified as a stimulant, and is indicated for use in patients with attention-deficit hyperactivity disorder (ADHD). Atomoxetine is effective and generally well tolerated. It is significantly more effective than placebo and standard current therapy and does not differ significantly from or is noninferior to immediate-release methylphenidate; however, it is significantly less effective than the extended-release methylphenidate formulation OROS(R) methylphenidate (hereafter referred to as osmotically released methylphenidate) and extended-release mixed amfetamine salts. Atomoxetine can be administered either as a single daily dose or split into two evenly divided doses, has a negligible risk of abuse or misuse, and is not a controlled substance in the US. Atomoxetine is particularly useful for patients at risk of substance abuse, as well as those who have co-morbid anxiety or tics, or who do not wish to take a controlled substance. Thus, atomoxetine is a useful option in the treatment of ADHD in children and adolescents. The mechanism of action of atomoxetine is unclear, but is thought to be related to its selective inhibition of presynaptic norepinephrine reuptake in the prefrontal cortex. Atomoxetine has a high affinity and selectivity for norepinephrine transporters, but little or no affinity for various neurotransmitter receptors. Atomoxetine has a demonstrated ability to selectively inhibit norepinephrine uptake in humans and animals, and studies have shown that it preferentially binds to areas of known high distribution of noradrenergic neurons, such as the fronto-cortical subsystem. Atomoxetine was generally associated with statistically, but not clinically, significant increases in both heart rate and blood pressure in pediatric patients with ADHD. While there was an initial loss in expected height and weight among atomoxetine recipients, this eventually returned to normal in the longer term. Data suggest that atomoxetine is unlikely to have any abuse potential. Atomoxetine appeared less likely than methylphenidate to exacerbate disordered sleep in pediatric patients with ADHD. Atomoxetine is rapidly absorbed, and demonstrates dose-proportional increases in plasma exposure. It undergoes extensive biotransformation, which is affected by poor metabolism by cytochrome P450 (CYP) 2D6 in a small percentage of the population; these patients have greater exposure to and slower elimination of atomoxetine than extensive metabolizers. Patients with hepatic insufficiency show an increase in atomoxetine exposure. CYP2D6 inhibitors, such as paroxetine, are associated with changes in atomoxetine pharmacokinetics similar to those observed among poor CYP2D6 metabolizers. Once- or twice-daily atomoxetine was effective in the short-term treatment of ADHD in children and adolescents, as observed in several well designed placebo-controlled trials. Atomoxetine also demonstrated efficacy in the longer term treatment of these patients. A single morning dose was shown to be effective into the evening, and discontinuation of atomoxetine was not associated with symptom rebound. Atomoxetine efficacy did not appear to differ between children and adolescents. Stimulant-naive patients also responded well to atomoxetine treatment. Atomoxetine did not differ significantly from or was noninferior to immediate-release methylphenidate in children and adolescents with ADHD with regard to efficacy, and was significantly more effective than standard current therapy (any combination of medicines [excluding atomoxetine] and/or behavioral counseling, or no treatment). However, atomoxetine was significantly less effective than osmotically released methylphenidate and extended-release mixed amfetamine salts. The efficacy of atomoxetine did not appear to be affected by the presence of co-morbid disorders, and symptoms of the co-morbid disorders were not affected or were improved by atomoxetine administration. Health-related quality of life (HR-QOL) appeared to be positively affected by atomoxetine in both short- and long-term studies; atomoxetine also improved HR-QOL to a greater extent than standard current therapy. Atomoxetine was generally well tolerated in children and adolescents with ADHD. Common adverse events included headache, abdominal pain, decreased appetite, vomiting, somnolence, and nausea. The majority of adverse events were mild or moderate; there was a very low incidence of serious adverse events. Few patients discontinued atomoxetine treatment because of adverse events. Atomoxetine discontinuation appeared to be well tolerated, with a low incidence of discontinuation-emergent adverse events. Atomoxetine appeared better tolerated among extensive CYP2D6 metabolizers than among poor metabolizers. Slight differences were evident in the adverse event profiles of atomoxetine and stimulants, both immediate- and extended-release. Somnolence appeared more common among atomoxetine recipients and insomnia appeared more common among stimulant recipients. A black-box warning for suicidal ideation has been published in the US prescribing information, based on findings from a meta-analysis showing that atomoxetine is associated with a significantly higher incidence of suicidal ideation than placebo. Rarely, atomoxetine may also be associated with serious liver injury; postmarketing data show that three patients have had liver-related adverse events deemed probably related to atomoxetine treatment. Treatment algorithms involving the initial use of atomoxetine appear cost effective versus algorithms involving initial methylphenidate (immediate- or extended-release), dexamfetamine, tricyclic antidepressants, or no treatment in stimulant-naive, -failed, and -contraindicated children and adolescents with ADHD. The incremental cost per quality-adjusted life-year is below commonly accepted cost-effectiveness thresholds, as shown in several Markov model analyses conducted from the perspective of various European countries, with a time horizon of 1 year.

3. http://www.ncbi.nlm.nih.gov/pubmed/18555941Clin Ther.2008 May;30(5):942-57. doi: 10.1016/j.clinthera.2008.05.006.

Evolution of the treatment of attention-deficit/hyperactivity disorder in children: a review.

Findling RL1.

Author information 1Case Western Reserve University, Ohio, USA. [email protected]

Abstract

BACKGROUND:

Efficacious and well-tolerated medications are available for the treatment of attention-deficit/hyperactivity disorder (ADHD). Stimulants such as methylphenidate (MPH) and amphetamines are the most widely used medications approved by the US Food and Drug Administration for the treatment of ADHDin children.

OBJECTIVE:

This article reviews the literature on the development and use of medications for the treatment of ADHD in children.

METHODS:

A search of MEDLINE was conducted toidentify relevant studies and critical reviews on the treatment of ADHD in children. The main criteria for inclusion of a study were that it have a controlled design, enroll >100 subjects if a clinical trial and >20 subjects if a classroom study, assess symptoms with the most widely used scales and tests,and be published from 2000 to 2008.A few older pivotal studies were also included.

RESULTS:

Many studies have reported the long-term efficacy and tolerability of immediate-release formulations of MPH. The disadvantages of such formulations include the need for multiple daily dosing and a potential for abuse. Various extended-release formulations of MPH have been found effective in controlled studies enrolling large numbers of children with ADHD. The efficacy and tolerability of dexmethylphenidate, the active D-isomer of MPH, in an extended-release formulation have also been reported. An extended-release formulation of mixed amphetamine salts (MMAS-XR) that is dosed once daily has been found to be efficacious and well tolerated. The non-stimulant atomoxetine has been reported to be well tolerated and efficacious, although it may not be as effective as stimulants; this formulation is, however, less likely than stimulants to be associated with abuse and diversion. A recently approved prodrug stimulant, lisdexamfetamine dimesylate (LDX), was developed to provide a long duration of effect that is consistent throughout the day, with a reduced potential for abuse. In a placebo-controlled study in children with ADHD, less intersubject variability in T(max), C(max), and AUC from time zero to the last quantifiable concentration was seen in the 8 subjects who received LDX (percent coefficient of variation, 15.3, 20.3, and 21.6, respectively) compared with the 9 subjects who received MAS-XR (52.8, 44.0, and 42.8).In 2 clinical trials, significantly greater improvements in teacher and parent ratings of ADHD symptoms were seen with LDX compared with placebo (P