Top Banner
Fluorescence Fluorescence and and Chemiluminescence Chemiluminescence Skoumalová, Vytášek, Srbová
21
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

FluorescenceFluorescence and and

ChemiluminescenceChemiluminescence

Skoumalová, Vytášek, Srbová

Page 2: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

LuminescenceEmission of radiation, which occurs during returning of

excitated molecules to ground state

Fluorescence, phosphorescence – excitation is caused by absorption of radiation

Chemiluminiscence – excitation is caused by chemical reaction

S0 S1 T1

ESinglet state - spins of two electrons are paired

Triplet state - spins of two electrons are unpaired

Page 3: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Fluorescence and fosforescence

Page 4: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Energy level diagram for photoluminescent molecules

Radiationless transitions:

VR –vibrational relaxation

IC- internal conversion

ISC –intersystem crossing

E

Radiation transitions:

Fluorescence - transition to the ground state with the same multiplicity S1S0

probability of fluorescence is higher than phosphorescence

PhosphorescencePhosphorescence – – transition between states with different multiplicity Ttransition between states with different multiplicity T11SS00

Page 5: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Stokes shift

Wavelength of emitted radiation is longer because its energy is lower

E = h . c/

Stokes´ shift

Wavelength difference between absorption (excitation) and fluorescence (emission) maximum

http://psych.lf1.cuni.cz/fluorescence/soubory/principy.htm

Page 6: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Quantitative fluorescent measurement I0 It

If

intensity of fluorescence If

intensity of absorption Ia

f = =

Ia = I0 - It

sample

Fluorescence efficiency (f ) is the fraction of the incident radiation which is emitted as fluorescence f < 1

Page 7: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Fluorescence measurement

sample

emission monochromator

detector

sourceexcitation

monochromator

Read-out

Filter fluorimeters

Spectrofluorometers

Fluorescent microscopes

Fluorescent scanners

Flow cytometry

Page 8: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Spectrofluorometer

Page 9: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Spectrofluorometer

Page 10: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Analysis of the unknown sample

Erythrocytes (patients with Alzheimer´s disease)

Page 11: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Fluorescence microscopy

Endothelial cell (mitochondria, cytoskeleton, nucleus)

Page 12: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Sources of interferenceInner filter effect

intensity of excitation light isn´t constant because each layer of the sample absorbs some of the incident radiation (intensity of exciting light is higher in the front part of cuvette and lower in the rear part of cuvette

Quenching excited molecule returns to the ground state by radiationless transition (without emitting light) as a result of a collision with quenching molecule

Quenching agents: O2, halogens (Br, I), nitrocompounds

Page 13: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Methods of fluorescence determination

Direct methods - natural fluorescence of the fluorecent sample is measured

Indirect (derivatisation) methods - the nonfluorescent compound is converted into a fluorescent derivative by specific reaction or marked with fluorescent dye by attaching dye to the studied substance

Quenching methods - analytical signal is the reduction in the intensity of some fluorescent dye due to the quenching action of the measured sample

Page 14: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Natural fluorophores

• Polyaromatic hydrocarbons• Vitamin A, E• Coenzymes (FAD, FMN, NADH)• Carotenes• Quinine• Steroids• Aromatic aminoacids• Nucleotides• Fluorescent proteins –GFP (green fluorescent

protein)

Page 15: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Nobel prize in chemistry in 2008

Osamu Shimomura discovered green fluorescent protein (GFP) in the small glowing jellyfish Aequorea victoria

Martin Chalfie introduced using of green fluorescent protein as a marker for gene expression

Roger Y. Tsien engineered different mutants of GFP with new optical properties (increased fluorescence, photostability and a shift of the major excitation peak ) and contributed to the explanation of mechanismus of GFP fluorescence

Page 16: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Fluorescent probes

Compounds whose fluorescence doesn´t change after their interaction with biological material

acridine orange (DNA)

fluorescein (proteins)

rhodamine (proteins)

GFP

Compounds whose fluorescence change according to their environment

ANS (1-anilinonaftalen-8- sulphonate) - polarity

Fura-2 - tracking the movement of calcium within cells

Page 17: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Some applications of fluorescence detection

• Protein conformation• Membrane potential• Membrane transport• Membrane viscosity• Enzymatic reactions• DNA analysis• Genetic engineering (manipulations)• Immunochemical methods• Cell proliferation and apoptosis

Page 18: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Chemiluminiscence

Luminol and peroxidase before adding H2O2

Chemiluminiscence after addition H2O2

Page 19: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Chemiluminescence• Excitation of electrons is caused by chemical

reaction • Return to ground state is accompanied by light

emissionBioluminescence

firefly

Noctiluca scintillans

ATP + luciferin + O2 AMP + PPi + CO2 + H2O + oxyluciferin + lightluciferase

Page 20: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Application of chemiluminescence detection

• NO assay

NO + O3 NO2* + O2

NO2* NO2 + light

• H2O2 assay, peroxidase activity assay, immunochemical assays

Luminol + H2O2 3-aminoftalate + lightperoxidase

Page 21: Fluorescence and Chemiluminescence Skoumalová, Vytášek, Srbová.

Summary:

1. The principle of fluorescence

2. Applications of fluorescence in medicine - examples

3. Chemiluminescence - applications