Top Banner
EE141 – Fall 2005 Lecture 3 CMOS Manufacturing CMOS Manufacturing Design Rules Design Rules EE141 2 Administrative Stuff The course web-page is up http://bwrc.eecs.berkeley.edu/Classes/ee141 http://inst.eecs.berkeley.edu/~ee141 Labs start next week Everyone should have an EECS instructional account http://www-inst.eecs.berkeley.edu/ ~inst/newusers.html Homework #1 is due this Thursday before class Drop-off box 240 Cory Homework #2 will post on Thursday, Sep-8
28

EE141 – Fall 2005 Lecture 3

Dec 23, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EE141 – Fall 2005 Lecture 3

1

EE141 – Fall 2005Lecture 3

CMOS ManufacturingCMOS ManufacturingDesign RulesDesign Rules

EE141 2

Administrative Stuff

The course web-page is up• http://bwrc.eecs.berkeley.edu/Classes/ee141• http://inst.eecs.berkeley.edu/~ee141

Labs start next week• Everyone should have an EECS instructional account• http://www-inst.eecs.berkeley.edu/

~inst/newusers.html

Homework #1 is due this Thursday before class• Drop-off box 240 Cory

Homework #2 will post on Thursday, Sep-8

Page 2: EE141 – Fall 2005 Lecture 3

2

EE141 3

TA Office Hours

TA office hours in 197 Cory• Lynn Wang, Tue 1:30-2:30pm• Ke Lu, Wed 2-3pm

Check the newsgroup for questions

Email Dejan and TAs: [email protected]

EE141 4

Last Lecture

Last lecture• Design metrics

Today’s lecture• CMOS manufacturing process• CMOS design rules

Page 3: EE141 – Fall 2005 Lecture 3

3

EE141 5

Review

Design MetricsDesign Metrics• Cost• Reliability• Speed• Power

EE141 6

Total Cost

Cost per IC

Variable cost

volumecost fixed ICper cost variable ICper cost +=

yield test finalpackaging ofcost test die ofcost die ofcost cost variable ++

=

Page 4: EE141 – Fall 2005 Lecture 3

4

EE141 7

Die Cost

Single die

Wafer

Going up to 12” (30cm)

yield die*per wafer dies waferofcost die ofcost =

From: http://www.amd.com

EE141 8

Defects

α−

α×

+=area dieareaunit per defects1yield die

α ≈ 3, complexity of mfg. process

defects per unit area = 0.5 to 1 /cm2

cost of die = f (die area)4

Page 5: EE141 – Fall 2005 Lecture 3

5

EE141 9

V(in)

V(out)

fV(out)=V(in)

Switching Threshold

Nominal Voltage Levels

VOH = f(VOL)VOL = f(VOH)VM = f(VM)

DC Operation:Voltage Transfer Characteristic

VOH

VOL

VM

VOL VOH

EE141 10

Slope = -1

Slope = -1

VOL

VIL

VIH

VOH

UndefinedRegion

Mapping between Analog and Digital Signals

“1”

“0”VOL

VOH

V(out)

V(in)VIL VIH

Page 6: EE141 – Fall 2005 Lecture 3

6

EE141 11

UndefinedRegion

Noise margin high:NMH = VOH – VIH

Noise margin low:NML = VIL – VOL

Gate Output

Gate Input

Definition of Noise Margins

NML

NMH

“0”

“1”

VOL

VOH

VIL

VIH

(Stage M) (Stage M+1)

EE141 12

Ri = ∞Ro = 0Fanout = ∞NMH = NML = VDD/2g = −∞

The Ideal Gate

V(in)

V(out)

Page 7: EE141 – Fall 2005 Lecture 3

7

EE141 13

Outline

Design MetricsDesign Metrics• Cost• Reliability• Speed• Power

EE141 14

Vout

tf

tpHL tpLH

trt

Vin

t

90%

10%

50%

50%2

pHLpLHp

ttt

+=

Performance: Delay Definitions

Page 8: EE141 – Fall 2005 Lecture 3

8

EE141 15

v0 v1 v5

v1 v2v0 v3 v4 v5

T = 2 × tp × N

Technology Characterization:Ring Oscillator for tp

EE141 16

Performance: FO4 Inverter

Measures quality of design across different technology generations

d

Page 9: EE141 – Fall 2005 Lecture 3

9

EE141 17

A First-Order RC Network

vout

v in C

R

Important model – matches delay of inverter

int

out vetv ⋅−= − )1()( τ

Step response:

RCt p 69.02ln =⋅= τPropagation delay:

EE141 18

Review

Design MetricsDesign Metrics• Cost• Reliability• Speed• Power

Page 10: EE141 – Fall 2005 Lecture 3

10

EE141 19

Power Dissipation

( )∫ ∫+ +

⋅=⋅=Tt

t

Tt

t supplydd

avg dttiT

VdttpT

P )(1

peakddpeak iVP ⋅=

( )tiVtitvtp supplydd ⋅=⋅= )()()(Instantaneous power

Peak power

Average power

EE141 20

Energy and Energy-Delay

Power-Delay Product (PDP) =

E = Energy per operation = Pavg × tp

Energy-Delay Product (EDP) =

quality metric of gate = E × tp

Page 11: EE141 – Fall 2005 Lecture 3

11

EE141 21

A First-Order RC Network

vout

vin CL

R

( )∫ ∫∫ ⋅=⋅=⋅=⋅=→

T V

ddLoutL

T

ddsupplydddd VCdVCVdttiVdttpE

0 0

2

010 )(

( ) ( )∫ ∫∫ ⋅⋅=⋅⋅=⋅⋅=⋅=T V

ddLoutoutL

T

capoutcapcapdd VCdVtVCdttitVdttpE

0 0

2

0 21)()(

1021

→= EEcap

EE141 22

Outline

MOS TransistorMOS Transistor

Manufacturing ProcessManufacturing Process

Design Rules & LayoutDesign Rules & Layout

Page 12: EE141 – Fall 2005 Lecture 3

12

EE141 23

The MOS Transistor

PolysiliconAluminum

EE141 24

CMOS Process

Page 13: EE141 – Fall 2005 Lecture 3

13

EE141 25

A Modern CMOS Process

p-well n-well

p+

p-epi

SiO2

AlCu

poly

n+

SiO2

p+

gate-oxide

Tungsten

TiSi2

DualDual--Well TrenchWell Trench--Isolated CMOS ProcessIsolated CMOS Process

EE141 26

Transistor Layout

p-well SiO2

poly

SiO2

n+

Cross-Sectional View

Layout View

poly

p-well

Page 14: EE141 – Fall 2005 Lecture 3

14

EE141 27

Circuit Under Design

VDDVDD

VinVout

M1

M2

M3

M4Vout2

EE141 28

Polysilicon

In Out

VDD

GND

PMOS 2λ

Metal 1

NMOS

OutIn

VDD

PMOS

NMOS

Contacts

N Well

CMOS Inverter

Page 15: EE141 – Fall 2005 Lecture 3

15

EE141 29

Two Inverters

Connect in Metal

VDD

Share power and ground

Abut cells

EE141 30

Outline

MOS TransistorMOS Transistor

Manufacturing ProcessManufacturing Process

Design Rules & LayoutDesign Rules & Layout

Page 16: EE141 – Fall 2005 Lecture 3

16

EE141 31

oxidation

opticalmask

processstep

photoresist coatingphotoresistremoval (ashing)

spin, rinse, dryacid etch

photoresist

stepper exposure

development

Typical operations in a single photolithographic cycle (from [Fullman]).

Photo-Lithographic Process

EE141 32

Patterning of SiO2

Si-substrate

Si-substrate Si-substrate

(a) Silicon base material

(b) After oxidation and depositionof negative photoresist

(c) Stepper exposure

PhotoresistSiO2

UV-lightPatternedoptical mask

Exposed resist

SiO2

Si-substrate

Si-substrate

Si-substrate

SiO2

SiO2

(d) After development and etching of resist,chemical or plasma etch of SiO2

(e) After etching

(f) Final result after removal of resist

Hardened resist

Hardened resist

Chemical or plasmaetch

Page 17: EE141 – Fall 2005 Lecture 3

17

EE141 33

CMOS Process at a Glance

Define active areasEtch and fill trenches

Implant well regions

Deposit and patternpolysilicon layer

Implant source and drainregions and substrate contacts

Create contact and via windowsDeposit and pattern metal layers

EE141 34

CMOS Process Walk-Through

p+

p-epi (a) Base material: p+ substrate with p-epi layer

p+

(c) After plasma etch of insulatingtrenches using the inverse of the active area mask

p+

p-epi SiO2

3SiN

4(b) After deposition of gate-oxide andsacrificial nitride (acts as abuffer layer)

Page 18: EE141 – Fall 2005 Lecture 3

18

EE141 35

CMOS Process Walk-Through

SiO2(d) After trench filling, CMPplanarization, and removal of sacrificial nitride

(e) After n-well and VTp adjust implants

n

(f) After p-well andVTn adjust implants

p

EE141 36

CMOS Process Walk-Through

(g) After polysilicon depositionand etch

poly(silicon)

(h) After n+ source/drain andp+source/drain implants. These

p+n+

steps also dope the polysilicon.

(i) After deposition of SiO2insulator and contact hole etch.

SiO2

Page 19: EE141 – Fall 2005 Lecture 3

19

EE141 37

CMOS Process Walk-Through

(j) After deposition and patterning of first Al layer.

Al

(k) After deposition of SiO 2insulator, etching of via’s,deposition and patterning ofsecond layer of Al.

AlSiO2

EE141 38

Advanced Metalization

Page 20: EE141 – Fall 2005 Lecture 3

20

EE141 39

Advanced Metalization

EE141 40

Outline

MOS TransistorMOS Transistor

Manufacturing ProcessManufacturing Process

Design Rules & LayoutDesign Rules & Layout

Page 21: EE141 – Fall 2005 Lecture 3

21

EE141 41

Design Rules

Interface between designer and process engineer

Guidelines for constructing process masks

Unit dimension: Minimum line width• Scalable design rules: lambda parameter• Absolute dimensions (micron rules)

EE141 42

Design Rules

Intra-layer• Widths, spacing

Inter-layer• Enclosures, overlaps

Special rules (sub-0.25µm)• Area, antenna rules, density rules

Page 22: EE141 – Fall 2005 Lecture 3

22

EE141 43

CMOS Process Layers

Layer

Polysilicon

Metal1

Metal2

Contact To Poly

Contact To Diffusion

Via

Well (p,n)

Active Area (n+,p+)

Color Representation

Yellow

Green

RedBlue

MagentaBlack

BlackBlack

Select (p+,n+) Green

EE141 44

Layers in 0.25µm CMOS Process

Page 23: EE141 – Fall 2005 Lecture 3

23

EE141 45

Design Rules

Intra-layer: widths, spacing

Inter-layer: enclosures, overlaps• Transistor rules• Contact and via rules• Well and substrate contacts

Special rules (sub-0.25µm)• Area, antenna rules, density rules

EE141 46

Intra-Layer Design Rules

Metal2 4

3

10

90

Well

Active3

3

Polysilicon2

2

Different PotentialSame Potential

Metal1 3

32

Contactor Via

Select2

or6

2Hole

Page 24: EE141 – Fall 2005 Lecture 3

24

EE141 47

1

2

5

3

Tran

sist

or

Inter Layer: Transistor Rules

Tran

sist

or

EE141 48

Inter Layer: Vias and Contacts

1

2

1

Via

Metal toPoly ContactMetal to

Active Contact

1

2

5

4

3 2

2

Page 25: EE141 – Fall 2005 Lecture 3

25

EE141 49

1

3 3

2

2

2

WellSubstrate

Select3

5

Inter Layer: Well and Substrate

EE141 50

Example: CMOS Inverter Layout

A A’

np-substrate Field

Oxidep+n+

In

Out

GND VDD

(a) Layout

(b) Cross-Section along A-A’

A A’

Page 26: EE141 – Fall 2005 Lecture 3

26

EE141 51

Layout Editor – MicroMagic

EE141 52

Layout Editor –Cadence Virtuoso

In1 In2Out

vdd

gnd

Page 27: EE141 – Fall 2005 Lecture 3

27

EE141 53

Design Rule Checker

poly_not_fet to all_diff minimum spacing = 0.14 um.

EE141 54

Sticks Diagram

1

3

In Out

VDD

GND

Stick diagram of inverter

• Dimensionless layout entities• Only topology is important

Page 28: EE141 – Fall 2005 Lecture 3

28

EE141 55

Next Lecture

MOS Transistor• Operation and modeling