Top Banner
Hemoglobin and hemoglobinpathies Srbová M., Průša R.
72

Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Dec 17, 2015

Download

Documents

Magdalene Hines
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Hemoglobin and hemoglobinpathies

Srbová M., Průša R.

Page 2: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Hemoproteins

Consist of hem– cyclic tetrapyrrole– 1 iron cation Fe2+ bound

in the middle of tetrapyrrole scelet by coordination covalent bonds

– conjugated system of double bonds

methine bridge

pyrrole ring

Page 3: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 4: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 5: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 6: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 7: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 8: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 9: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Types of hemoglobin

Adult HbA: 2α and 2β subunits (98%HbA)

Adult HbA2: 2α and 2δ subunits (2% HbA)

Fetal HbF: 2α and 2γhave higher O2 affinity than HbA – take up oxygen from

the maternal circulation

Embryoinic: 2and 2 2 and 2

2 and 2

have higher O2 affinity than HbA

Page 10: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Hemoglobin switching

Alteration of globin gene expresion during development

Page 11: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 12: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Hemoproteins

Hemoglobin (transports O2 to the tissues) Myoglobin (stores O2 in the muscles)

Cytochromes (e- carriers in ETC) Catalase + peroxidases (decomposition of peroxides) Cytochrome P-450 (hydroxylation) Desaturasases FA (desaturation FA)

Redox state Fe 2+ Fe 3+

Redox state Fe 2+

Page 13: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Structure of Hemoglobin • 4 polypetide subunits (globins)• Hb A (adults) heterotetramer 2α a 2β• Each subunit contains 1 hem group• 8 helices (A-H) β subunit• 7 helices α subunit• Hydrofobic pocket

- protect hem against oxidation

Page 14: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

• Hem binding to globin– Fe 2+ is coordinated by N atom from proximal histidin F8

• Binding of O2 – distal histidin E7 hydrogen bonds to the O2

Structure of Hemoglobin

Page 15: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

• Quaternary structureInteractions between subunits

1) hydrofobic ( between α-β)2) electrostatic (between α-α; β-β, α-β)

– O2 binding – loss of these interactions

Structure of Hemoglobin

α1

α2

β1β2

Page 16: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

• 1 polypeptide chain (153 AA)• 1 heme• Tertiary structures of the α and β subunits are remarkably similar, both to

each other and to that of Mb• Skeletal and heart muscles

Structure of Myoglobin

Page 17: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Binding of O2 (oxygenation)

• Oxygenation changes the electronic state of the Fe2+ - heme• Color change of blood from dark purplish (venous) to the brilliant scarlet

color (arterial)

Page 18: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

• The binding of the first O2 to Hb enhances the binding futher O2 molecules

• O2 affinity of Hb increases with increasing pO2

• Sigmoidal saturation curve

• Hyperbolic curve for Mb - no cooperative behavior

Mechanism of oxygen-binding cooperativity

Page 19: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Satu

ratio

n O

2

• Hb loads O2 to about 90% saturation under the arterial partial pressure

• Hb travels to the tissue where the O2 partial pressure is 20 torr, most of Hb´s bound O2 is released

Page 20: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Satu

ratio

n O

2

Page 21: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

• The diference in oxygen affinity between Mb and Hb is greatest between 5 and 30 torr, where Mb binds much more O2 than does Hb. This difference allows O2 to be released at the tissues from O2 - loaded Hb, and transported to Mb Sa

tura

tion

O2

Page 22: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Oxygen binding to Hb

Page 23: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

• The movement of Fe 2+ into the heme plane triggers the T→R conformational shift

•The loss of electrostatic interactions induce conformational changes in all other subunits

Page 24: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 25: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Conversion of T form→R form

T form (tense) R form (relaxed)

The binding of the first O2 molecule to subunit of the T-form leads to a local conformational change that weakens association between the subunits R-form

Page 26: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Allosteric effectors

• CO2 • H+

• 2,3-bisphosphoglycerate

Decrease O2 affinity of Hb

Influence the equilibrium between T and R forms

Page 27: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Oxygen transport regulation

Page 28: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

2,3 - bisphosphoglycerate

• binds selectively to deoxy-Hb• stabilizes T form • lowers the affinity of Hb for oxygen • oxygen is more readily released in tissues

Page 29: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

2,3 - bisphosphoglycerateClinical aspects:

In people with high-altitude adaptation or smokers the concentration of 2,3-BPG in the blood is increased increases the amount of oxygen that Hb unloads in the capilaries

Fetal hemoglobin (HbF α2γ2), has low BPG affinity – the higher O2 affinity – facilitates the transfer of O2 to the fetus via the placenta

Page 30: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Bohr effect• The binding of protons H+ by Hb lowers its affinity for O2

• Increasing pH, that is, removing protons,stimulates Hb to bind O2

• pH of the blood decreases as it enters tissues because CO2 produced by

metabolism is converted to H2CO3

• Dissociation of H2CO3 produces protons• Promote the release of oxygen

In the tissues

Page 31: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Bohr effect

In the lungs

Oxygen binds to Hb, causing a release protons, which combine with bicarbonate to form H2CO3

Carbonic anhydrase cleaves H2CO3 to H2O and CO2

CO2 is exhaled

Page 32: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Hemoglobin and transport CO2

Page 33: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Hemoglobin determination

2. Direct spectrophotometry of plasma 415 – 460 nm

1.

Page 34: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Total Hb and Free Hb

• Reference values of total Hb – age and sex dependent, about 150 g/l

• Free Hb: 125 – 300 mg/l

Page 35: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Derivatives of hemoglobin

Deoxyhemoglobin – Hb without O2

Oxyhemoglobin – Hb with O2

Carbaminohemoglobin – Hb with CO2

– CO2 is bound to globin chain

– about 15% of CO2 is transported in blood bound to Hb

Carbonylhemoglobin – Hb with CO – CO binds to Fe2+ 200x higher affinity to Fe2+ than

O2 – poisoning, smoking

Page 36: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Methemoglobin – (metHb) contains Fe3+ instead of Fe2+

Autooxidation of hemoglobin

3% of hemoglobin undergoes oxidation every day

Hem – Fe2+- O2 Hem - Fe3+ + O2•-

Methemoglobin reductase

reduces methemoglobin

FAD, cytochrom b5 a NADH

Methemoglobinemia

1. Hereditary deficit of methemoglobin reductase

2. Abnormal hemoglobin HbM (Hb mutation)

3. Exposure to exogenous oxidizing drugs (sulfonamides, aniline)

Clinical aspects: cyanosis (10% Hb forms metHb)treatment: administration of methylene blue or ascorbic acid

Page 37: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Glycohemoglobin (HbA1c)

Formed by Hb‘s exposure to high levels of glucose

Nonenzymatic glycation of terminal NH2 group (Val) β-chain

Normally about 4 % of Hb is glycated (proportional to blood Glc concentration)

People with DM have more HbA1c than normal ( 5%)

Measurement of blood HbA1c is useful to get information about long-term control of glycemia

Page 38: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 39: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

β1

β2

α1

α2

α1

α2

α1

α2

γ1

γ2

δ1

δ2

Hb A > 96,5% Hb F < 1% Hb A2 < 3,5%

HbA1c: What are we looking for?

Page 40: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

β1

β2

α1

α2

Heme

Heme1st Step: Unstable, reversible reaction between Glucose and the N-terminal valine of the β-chain (Schiff base)

Labile Hb A1c

2nd Step: During red blood cell circulation, some of the labile A1C is converted to form a stable HbA1c (Amadori rearrangement)

Non-Enzymatic Glycation of Hb A

Stable Hb A1c

Page 41: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

HbA1c is currently defined as:

Hemoglobin A which is irreversibly glycated at one or both N-terminal Valines of the chains in the tetramer.Glycation elsewhere on the or chains is irrelevant.

G

G

G

G

G

G

G

G

G

N

N

N

N

N

All of these are HbA1c

The nature of the problem – what is HbA1c?

Page 42: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Glycohemoglobin, or GHb, or Total GHb, is defined as:

Hb having one or more sugars irreversibly attached at any point in any of the globin chains.

(This also includes all forms of HbA1c).

G

G

N

G

G

GN

G

N

G

GG

GN

All of these are GHb (but not HbA1c)

The nature of the problem – what is HbA1c?

Page 43: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Hb A093-95%

Hb A1 = GHbGlycated Hbs

5-7%

Hb A

+ + +

Hb A1a0,5%

Fructose-1,6-diphosphateGlucose-6-phosphate

Hb A1b0,5%

pyruvate

Hb A1c4-6%

glucose

Hb FHb A2

HbA1c: What are we looking for?

Glycation at theN-terminal Valin

of the β-globin chain

Page 44: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

The Pros and the Cons of using HbA1c for Diabetes DiagnosisDavid B.Sacks; AACC Webinar April 10th 2012

Page 45: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 46: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Glycohemoglobin Assay

Page 47: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

HPLC – TOSOH G7

Page 48: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 49: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 50: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 51: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Hemoglobinopathies

mutation → abnormal structure of the hemoglobin Large number of haemoglobin mutations, a fraction has deleterious effects:

sickling, change in O2 affinity, heme loss or dissociation of tetramer hemoglobin M and S, thalassemias

1. Hemoglobin M• Replacement of His E7α by Tyr (Hb Boston) or• Replacement of Val E11β by Glu (Hb Milwaukee) • the iron in the heme group is in the Fe3+ state (methemoglobin) stabilized by

the tyrosine or by glutamate • Methemoglobin reductase cannot reduce Fe3+ • methemoglobin can not bind oxygen

Page 52: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

2. Thalassemias• Mutation that results in decreased synthesis of α or β-chains• thalassemia mutations provide resistence to malaria in the

heterozygous state

α- thalassemias – complete gene deletion

4 α globin genes per cell: 1 copy of gen is deleted: without symptoms 2 copies are deleted: RBC are of decreased size (microcytic) and reduced Hb

concentration (hypochromic), individual is usually not anemic 3 copies are deleted: moderately severe microcytic hypochromic anemia with

splenomegaly 4 copies are deleted: hydrops fetalis: fatal in utero

Excess β chains form homotetramer HbH which is useless for delivering oxygen to the tissues (high oxygen affinity)

Page 53: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 54: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 55: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 56: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 57: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 58: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

• β+ – some globin chain synthesis• β0 – no globin chain synthesis

Heterozygotes: microcytic hypochromic RBC, mild anemia

Homozygotes β0 β0 : severe anemia

Excess α chains precipitate in erythroid precursor – their destruction-ineffective erythropoiesis

β- thalassemias

Page 59: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 60: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 61: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

3. Hemoglobin S (sickle-cell)

• Causes a sickle-cell anemia

• Replacing Glu A3β with the less polar amino acid Val - forming „an adhesive region“ of the β chain• HbS proteins aggregate into a long rodlike helical fiber

Page 62: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 63: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 64: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 65: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 66: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 67: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 68: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 69: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 70: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Sickle-cell anemia

Red blood cells adopt a sickle shape in a consequence of the forming haemoglobin S fibersThe high incidence of sickle-cell disease coincides with a high incidence of malariaIndividuals heterozygous in HbS have a higher resistance to malaria; the malarial parasite spends a portion of its life cycle in red cells, and the increased fragility of the sickled cells tends to interrupt this cycle

Page 71: Hemoglobin and hemoglobinpathies Srbová M., Průša R.
Page 72: Hemoglobin and hemoglobinpathies Srbová M., Průša R.

Pictures used in the presentation:

• Marks´ Basic Medical Biochemistry, A Clinical Approach, third edition, 2009 (M. Lieberman, A.D. Marks)

• Principles of Biochemistry, 2008, (Voet D, Voet J.G., and Pratt C.W)

• Color Atlas of Biochemistry, second edition, 2005 (J. Koolman and K.H. Roehm)