Top Banner
Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI
66

Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Dec 16, 2015

Download

Documents

Vivien Booth
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Diffusion in multicomponent solids

Anton Van der VenDepartment of Materials Science and Engineering

University of MichiganAnn Arbor, MI

Page 2: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Coarse graining timeDiffusion in a crystal

Two levels of time coarse graining

Page 3: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Coarse graining timeDiffusion in a crystal

Two levels of time coarse graining

⎟⎠⎞

⎜⎝⎛ Δ−

=ΓkT

EBexp*ν

Short-time coarse graining: transition state theory

- MD simulations- Harmonic approximation

Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

Page 4: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Coarse graining timeDiffusion in a crystal

Two levels of time coarse graining

⎟⎠⎞

⎜⎝⎛ Δ−

=ΓkT

EBexp*ν

Short-time coarse graining: transition state theory

- MD simulations- Harmonic approximation

A second level of coarse graining that leads to Fick’s law

J D C=− ∇

Green-Kubo

Kinetic coefficients derived from fluctuations at equilibrium

Vineyard, J. Phys. Chem. Solids 3, 121 (1957).Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965).

Page 5: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Interstitial diffusion

• C diffusion in bcc Iron (steel)

• Li diffusion in transition metal oxide host

• O diffusion on Pt-(111) surface

In all examples, diffusion occurs on a rigid latticewhich is externally imposed by a host or substrate

Page 6: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Example of interstitial diffusion

Page 7: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Irreversible thermodynamics: interstitial diffusion of one component

μ∇−= LJ

CDJ ∇−=

dC

dLD

μ=

Page 8: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Notation

M = number of lattice sites

N = number of diffusing atoms

vs = volume per lattice site

x = N/M

C=x/vs

Page 9: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Interstitial diffusion: one component

Θ⋅=LD

C∂∂

=Θμ

Kubo-Green relations(linear response statistical mechanics)

L =1

(2d)tMvskTΔ

r R i t( )

i=1

N

∑ ⎛

⎜ ⎜

⎟ ⎟

2

Thermodynamic factor

Kinetic coefficient

A. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005).

R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

Page 10: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Δ r

R i t( )

Δ r

R j t( )

DJ =1

2d( )t

1

r R i t( )

i=1

N

∑ ⎛

⎜ ⎜

⎟ ⎟

2

Trajectories

Page 11: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

More familiar form

Θ⋅= ~JDD

x

kT

ln

~

⎟⎠

⎞⎜⎝

⎛∂=Θ

μ

DJ =1

2d( )t

1

r R i t( )

i=1

N

∑ ⎛

⎜ ⎜

⎟ ⎟

2

Thermodynamic factor

Self diffusion coefficient

R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

Page 12: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Common approximation

Θ⋅= ~*DD

x

kT

ln

~

⎟⎠

⎞⎜⎝

⎛∂=Θ

μ

D* =ΔRi t( )( )

2

2d( )t

Thermodynamic factor

Tracer diffusion coefficient

R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

Page 13: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Θ⋅= ~JDD

Diffusion coefficient at 300 K

Thermodynamicfactor Θ

A. Van der Ven, G. Ceder, M. Asta, P.D. Tepesch, Phys Rev. B 64 (2001) 064112

Page 14: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Interstitial diffusion (two components)

• C & N diffusion in bcc Iron (steel)• Li & Na diffusion in transition metal oxide host• O & S diffusion on Pt-(111) surface

In all examples, diffusion occurs on a rigid latticewhich is externally imposed by a host or substrate

Page 15: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Diffusion of two species on a lattice

BABAAAA LLJ μμ ∇−∇−=

BBBABAB LLJ μμ ∇−∇−=

BABAAAA CDCDJ ∇−∇−=

BBBABAB CDCDJ ∇−∇−=

⎟⎟⎟⎟

⎜⎜⎜⎜

∂∂

∂∂

∂∂

∂∂

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

B

B

A

B

B

A

A

A

BBBA

ABAA

BBBA

ABAA

CC

CCLL

LL

DD

DDμμ

μμ

Θ⋅=LD

Page 16: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Alternative factorization

⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜

⎟⎠

⎞⎜⎝

⎛∂

⎟⎠

⎞⎜⎝

⎛∂

⎟⎠

⎞⎜⎝

⎛∂

⎟⎠

⎞⎜⎝

⎛∂

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

B

B

A

B

B

A

A

A

BBBA

ABAA

BBBA

ABAA

x

kT

x

kT

x

kT

x

kT

LL

LL

DD

DD

μμ

μμ

~~

~~

( ) ( )

( )tMd

tRtR

L

ji

ij 2

~⎟⎟⎟

⎜⎜⎜

⎛Δ⋅

⎟⎟⎟

⎜⎜⎜

⎛Δ

=

∑∑ξ

ξς

ςrr

Kubo-Green

A. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005).

A.R. Allnatt, A.B. Lidiard, Atomic Transport in Solids (Cambridge Univ. Press, 1993).

Page 17: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Kinetic coefficients (fcc lattice in dilute vacancy limit, ideal solution)

( ) ( )

( )tMd

tRtR

L

ji

ij 2

~⎟⎟⎟

⎜⎜⎜

⎛Δ⋅

⎟⎟⎟

⎜⎜⎜

⎛Δ

=

∑∑ξ

ξς

ςrr

Page 18: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Diffusion in an alloy:substitutional diffusion

Not interstitial diffusion

Instead, diffusing atoms form the lattice

Dilute concentration of vacancies

Page 19: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Thermodynamic driving forces for substitutional diffusion

BABAAAA LLJ μμ ~~ ∇−∇−=

BBBABAB LLJ μμ ~~ ∇−∇−=

VAA μμμ −=~

VBB μμμ −=~

A. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005).

Page 20: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Textbook treatment of substitional diffusion

Not Rigorous

BABAAAA LLJ μμ ~~ ∇−∇−=

BBBABAB LLJ μμ ~~ ∇−∇−=

Page 21: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Textbook treatment of substitional diffusion

Not Rigorous

0=Vμ

AAA CDJ ∇−=

BBB CDJ ∇−=

0=Vdμ

Traditional

Gibbs-Duhem 0=+ BBAA dxdx μμ

BABAAAA LLJ μμ ~~ ∇−∇−=

BBBABAB LLJ μμ ~~ ∇−∇−=

Assume vacancy concentration in equilibrium everywhere

Page 22: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Textbook treatment of substitional diffusion

Not Rigorous

0=Vμ

AAA CDJ ∇−=

BBB CDJ ∇−=

0=Vdμ

Traditional

BABAAAA CDCDJ ∇−∇−=

BBBABAB CDCDJ ∇−∇−=Gibbs-Duhem 0=+ BBAA dxdx μμ

BABAAAA LLJ μμ ~~ ∇−∇−=

BBBABAB LLJ μμ ~~ ∇−∇−=

Rigorous

Assume vacancy concentration in equilibrium everywhere

Page 23: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Lattice frame and laboratory frame of reference

( )BAmVmlattice JJVJVv +⋅−=⋅=

VAAA JxJJ +=~Fluxes in the laboratory frame

VBBB JxJJ +=~

Page 24: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Lattice frame and laboratory frame of reference

( )BAmVmlattice JJVJVv +⋅−=⋅=

VAAA JxJJ +=~Fluxes in the laboratory frame

VBBB JxJJ +=~

BVBB CDJxJ ∇−=+ ~BV CWJ ∇−= ~

BAAB DxDxD +=~

BA DDW −=~Drift

Interdiffusion

Page 25: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Rigorous treatment

BABAAAA CDCDJ ∇−∇−=

BBBABAB CDCDJ ∇−∇−=

Page 26: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Diagonalize the D-matrix

Yields a mode corresponding to (a) density relaxation (b) interdiffusion

1

0

0 −−

+⋅⎟

⎟⎠

⎞⎜⎜⎝

⎛⋅=⎟⎟

⎞⎜⎜⎝

⎛EE

DDDD

BBBA

ABAA

λλ

K. W. Kehr, et al, Phys. Rev. B 39, 4891 (1989)

Rigorous treatment

BABAAAA CDCDJ ∇−∇−=

BBBABAB CDCDJ ∇−∇−=

Page 27: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Physical meaning of modes λ+ and λ-

Page 28: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Physical meaning of modes λ+ and λ-

Density fluctuations relax with a time constant of λ+

K. W. Kehr, et al, Phys. Rev. B 39, 4891 (1989)

Page 29: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Physical meaning of modes λ+ and λ-

Density fluctuations relax with a time constant of λ+

Compositional inhomogeneities decay with a time constant of λ

K. W. Kehr, et al, Phys. Rev. B 39, 4891 (1989)

Page 30: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Comparisons of different treatments

ΓB=10xΓA

Random alloy

ΓB=100xΓA

Traditional and rigorous treatment are equivalent only when B= A

Page 31: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Example:LixCoO2

Page 32: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Intercalation Oxide as Cathode in Rechargeable Lithium Battery

Polymer Binder

Carbon black

Electrolyte

Cathode(LixMO2)

Anode(Li )

dischargechargeLi+

Li+Cobalt

Oxygen

Lithium

IntercalationOxide

LixCoO2

Page 33: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Cluster Expansions

( )exp

B

FZ

k Tσ

σ⎛ ⎞= −⎜ ⎟

⎝ ⎠∑

( ), , ,

...o i j k l m ni j k l m n

F V V V Vα β γσ σ σ σ σ σ σ= + + + +∑ ∑ ∑

First-Principles (Density Functional Theory)

Fit V , V , V , …to first-principles energies

Monte Carlo

Page 34: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.
Page 35: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

First principles energies (LDA)of different lithium-vacancy configurations

A. Van der Ven, et al, Phys. Rev. B 58 (6), p. 2975-87 (1998).

Page 36: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Cluster expansion for LixCoO2

( ) , , ,, , ,

...o i i i j i j i j k i j ki i j i j k

E V V V Vσ σ σ σ σ σ σ= + + + +∑ ∑ ∑

A. Van der Ven, et al, Phys. Rev. B 58 (6), p. 2975-87 (1998).

Page 37: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Calculated LixCoO2 phase diagram

A. Van der Ven, et al, Phys. Rev. B 58 (6), p. 2975-87 (1998).

Page 38: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Calculated phase diagram

Experimental phase diagramReimers, Dahn, J.Electrochem. Soc, (1992)Ohzuku, Ueda, J. Electrochem. Soc. (1994)Amatucci et al, J. Electrochem. Soc. (1996)

Page 39: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Predicted phases confirmed experimentally

Confirmed experimentally with TEMY. Shao-Horn, S. Levasseur, F. Weill, C. Delmas, J. Electrochem. Soc. 150 (2003), A 366

Page 40: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Predicted phases confirmed experimentally

Confirmed experimentally with TEMY. Shao-Horn, S. Levasseur, F. Weill, C. Delmas, J. Electrochem. Soc. 150 (2003), A 366

Confirmed experimentally byZ. Chen, Z. Lu, J.R. Dahn J. Electrochem. Soc. 149, A1604 (2002)

Page 41: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Calculated phase diagram

Experimental phase diagram

?

Reimers, Dahn, J.Electrochem. Soc, (1992)Ohzuku, Ueda, J. Electrochem. Soc. (1994)Amatucci et al, J. Electrochem. Soc. (1996)

M. Menetrier et al J. Mater Chem. 9, 1135 (1999)

Page 42: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Effect of metal insulator transitionHoles in the valence band

localize in space

LDA & GGA fails to accurately describe localized electronic states

C. A. Marianetti et al, Nature Materials, 3, 627 (2004).

Page 43: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Diffusion

J D C=− ∇Fick’s Law

Polymer Binder

Carbon black

Electrolyte

Cathode(LixMO2)

Anode(Li )

dischargechargeLi+

Li+Cobalt

Oxygen

Lithium

IntercalationOxide

Page 44: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Interstitial diffusion and configurational disorder

Kubo-Green relations

Thermodynamic factor

Self diffusion coefficient

Θ⋅= ~JDD

x

kT

ln

~

⎟⎠

⎞⎜⎝

⎛∂=Θ

μ

DJ =1

2d( )t

1

r R i t( )

i=1

N

∑ ⎛

⎜ ⎜

⎟ ⎟

2

Page 45: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Individual hops:Transition state theory

⎟⎠⎞

⎜⎝⎛ Δ−

=ΓkT

EBexp*ν

BEΔ

Page 46: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

ΔEkra = Eactivated −state −1

2E1 + E2( )

ΔEbarrier = ΔEkra +1

2E final − Einitial( )

Kinetically resolved activation barrier

A. Van der Ven, G. Ceder, M. Asta, P.D. Tepesch, Phys Rev. B 64 (2001) 064112

Page 47: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Migration mechanism in LixCoO2

Single vacancy hop mechanism

Divacancy hop Mechanism

Oxygen

Cobalt

Lithium

Page 48: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Single vacancy hop Divacancy hopOxygen

Cobalt

Lithium

Page 49: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Many types of hop possibilities in the lithium plane

Page 50: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Migration barriers depend configuration and concentration

Divacancymechanism

Single-vacancymechanism

Page 51: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Local Cluster expansion for divacancy migration barrier

Page 52: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Calculated diffusion coefficient(First Principles cluster expansion + kinetic Monte Carlo)

JDD ⋅Θ=Diffusion coefficient

at 300 KThermodynamic

factor Θ

A. Van der Ven, G. Ceder, M. Asta, P.D. Tepesch, Phys Rev. B 64 (2001) 064112

Page 53: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Available migration mechanisms for each lithium ion

Channels into a divacancy

Number of vacancies around lithium

Channels into isolated vacancies

Page 54: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Diffusion occurs with a divacancy mechanism

Page 55: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Diffusion and phase transformations in Al-Li alloys

Dark field TEMA. Kalogeridis, J. Pesieka, E. Nembach, Acta Mater 47 (1999) 1953

Dark field in situ TEM, peak aged Al-Li specimen under full loadH. Rosner, W. Liu, E. Nembach, Phil Mag A, 79 (1999) 2935

Page 56: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

fcc Al-Li alloyBinary cluster expansion

( ) , , ,, , ,

...o i i i j i j i j k i j ki i j i j k

E V V V V= + + + +∑ ∑ ∑σ σ σ σ σ σ σ

1+=iσ1−=iσ

Li at site iAl at site i

Fit to LDA energies of 70 different Al-Li arrangements on fcc

A. Van der Ven, G. Ceder, Phys. Rev. B71, 054102(2005)

Page 57: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Calculated thermodynamic and kinetic properties of Al-Li alloy

First principles cluster expansion + Monte Carlo

A. Van der Ven, G. Ceder, Phys. Rev. B71, 054102(2005)

Page 58: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Expand environment dependence of vacancy formation energy

Fit to 23 vacancy LDA formation energies in different Al-Li arrangements

(107 atom supercells).

1+=iσ1−=iσ

Li at site iAl at site i

Local cluster expansion* (perturbation to binary cluster expansion)

A. Van der Ven, G. Ceder, Phys. Rev. B71, 054102(2005)

Page 59: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Equilibrium vacancy concentration(Monte Carlo applied to cluster expansion)

A. Van der Ven, G. Ceder, Phys. Rev. B71, 054102(2005)

Page 60: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Vacancy surrounds itself by AlShort range order around a vacancy

750 Kelvin

A. Van der Ven, G. Ceder, Phys. Rev. B71, 054102(2005)

Page 61: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Vacancies reside on lithium sublattice in L12

Al

Li

600 Kelvin

Page 62: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Migration barriers for lithium and aluminum differ by ~150 meV

Li barriers

Al barriers

vAl* ≈ 4.5×1013 Hz

vLi* ≈ 7×1013 Hz

Calculated (LDA) in 107 atom supercells

Page 63: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Al

Li

Calculated interdiffusion coefficient

A. Van der Ven, G. Ceder, Phys. Rev. Lett. 94, 045901 (2005).

Page 64: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Hop mechanisms

Page 65: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Frequency of hop angles between successive hops

A. Van der Ven, G. Ceder, Phys. Rev. Lett. 94, 045901 (2005).

Page 66: Diffusion in multicomponent solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI.

Conclusion

• Green-Kubo formalism yields rigorous expressions for diffusion coefficients

• Discussed diffusion formalism for both interstitial and substitutional diffusion

• Intriguing hop mechanisms in multi-component solids that can depend on ordering

• Thermodynamics plays a crucial role!