Top Banner

of 20

Frequency Response of Transistor and MOS

Jul 05, 2018

Download

Documents

JyotiSharma
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/16/2019 Frequency Response of Transistor and MOS

    1/20

    1

    Frequency response I•  As the frequency of the processed signals increases,

    the effects of parasitic capacitance in (BJT/M!"transistors start to #anifest• The gain of the a#plifier circuits is frequency

    dependent, usually decrease $ith the frequencyincrease of the input signals

    • %o#puting &y hand the e'act frequency response ofan a#plifier circuits is a difficult and ti#econsu#ingtas), therefore appro'i#ate techniques for o&tainingthe *alues of critical frequencies is desira&le

    • The e'act frequency response can &e o&tained fro#

    co#puter si#ulations (e+g !I%-"+ .o$e*er, toopti#ie your circuit for #a'i#u# &and$idth and to)eep it sta&le one needs analytical e'pressions ofthe circuit para#eters or at least )no$ $hichpara#eter affects the required specification and ho$

  • 8/16/2019 Frequency Response of Transistor and MOS

    2/20

    0

    • The transfer function gi*es us the infor#ation a&out the

    &eha*ior of a linearti#ein*ariant (TI" circuit/syste# fora sinusoidal e'citation $ith angular frequency

    • This transfer function is nothing &ut the ratio &et$een theFourier transfor#s of the output and input signals and itis also called the frequency response of the TI circuit+

    •   represents the gain #agnitude of the frequencyresponse of the circuit, $hereas is the phase offrequency response+ ften, it is #ore con*enient to

    e'press gain #agnitude in deci&els+• To a#plify a signal $ithout distortion, the a#plifier gain

    #agnitude #ust &e the sa#e for all of the frequencyco#ponents

    Frequency response II

    ω ))(exp(|)(|))(exp(|)(|)(   ω θ ω ω ω ω    jT T  jT T    =∠=

    |)(|   ω T )(ω θ 

  • 8/16/2019 Frequency Response of Transistor and MOS

    3/20

    2

    Frequency response of a#plifers•  A bode plot   sho$s the the gain #agnitude and phase in deci&les *ersus

    frequency on logarith#ic scale

    •  A fe$ prerequisites for &ode plot3 aplace transfor# and net$or) transfer function oles and eros of transfer function Brea) frequencies

    • !o#e useful rules for dra$ing highorder &ode plots3 4eco#pose transfer function into first order ter#s+

    Mar) the &rea) frequencies and represent the# on the frequency a'is thecritical *alues for changes Ma)e &ode plot for each of the first order ter# For each first order ter#, )eep the 4% to the &rea) frequency constant

    equal to the gain at 4%  After the &rea) frequency, the gain #agnitude starts to increase or

    decrease $ith a slope of 05d&/decade if the ter# is in the nu#erator or

    deno#inator  For phase plot, each first order ter# induces a 67 degrees of increase or

    decrease at the &rea) frequency if the ter# is in the nu#erator ordeno#inator 

    %onsider frequencies li)e onetenth and ten ti#es the &rea) frequency andappro'i#ate the phase &y 5 and 85 degrees if the frequency is $ith thenu#erator (or 5 and 85 degrees if in the deno#inator"

     Add all the first order ter#s for #agnitude and phase response

  • 8/16/2019 Frequency Response of Transistor and MOS

    4/20

    6

    Frequency response of 9% circuits

    -+g+ 1

    -+g+ 2

    )/arctan()/arctan()(

    )/(1log20)/(1log20|)(|

    )(2

    1,2

    1,)(21

    21)(

    21

    2

    2

    2

    1

    21

    2

    2

    1

    21

    2

    bb

    bbdbv

    bbv

     f   f   f   f   f  

     f   f   f   f   f   A

    C  R R f  C  R f  C  R R f   j

    C  fR j f   A

    −=

    +−+=

    +==

    ++

    +

    =

    θ 

    π π π 

    π 

    )/arctan()(

    2)/(1log20)|(|

    2

    1,

    21

    1)(

    b f   f   f  

    b f   f  

    db f  v A

     RC b f  

     RCf   j f  v A

    −=

    +−=

    =+

    =

    θ 

    π π 

    -+g+ 0

    )/arctan(90)(

    )/(1log20)/log(2012|)(|

    )(2

    1,

    )/(1

    )/(

    )(21

    2)(

    2

    2121

    2

    21

    2

    b

    bbdbv

    b

    b

    bv

     f   f   f  

     f   f   f   f   f   A

    C  R R f   f   f   j

     f   f   j

     R R

     R

    C  R R f   j

    C  fR j f   A

    −=

    +−+−=

    +

    =

    +

    ×

    +

    =

    ++

    =

    θ 

    π π 

    π 

  • 8/16/2019 Frequency Response of Transistor and MOS

    5/20

    7

    The M! Transistor 

    Polysilicon Aluminum

  • 8/16/2019 Frequency Response of Transistor and MOS

    6/20

    :

    The ;ate %apacitance

    t ox 

    n< n<

    Cross section view

    L

    ;ate o'ide

     x d   x d 

    L d 

    olysilicon gate

    Top view

    ;ate&ul)o*erlap

    !ource

    n<

    4rain

    n<W 

  • 8/16/2019 Frequency Response of Transistor and MOS

    7/20

    =

    ;ate %apacitance

    S   D

    G

    C GC 

    S   D

    G

    C GC 

    S   D

    G

    C GC 

    Cut-of    Resistive Saturation

  • 8/16/2019 Frequency Response of Transistor and MOS

    8/20

  • 8/16/2019 Frequency Response of Transistor and MOS

    9/20

    8

    Frequency response of co##on source M! a#plifer 

    .ighfrequency M! !#allsignal

    equi*alent circuit

    M!F-T co##on !ource a#plifier 

    !#allsignal equi*alent circuit for the M! co##on source a#plifier Frequency response analysis shows that there are three break frequencies, and mainly

    the lowest one determines the upper half-power frequency, thus the -3db bandwidth

  • 8/16/2019 Frequency Response of Transistor and MOS

    10/20

    15

    • -'act frequency analysis of a#plifier

    circuits is possi&le follo$ing the steps34ra$ s#allsignal equi*alent circuit (replace

    each co#ponent in the a#plifier $ith its s#allsignal circuit"

    ?rite equations using *oltage and current la$s

    Find the *oltage gain as a ratio of polyno#ial oflaplace *aria&le s

    Factor nu#erator and deno#inator of thepolyno#ial to deter#ine &rea) frequencies

    4ra$ &ode plot to appro'i#ate the frequencyresponse

    -'act frequency response of a#plifiers

  • 8/16/2019 Frequency Response of Transistor and MOS

    11/20

    11

    The Miller -ffect• %onsider the situation that an i#pedance is connected

    &et$een input  and output  of an a#plifier 

    The sa#e current flo$s fro# (out" the top input ter#inal if ani#pedance is connected across the input ter#inals

    The sa#e current flo$s to (in" the top output ter#inal if ani#pedance is connected across the output ter#inal

    This is )no$ as Miller -ffect T$o i#portant notes to apply Miller -ffect3

    There should &e a co##on ter#inal for input and output The gain in the Miller -ffect is the gain after connecting feed&ac)

    i#pedance

     Miller in Z  ,

     Miller out  Z  ,

     f  

     Z 

    Graphs from Prentice Hall 

  • 8/16/2019 Frequency Response of Transistor and MOS

    12/20

  • 8/16/2019 Frequency Response of Transistor and MOS

    13/20

    12

    • If the feed&ac) i#pedance is a capacitor ,then

    the Miller capacitance reflected across the inputter#inal is +

    • Therefore, connecting a capacitance fro# the

    input to output is equi*alent to connecting a

    capacitance

    • 4ue to Miller effect, a s#all feed&ac)

    capacitance appears across the input ter#inals

    as a #uch larger equi*alent capacitance $ith alarge gain (e+g+ "+ At high frequencies,

    this large capacitance has a lo$ i#pedance that

    tends to short out the input signal

     f  C 

     Application of Miller -ffect

    )1(

    1,

    v f  

     Miller in AC  j

     Z −

    =

    ω 

     f  C 

    )1(   v f     AC    −

    80||   >v A

  • 8/16/2019 Frequency Response of Transistor and MOS

    14/20

    16

    BJT s#allsignal #odels (for BJT a#plifiers"

    The #odel for  high-frequency  analysisπ − Hybrid 

    The #odel for  low-frequency  analysisβ π   −r 

    The &asespreading resistance for the &ase region (*ery s#all"

    The dyna#ic resistance of the &ase e#itter region

    The feed&ac) resistance fro# collector to &ase (*ery large"

     Account for the up$ard slope of the output characteristic

    The depletion capacitance of the collectorto&ase region

    The diffusion capacitance of the &asetoe#itter @unction π 

     µ 

     µ 

    π    β 

    C  I V r 

     I V r r 

    CQ Ao

    CQT 

     x

    /

    /

    =

    =

    ote3 in the follo$ing analysis of the %-, -F and %B a#plifier in the ne't three slides, $e $ill

    assu#e for si#plicity (though they still appear in the s#all signal #odels"+∞==  µ r r  x   ,0

  • 8/16/2019 Frequency Response of Transistor and MOS

    15/20

    17

    Miller -ffect3 co##on e#itter a#plifier I

  • 8/16/2019 Frequency Response of Transistor and MOS

    16/20

    1:

    Miller -ffect3 co##on e#itter a#plifier II

     Assu#e the current flo$ing through is *ery s#all co#pared to , then

    the gain $ill &e considering the input ter#inal of the a#plifier at

    b’ to ground.

     Applying the #iller effect for the a#plifier, the follo$ing si#plified circuit can &e

    o&tained3

    Thus, the total capacitance fro# ter#inal b’ to ground   is gi*en as follo$s

    (neglect the #iller capacitance fro# output ter#inal c to ground"3

    The &rea) frequency, thus the 2d& frequency is set &y the 9% lo$pass filter

    (other *oltage controlled current source, resistance does not contri&ute to the

    &rea) frequency"+ is a main limiting factor for -3db bandwidth+

    π v g m   µ C 

    '

    '   Lmvb   R g  A   −=

    )1(   ' LmT    R g C C C    ++=  µ π 

    T  s

    bC  R

     f  '2

    1

    π =

     µ C    π v g m

     µ C 

    π r  R R R R  s s   |||||| 21'=

  • 8/16/2019 Frequency Response of Transistor and MOS

    17/20

    1=

    -#itterfollo$er a#plifier 

    • sing Miller -ffect, $eo&tain the a&o*eequi*alent circuit+ If

    neglecting , Itsho$s that the &rea)frequency is 

     µ r r  x ,

     L  o L

     ! s s

     Lm sT 

     Lm

    T T 

    b

     R Rr  R

     R R R

     R g r  R R

     R g C C C 

    C  R f  

    ||||

    ||

    )]1([||

    1

     2

    1

    '

    '

    ''

    '

    =

    =

    +=

    +

    +=

    =

    π 

    π  µ 

    π 

  • 8/16/2019 Frequency Response of Transistor and MOS

    18/20

    1>

    For appro'i#ate analysis, $e can neglect the si#plified

    equi*alent circuit can &e sho$n in (c"+ 4eri*e the transfer function for this circuit, it sho$s t$o

    &rea) frequencies ($ith typical *alues, is appro'i#ately 2d& &and$idth"

    )(,),(   "ir"uit o#enr r "ir"uit  s$ort r  o x   µ 

     L" Lm   s s L

    b s

    b   R R R g r  R R R RC  f   RC  f     ||),/1(||||||, 2

    1

     , 2

    1   '''2'1

      ====π 

     µ π    π π 

    1b f  

    %o##on &ase a#plifier 

    • ?hat a&out a#plifier thatdo not ha*e capacitanceconnected directly fro#

    output to the inputC

  • 8/16/2019 Frequency Response of Transistor and MOS

    19/20

    18

    Fullydifferential a#plifier

    To esti#ate the 2dB &and$idth of this one, note that the circuit if fully sy##etric,

    so only the half circuit needs to &e analyed+ The node *oltage at D is 5 in

    s#allsignal analysis+ Therefore $e only need to analye the righthand side

    circuit, $hich is actually a co##one#itter a#plifier analyed &efore+ !o the

    2dB &and$idth of a co##one#itter a#plifier applies here+

    D

    D

  • 8/16/2019 Frequency Response of Transistor and MOS

    20/20

    05

    %ascode a#plifier and differential a#plifier 

    • The cascode a#plifier can &e*ie$ed as a common-emitter  a#plifier $ith a common-base 

    a#plifier+• 4ue to lo$ input i#pedance of

    E0, the *oltage gain of E1 iss#all+ !o, Miller effect on E1 iss#all+

    • The -#ittercoupled differentiala#plifier can &e *ie$ed as aemitter-follower   a#plifiercascaded $ith a common-base a#plifier (&oth ha*e $ider&and$idth than co##one#itter

    a#plifier"+Graphs from Prentice Hall