Top Banner
CSE 151-- Intro to VLSI Design Fadi J. Kurdahi  EECS Dept., UC Irvine Fall 2011 Lecture 3: Semiconductors Lecture 4: MOS Transistors intro Adapted from Digital Integrated Circuits: A Design Perspective, 2 nd Ed. PH 2003. © J . Rabaey , A. Chandrakasan, B. Nikolic
52

Lec3 MOS Transistor Review 2

Apr 07, 2018

Download

Documents

masc0610
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 1/52

CSE 151-- Intro to VLSI Design

Fadi J. Kurdahi 

EECS Dept., UC IrvineFall 2011

Lecture 3: Semiconductors

Lecture 4: MOS Transistors intro

Adapted from Digital Integrated Circuits: A Design Perspective, 2nd Ed. PH

2003. © J. Rabaey, A. Chandrakasan, B. Nikolic

Page 2: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 2/52

Credits

Slides used in this course have been adaptedfrom the following two sources:

• Course slides by the textbook author:

http://bwrc.eecs.berkeley.edu/Icbook/slides.htm 

• Course slides adapted from above by:http://bwrc.eecs.berkeley.edu/IcBook/slides_PennState.htm 

• Many applets, animations, videos from the internet. Seesources next to each item in the slides.

• All materials on this page and its sub-pages and all linked files are copyright 2003 by Prentice-Hall/Pearson Education, andmay be downloaded and printed for instructional purposes by instructors using the book. Permission is given to incorporateexcerpts of these materials in instructors' classroom presentations and handouts. The following credit line should be included:"Adapted from (complete bibliographic citation). Copyright 2003 Prentice Hall/Pearson."Permission expressly is not given to publish these materials, in either original or modified form, in printed, electronic, or anyother format.

2

Page 3: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 3/52

3

Overview of Last Lecture• Digital integrated circuits experience exponential

growth in complexity (Moore’s law) and performance 

• Design in the deep submicron (DSM) era creates newchallenges

 – Devices become somewhat different

 – Global clocking becomes more challenging

 – Interconnect effects play a more significant role

 – Power dissipation may be the limiting factor

• Our goal in this class will be to understand and design

digital integrated circuits in the deep submicron era

Page 4: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 4/52

4

Goal of this chapter

• Present intuitive understanding of deviceoperation

• Introduction of basic device equations

• Introduction of models for manualanalysis• Introduction of models for SPICE

simulation

• Analysis of secondary and deep-sub-micron effects

• Future trends 

Page 5: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 5/52

Very quick review of basic circuits

• Field

• Current

• Resistance• Capacitance

• Ohm’s law 

Page 6: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 6/52

Electric Field

• E=F/q (F = electric force, q= charge)

++

+

+

++

+

+

--

-

-

--

-

-

E

Page 7: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 7/52

http://www.absorblearning.com/media/item.action?quick=6l#  

Current FlowThe flow of charges through a conductor gives rise to a current

Page 8: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 8/52

Resistance

• Electrons arescattered as theymove.

• Impedes the flow of

current throughmaterial

• Resistance affectedby: material, length,cross section

• Dissipates power asheat

Page 10: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 10/52

Capacitors

http://micro.magnet.fsu.edu/electromag/java/lightning/index.html 

Page 11: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 11/52

http://micro.magnet.fsu.edu/electromag/java/capacitance/index.html 

Factors affecting capacitance

•Plate area•Spacing between plates•Type of dielectric•C = e*A/d•e = dielectric•A= area•d = thickness

Page 13: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 13/52

Kirchhoff’s Laws 

http://en.wikipedia.org/wiki/Kirchhoff%27s_circuit_laws  

Page 14: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 14/52

14

A First-Order RC Network

v out 

v in  C 

tp = ln (2) t = 0.69 RC

Important model – matches delay of inverter 

Page 15: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 15/52

RC Network Simulation

Page 16: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 16/52

http://www.youtube.com/watch?v=8Pnsbh0DrE4 

Conductors, insulators and Semiconductors

Page 17: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 17/52

17

Semiconductors

• Pure semiconductors have low and equalconcentrations of electrons and holes   low electrical conductivity 

• Si has 4 valence electrons

• Phosphorous, arsenic, etc.. Have 5 electrons  provide one free electron

• Silicon doped w/these material becomes n-type 

• Dual argument applies for trivalent material (e.g.

Boron, gallium)  p-type 

Page 18: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 18/52

18

Venturecaplaw | FEBRUARY 10, 2010

Semiconductor Devices Module 1 Theory Lesson 1 Segment 4 set1s4, 

Page 19: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 19/52

19

Intrinsic and Extrinsic Semiconductors

http:// www.youtube.com/watch?v=o-PPbmMm0eA&feature=related  

S i d t

Page 20: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 20/52

20

Semiconductors 

Source: http://php.scripts.psu.edu/users/i/r/irh1/SWF/Semiconductors.swf 

Page 21: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 21/52

21

The Diode

B ASiO2

Al

A

B

Al

A

B

Cross-section of pn-junction in an IC process

One-dimensionalrepresentation diode symbol

Mostly occurring as parasitic element in Digital ICs

Dopedw/acceptorimpurities

(e.g. Boron).Mostly Holes

Dopedw/donor

impurities(e.g.

Phosphorus).Mostly

Electrons

Diodes

Page 22: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 22/52

Diodes

22http://www.youtube.com/watch?v=W6QUEq0nUH8&feature=related  

Di d P i

Page 23: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 23/52

Diode Properties

23http://www-g.eng.cam.ac.uk/mmg/teaching/linearcircuits/diode.html 

Page 24: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 24/52

24

Review: DiodeThe ideal diode equation (for both forward and reverse-

bias conditions) isID = IS(e VD / T  – 1)

where VD is the voltage applied to the junction – a forward-bias lowers the

potential barrier allowingcarriers to flow across thediode junction

 – a reverse-bias raises thepotential barrier and thediode becomes nonconducting 

T = kT/q = 26mV at 300K

IS is the saturation current of the diode

+

-

VD

-0.5

0.5

1.5

2.5

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

VD (V)

Diode Animation 

Page 25: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 25/52

25

The MOS Transistor

Polysilicon Aluminum 

Page 26: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 26/52

26

The NMOS Transistor Cross Sectionn areas have been doped with donor ions(arsenic) of concentration ND - electrons

are the majority carriers

p areas have been doped with acceptor ions (boron) of concentration NA - holes

are the majority carriers

Gate oxide (SiO2)

n+

Source Drain

p substrate

Bulk (Body)

p+ stopper

Field-Oxide(SiO2)n+

PolysiliconGate

MOSFET Operation

Page 28: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 28/52

http://www-g.eng.cam.ac.uk/mentor/IIA/VLSI/CMOS1/CMOS1.html 

The MOS Capacitor (Reference)

Page 30: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 30/52

30

Switch Model of NMOS Transistor

Gate

Source(of carriers)

Drain(of carriers)

| VGS |

| VGS | < | VT | | VGS | > | VT |

Open (off) (Gate = ‘0’)  Closed (on) (Gate = ‘1’) 

Ron

Page 31: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 31/52

31

Switch Model of PMOS Transistor

Gate

Source(of carriers)

Drain(of carriers)

| VGS |

| VGS | > | VDD  – | VT | | | VGS | < | VDD  – |VT| |

Open (off) (Gate = ‘1’)  Closed (on) (Gate = ‘0’) 

Ron

Page 32: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 32/52

In reality

Gate

Source(of carriers)

Drain(of carriers)

| VGS |

| VGS | < | VT | | VGS | > | VT |

Open (off) (Gate = ‘0’)  Closed (on) (Gate = ‘1’) 

(Small) Ron(Large) Roff

Same for PMOS

Th h ld V lt C t

Page 33: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 33/52

33

Threshold Voltage Concept

S D

p substrate

B

GVGS

n+n+

depletionregion

nchannel

The value of VGS where strong inversion occursis called the threshold voltage, VT

Page 34: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 34/52

34

The Threshold VoltageVT = VT0 + (|-2F + VSB| - |-2F|)

Where

• VT0 is the threshold voltage at VSB = 0 and is mostly afunction of the manufacturing process

• VSB is the source-bulk voltage

• F = -Tln(NA /ni) is the Fermi potential (T = kT/q = 26mV at

300K is the thermal voltage; NA is the acceptor ion concentration; ni  

1.5x1010 cm-3 at 300K is the intrinsic carrier concentration in pure silicon) 

• = (2qsiNA)/Cox is the body-effect coefficient (impact

of changes in VSB) (si=1.053x10-10F/m is the permittivity of silicon;Cox = ox /tox is the gate oxide capacitance with ox=3.5x10-11F/m)

Th B d Eff t

Page 35: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 35/52

35

The Body Effect

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

-2.5 -2 -1.5 -1 -0.5 0

VBS (V)

  VSB is the substrate bias

voltage (normally positive for n-channel devices with the bodytied to ground)

A negative bias causes VT toincrease from 0.45V to 0.85V

  Can use this trick to help with

power consumption – reducesleakage currents (but slows downthe gate)

VSB always has to be larger

than –0.6V in an NMOS device;otherwise the source-body diodebecomes forward biased

Transistor in Linear Mode

Page 36: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 36/52

36

Transistor in Linear Mode

S

D

B

G

n+n+

Assuming VGS > VT

VGS VDS

ID

x

V(x) -  + 

The current is a linear function of both VGS and VDS.

ID = F(VGS and VDS )

Page 37: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 37/52

37

Voltage-Current Relation: Linear Mode

For long-channel devices (L > 0.25 micron)• When VDS  VGS  – VT 

ID = k’n W/L [(VGS  – VT)VDS  – VDS2 /2]

where

k’n = nCox = nox /tox = is the process transconductance parameter (n is the carrier mobility(m2 /Vsec))

kn = k’n W/L is the gain factor of the device

For small VDS, there is a linear dependence between VDS and ID, hence the name resistive or linear region

Page 38: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 38/52

38

Transistor in Saturation Mode

S

D

B

GVGS VDS > VGS - VT

ID

VGS - VT-  + n+ n+

Pinch-

off

Assuming VGS > VT

VDS

The current remains constant (saturates). 

Page 39: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 39/52

39

Voltage-Current Relation: Saturation Mode

For long channel devices

• When VDS  VGS  – VT 

ID’ = k’n /2 W/L [(VGS  – VT) 2]

since the voltage difference over the induced

channel (from the pinch-off point to the source)remains fixed at VGS  – VT

• Some caveats (see the textbook) so ID is not100% constant.

Page 40: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 40/52

40

Current Determinates

• For a fixed VDS and VGS (> VT), IDS is a functionof

 – the distance between the source and drain – L

 – the channel width – W

 – the threshold voltage – VT

 – the thickness of the SiO2  – tox

 – the dielectric of the gate insulator (SiO2) – ox 

 – the carrier mobility

• for nfets: n = 500 cm2 /V-sec• for pfets: p = 180 cm2 /V-sec

Long Channel I V Plot (NMOS)

Page 41: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 41/52

41

Long Channel I-V Plot (NMOS)

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

VDS (V)

X 10-4

VGS = 1.0V

VGS = 1.5V

VGS = 2.0V

VGS = 2.5V

Linear Saturation

VDS = VGS - VT

NMOS transistor, 0.25um, Ld = 10um, W/L = 1.5, VDD = 2.5V, VT = 0.4V

cut-off

Page 42: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 42/52

42

Current-Voltage Relations

Long-Channel Device

Sh t Ch l Eff t

Page 43: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 43/52

43

Short Channel Effects

0

10

0 1.5 3

(V/ m)

For an NMOS device with L of .25m, only a couple of voltsdifference between D and S are needed to reach velocity

saturation

c=

Behavior of short channel device mainly due to

Velocity saturation  – thevelocity of the carrierssaturates due to scattering(collisions suffered by thecarriers)

Voltage Current Relation:

Page 44: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 44/52

44

Voltage-Current Relation:Velocity Saturation

For short channel devices• Linear: When VDS  VGS  – VT 

ID = (VDS) k’n W/L [(VGS  – VT)VDS  – VDS2 /2]

where(V) = 1/(1 + (V/ cL)) is a measure of the degreeof velocity saturation

• Saturation: When VDS = VDSAT  VGS  – VT 

IDSat = (VDSAT) k’n W/L [(VGS  – VT)VDSAT  – VDSAT2 /2]

Velocity Saturation Effects

Page 45: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 45/52

45

Velocity Saturation Effects

VDSAT < VGS  – VT sothe device enters

saturation before VDS reaches VGS  – VT andoperates more often insaturation

For short channel devices

and large enough VGS  – VT

IDSAT has a linear dependence wrt VGS so a reducedamount of current is delivered for a given control

voltage

0

10

S C OS

Page 46: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 46/52

46

Short Channel I-V Plot (NMOS)

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

VDS (V)

X 10-4

VGS = 1.0V

VGS = 1.5V

VGS = 2.0V

VGS = 2.5V

NMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V,

Early Velocity

Saturation

Linear Saturation

Page 47: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 47/52

47

MOS ID-VGS Characteristics Linear (short-channel)

versus quadratic (long-channel) dependence ofID on VGS in saturation

Velocity-saturationcauses the short-channel device tosaturate at substantiallysmaller values of VDS 

resulting in a substantialdrop in current drive

(for VDS = 2.5V, W/L = 1.5)

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5VGS (V)

X 10-4

Short Channel I-V Plot (PMOS)

Page 48: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 48/52

48

Short Channel I-V Plot (PMOS)

-1

-0.8

-0.6

-0.4

-0.2

0

0-1-2

VDS (V)

X 10-4

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V

PMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V, VT = -0.4V

All polarities of all voltages and currents are reversed

Page 49: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 49/52

49

The MOS Current-Source Model

VT0(V) (V0.5) VDSAT(V) k’(A/V2) (V-1)

NMOS 0.43 0.4 0.63 115 x 10-6 0.06

PMOS -0.4 -0.4 -1 -30 x 10-6 -0.1

S D

G

B

ID

ID = 0 for VGS  – VT 0

ID = k’ W/L [(VGS  – VT)Vmin –Vmin2 /2](1+VDS)

for VGS  – VT  0

with Vmin = min(VGS  – VT, VDS, VDSAT)

and VGT = VGS - VT

Determined by the voltages at the four terminals and a set of fivedevice parameters

Page 50: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 50/52

PSPICE

Simulating CircuitsPSPICE

The Transistor Modeled as a Switch

Page 51: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 51/52

51

The Transistor Modeled as a Switch

0

1

2

3

4

5

6

7

0.5 1 1.5 2 2.5

VDD (V)

x105

S DRo

n

VGS  VT

VDD(V) 1 1.5 2 2.5

NMOS(k) 35 19 15 13 

PMOS (k) 115 55 38 31 

(for VGS = VDD,VDS = VDD VDD /2)

Modeled as a switch with infiniteoff resistance and a finite on

resistance, Ron 

Resistance inverselyproportional to W/L (doublingW halves Ron)

For VDD>>VT+VDSAT /2, Ron independent of VDD

  Once VDD approaches VT,Ron increases dramatically

Ron (for W/L = 1)For larger devices divide

Req by W/L

Ci i Th CMOS I

Page 52: Lec3 MOS Transistor Review 2

8/3/2019 Lec3 MOS Transistor Review 2

http://slidepdf.com/reader/full/lec3-mos-transistor-review-2 52/52

Circuit: The CMOS Inverter 

VDD 

Vout 

CL 

Vin