Top Banner

of 55

Chap16-Analog Integrated Circuits

Apr 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/27/2019 Chap16-Analog Integrated Circuits

    1/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Chapter 16

    Analog Integrated Circuits

    Microelectronic Circuit Design

    Richard C. Jaeger

    Travis N. Blalock

    Chap 16 - 1

  • 7/27/2019 Chap16-Analog Integrated Circuits

    2/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Chapter Goals

    Understand bipolar and MOS current mirror operation and mirror ratio errors.

    Explore high output resistance current sources including cascode and Wilson

    current sources.

    Design current sources for both discrete and integrated applications.

    Study reference current circuits such as VBE-based reference, bandgapreference and Widlar current source.

    Use current mirrors as active loads in differential amplifiers to increase

    voltage gain of single-stage amplifiers.

    Study effects of device mismatch on amplifier performance.

    Analyze design of classic mA741 op amp.

    Study realization of four-quadrant analog multipliers with large input signal

    range.

    Increase understanding of SPICE simulation techniques.

    Chap 16 - 2

  • 7/27/2019 Chap16-Analog Integrated Circuits

    3/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    MOS Current Mirrors: DC Analysis

    MOSFETsM1 andM2 are

    assumed to have identical VTN,

    Kn, l, and W/L ratios.

    IREFprovides operating bias to

    mirror.

    VDS1 = VGS1= VGS2 =VGS

    )1(1 DS1

    Vn

    KREF

    2I

    TNV

    GS1V

    l

    DS2V

    TNV

    GS2Vn

    K

    D2I

    OI l1

    2

    2

    REFI

    DS1VDS2

    V

    REFIOI

    l

    l

    1

    1

    However, due to mismatches, VDS1 is

    not equal to VDS2 and there is slightmismatch between output and

    reference currents. Mirror ratio is:

    DS1V

    DS2V

    REFI

    OI

    l

    l

    1

    1MR

    Chap 16 - 3

  • 7/27/2019 Chap16-Analog Integrated Circuits

    4/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    MOS Current Mirror (Example)

    Problem:Calculate output current for given current mirror.

    Given data:IREF= 150 mA, VSS = 10 V, VTN= 1 V, Kn = 250 mA/V2, l=

    0.0133 V-1

    Analysis: (1+ lVDS1) term is neglected to simplify dc bias calculation.

    V10.2

    2V

    A250

    )A150(2V1211

    nK

    REFITN

    VGS

    VDS

    V

    A165

    V)10.2(V

    0133.01

    V)10(V

    0133.01

    )A150(

    OI

    Actual currents are found to be mismatched by approximately 10%.

    Chap 16 - 4

  • 7/27/2019 Chap16-Analog Integrated Circuits

    5/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    MOS Current Mirrors: Changing Mirror

    Ratio

    Mirror ratio can be changed bymodifying W/L ratios of the two

    transistors forming the mirror.

    11

    LW'nKn

    K22

    LW'nKn

    K

    DS1V

    L

    W

    DS2V

    LW

    REFI

    DS1V

    n1K

    DS2V

    n2K

    REFI

    OI

    l

    l

    l

    l

    11

    12

    1

    1

    DS1V

    L

    W

    DS2V

    L

    W

    l

    l

    11

    1

    2MR

    In given current mirror,Io =5IREF. Again

    mismatch in VDScauses error in MR.

    Chap 16 - 5

  • 7/27/2019 Chap16-Analog Integrated Circuits

    6/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Current Mirrors: DC Analysis

    BJTs Q1 and Q2 are assumed to

    have identicalIS, VA,bFO, and

    W/L ratios.

    Io =IC2, IREF=IC1 +IB1 +

    IB2

    VBE1= VBE2 =VBE

    FOAV

    CE2V

    AV

    CE2V

    REFI

    OI

    b

    21

    )/(1

    Finite current gain of BJT causes slight

    mismatch betweenIo andIREF.

    )/2(11MRFOREF

    IOI

    b

    AVCE

    V

    TVBE

    V

    SI

    CI 11exp1

    AV

    CEV

    TVBE

    V

    SI

    CI 21exp2

    AVCE

    V

    FOF11

    1bb

    AVCE

    V

    FOF21

    2bb

    TVBEV

    FO

    SI

    BI exp1 b

    T

    VBEV

    FO

    SIBI exp1 b

    Chap 16 - 6

  • 7/27/2019 Chap16-Analog Integrated Circuits

    7/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Current Mirror (Example)

    Problem:Calculate and compare mirror ratios for BJT and MOS current

    mirror.

    Given data:IREF= 150 mA, VGS = 2 V, VDS2 = VCE2 = 10 V, l= 0.02 V-1

    VA = 50 V,bFO = 100, VSS = 10 V,M1 =M2, Q1 = Q2.

    Analysis:

    15.1

    1

    1

    MOSMR

    DS1V

    DS2V

    l

    l

    16.1

    21

    )/(1

    BJT

    MR

    FOAVCE2V

    AV

    CE2V

    b

    Chap 16 - 7

  • 7/27/2019 Chap16-Analog Integrated Circuits

    8/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Current Mirrors: Changing Mirror

    Ratio

    Mirror ratio can be changed by

    modifying the emitter area of the

    transistor.

    A

    EA

    SOI

    SI

    Emitter area scaling changes thetransport equations using which,

    Ideally, MR= n, but for finite gain,

    FO

    n

    AV

    CE2V

    AV

    CE2V

    REFnI

    OI

    b

    11

    )/(1

    E1A

    E2A

    n

    FO

    n1

    n

    b

    MR

    Chap 16 - 8

  • 7/27/2019 Chap16-Analog Integrated Circuits

    9/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Multiple Current Sources

    Reference current enters diode-

    connected transistorM1 establishing

    gate-source voltage to biasM2 through

    M5, each with different W/L ratio.

    Absence of current gain defect permitslarge number of MOSFETs to be

    driven by one reference transistor.

    Similar multiple bipolar sources can

    be built from one reference BJT.

    As base current error term worsenswhen more BJTs are added, umber of

    outputs of basic bipolar mirror are

    limited.

    Chap 16 - 9

  • 7/27/2019 Chap16-Analog Integrated Circuits

    10/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Buffered Bipolar Current Mirror

    When large mirror ratio is used or

    if many source currents are

    generated from one reference BJT,

    current gain defect worsens.

    Current gain ofQ3 is used to

    reduce base current that is

    subtracted from reference current.

    Assuming infinite Early voltage for simplicity,

    FO3FO1

    CI

    n

    REFI

    B3I

    REFI

    C1I

    b

    b

    1

    1)1(

    )1(

    )1(1

    1

    FO3FO1

    nREFnI

    C1In

    OI

    bb

    Thus error term in denominator is

    reduced.

    Chap 16 - 10

  • 7/27/2019 Chap16-Analog Integrated Circuits

    11/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Output Resistance of Current Mirrors

    For diode connected BJT, from

    small-signal model,

    mgR

    gogmg

    1

    i

    v

    v)(i

    ...Ifboand mF>>1

    This simplifies the ac model of

    the current mirror. Similar

    analysis applies to MOSFET

    current mirror except that the

    current gain is infinite. Thus

    orA2V

    CSV

    or

    outR

    2

    2CS

    Vl

    1

    Chap 16 - 11

  • 7/27/2019 Chap16-Analog Integrated Circuits

    12/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Two-port Model for Current Mirror

    Since current mirror has acurrent input and current

    output, we use h-parameters.

    2

    v

    221

    i

    212

    i2

    v121

    i111

    v

    hh

    hh

    n

    mgm

    g

    rm

    g

    rm

    gh

    mgg

    mg

    h

    1

    2

    211

    22

    02v1

    i2i

    21

    1

    1

    21

    1

    02

    v1i1v

    11

    For MOS current mirrors,

    00

    1i2

    v1v

    12

    h

    2

    1

    01i2

    v2i

    22

    or

    h

    1

    111

    m

    gh 0

    12h

    n

    mgm

    gh

    1

    221

    2

    122

    or

    h

    Chap 16 - 12

  • 7/27/2019 Chap16-Analog Integrated Circuits

    13/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Widlar Current Source

    R in Widlar source allows

    adjustment of mirror ratio.

    1

    ln

    1

    1ln

    1 SI

    REFI

    T

    V

    SI

    REFI

    T

    V

    BE

    V

    2

    ln

    2

    1ln2

    SIO

    I

    TV

    SIO

    I

    TV

    BEV

    Current throughR is given by:

    If transistors are matched,

    Typically 1

  • 7/27/2019 Chap16-Analog Integrated Circuits

    14/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    PTAT Voltage

    Voltage developed acrossR in Widlar current source is directly

    proportional to absolute temperature.

    Example: T= 300 K,IC1

    =IC2

    andAE2

    = 10AE1

    . Then =59.6 mV with

    temperature coefficient of slightly< +0.2 mV/K

    PTAT voltage combined with A-D converter is the core of electronic

    thermometers.

    T

    V

    EAE

    A

    CIC

    I

    qk

    T

    V

    EAE

    A

    CIC

    I

    qkT

    EAE

    A

    CIC

    I

    TV

    BEV

    BEVV

    PTAT

    1

    2

    2

    1lnPTAT

    1

    2

    2

    1ln

    1

    2

    2

    1ln21PTAT

    Chap 16 - 14

  • 7/27/2019 Chap16-Analog Integrated Circuits

    15/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    MOS Widlar Current Source

    IfIO is known,IREFcan be directly

    calculated. IfIREF,R and W/L ratios are

    known, we can write a quadratic

    equation in terms of

    Small-signal model for MOS Widlar

    source represents a C-S stage with

    resistorR in its source.

    Current throughR is given by:

    2)/(1)/(

    1

    1

    21

    2

    2

    1

    2

    21

    LW

    LW

    REFI

    OI

    nKREF

    I

    R

    R

    nK

    OI

    nKREF

    I

    R

    GSV

    GSV

    O

    I

    2)/(1)/(

    11

    21LW

    LW

    REFI

    OI

    nK

    REFIR

    REFI

    OI

    Rm

    gor

    outR

    21

    2

    REFI

    OI /

    Chap 16 - 15

  • 7/27/2019 Chap16-Analog Integrated Circuits

    16/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    MOS Wilson Current Source

    During operation, all

    transistors are in active

    region.ID2 =IREF, ID3 =ID1

    = IO, VGS3 = VGS1=VGS

    GS

    V

    GSV

    DI

    D2I

    l

    l

    1

    21

    1 GS

    V

    GSV

    REFI

    OI

    l

    l

    1

    21

    1

    2

    nKREFI

    TNV

    GSV

    where

    1v3gsv3xi

    1v

    3vxv

    ormg

    From small-signal model,

    322

    1223xi

    xv

    orffforoutR mmm

    )1v

    2(

    1

    xi

    1v

    2vgsv f

    mg

    m

    3

    2

    l

    mf

    CSV

    Chap 16 - 16

  • 7/27/2019 Chap16-Analog Integrated Circuits

    17/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Wilson Current Source

    During operation, all transistors are

    in active region. But some current is

    lost at base ofQ3 and current gain

    error is formed by Q1 and Q2.

    IREF= IC2 +IB3

    VCE1 = VBE VCE2 = 2VBE2

    33 or

    oout

    Rb

    2A

    VoCS

    Vb

    AVBE

    2V

    FOFO

    AV

    BEV

    REFI

    OI

    )2(

    21

    )/(1

    bb

    Addition of extra BJT can balance thecircuit and reduce errors due to mismatch.

    VCE2 = VBE+VBE3 -VBE4

    = VBE

    Chap 16 - 17

  • 7/27/2019 Chap16-Analog Integrated Circuits

    18/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    MOS Cascode Current Source

    ID1 =ID3 =IREF AlsoIO =ID4 =ID2. So currentmirror forces output current to be approximately

    equal to the reference current. If all transistors are

    matched with equal W/L ratios,

    VDS2 = VGS1+ VGS3 -VGS4 = VGS= VDS1

    From the small-signal model,

    24241

    4 or

    for

    mg

    or

    outR m

    4

    4

    2

    4l

    m

    l

    mff

    CSV

    Chap 16 - 18

  • 7/27/2019 Chap16-Analog Integrated Circuits

    19/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Cascode Current Source

    IC1 =IC3 =IREF AlsoIO =IC4 =IC2. So current

    mirror forces output current to be approximately

    equal to the reference current. If all transistors are

    matched,

    VCE2 = VBE1+ VBE3 -VBE4 = VGS= VCE1

    From the small-signal model,

    244 oro

    outRb

    2

    44 AVoCS

    Vb

    Chap 16 - 19

  • 7/27/2019 Chap16-Analog Integrated Circuits

    20/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Electronic Current Source Design

    ExampleProblem: Design IC current source to meet given specifications.

    Given data:IREF= 25 mA, VSS = 20 V, l= 0.02 V-1,VTN = 0.75 V,Kn= 50

    mA/V2,VA = 50 V,bFO = 100,ISO = 0.5 fA

    Analysis: MR

  • 7/27/2019 Chap16-Analog Integrated Circuits

    21/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Reference Current Generation

    Reference current is required by all current mirrors. When resistor is used, sources output current is directly

    proportional to VEE.

    Gate-source voltages of MOSFETs can be large andseveral MOS devices can be connected in series between

    supplies to eliminate large resistors.

    VDD + VSS= VSG4+ VGS3 + VGS1 and ID3 =ID1= I4

    Change in supply directly alters gate-source voltage of

    MOSFETs and the reference current. BJTs cant similarly be connected in series due to small

    fixed voltage developed across each diode and

    exponential relation between voltage and current.

    RBE

    VEE

    V

    REFI

    Chap 16 - 21

  • 7/27/2019 Chap16-Analog Integrated Circuits

    22/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Supply-Independent Biasing: JFET

    Constant Reference Current Source P-channel JFETs can be used to set a

    fixed reference current.

    JFET is operating with VSG=0 and thus

    ID=IDSS, assuming that VSD is large

    enough to pinch-off the JFET.

    Depletion-mode MOSFETs can be used

    in similar manner.

    Since both these methods require special

    IC processes, other methods are

    preferred.

    Chap 16 - 22

  • 7/27/2019 Chap16-Analog Integrated Circuits

    23/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Supply-Independent Biasing: VBE-based

    Reference and Widlar Current Source

    Output current is determined by

    base-emitter voltage ofQ1 . For

    high current gain,

    1

    V4.1

    1

    211 R

    EEV

    RBE

    VBE

    VEE

    V

    CI

    11

    V4.1ln

    2

    2

    V7.0

    2

    11

    2

    1222

    RS

    IEEV

    RT

    V

    OI

    RRBEV

    BI

    RBEV

    FEI

    FOI

    Output current is now logarithmically

    dependent on supply voltage. However, it is

    temperature dependent due to temperature

    coefficients of both VBEandR.

    Widlar source also achieves similar supplyindependence of output current.

    1

    2ln2

    EAE

    A

    OIREF

    I

    RT

    V

    EI

    FOI

    Chap 16 - 23

  • 7/27/2019 Chap16-Analog Integrated Circuits

    24/55

  • 7/27/2019 Chap16-Analog Integrated Circuits

    25/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Variation of Reference Cell Current with

    Power Supply Fluctuations

    R is absorbed into transistor model in

    simplified small-signal circuit model.

    EEVCCVxv or SSVDDVxv

    2v'

    21v)'

    21(xi o

    gm

    gm

    g

    )2

    vxv(4i

    mgUsing

    Determinant of these nodal equations is:

    2

    v

    4xv)

    31

    (xv)

    34

    (

    m

    ng

    o

    g

    m

    g

    o

    g

    m

    ng

    2

    v

    4xv)

    31

    (xv)

    34

    (

    m

    ng

    o

    g

    m

    g

    o

    g

    m

    ng

    2)v'

    24(

    1v'

    2xv4 o

    gm

    gm

    gm

    g

    32

    1

    '

    2141

    Fm

    g

    Om

    gm

    g

    n-mgmg m

    Chap 16 - 25

  • 7/27/2019 Chap16-Analog Integrated Circuits

    26/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Variation of Reference Cell Current with

    Power Supply Fluctuations (contd.)

    xv)'23

    (41

    v

    f

    ogmgOo

    ngm

    gm

    gm

    xv2

    1

    '21

    412v

    f

    mgO

    mgm

    gn

    mg

    mg

    m

    1

    '211

    '2

    1

    '21

    3

    xixv

    mgmgn

    nor

    mgm

    gor

    outR 1

    1

    '2

    m

    gm

    g

    nfor .This is important

    for stability. Because of positive

    feedback, overall output resistance

    is reduced.

    Output resistances of the Widlar source and current mirror, ro2and ro3determine sensitivity to power supply variations. To improve output resistance

    of Widlar portion , cascode sources can be used and Wilson sources can be

    used to improve output resistance of current mirror.

    Chap 16 - 26

  • 7/27/2019 Chap16-Analog Integrated Circuits

    27/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Reference Current Design Example

    Problem: Design supply-independent current source to meet givenspecifications.

    Given data: output current= 45 mA,T=300 K, total current

  • 7/27/2019 Chap16-Analog Integrated Circuits

    28/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Bandgap Reference

    To make the voltage reference

    temperature independent,

    negative temperature coefficient

    of base-emitter junction can be

    canceled by positive

    temperature coefficient of

    scaled PTAT voltage.

    PTATGV

    BEV

    BGV

    To have zero temperature coefficient,

    VGO is silicon bandgap voltage at 0K (1.12

    V)

    BEV

    TV

    GOV

    PTATGV

    TPTAT

    VG

    T

    TV

    GOV

    BEV

    TPTATVG

    TBEV

    TBGV

    3

    03

    TV

    GOV

    BGV 3

    Chap 16 - 28

  • 7/27/2019 Chap16-Analog Integrated Circuits

    29/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Bandgap Reference Circuit Realization

    1

    2ln

    1

    221E

    AE

    A

    TVR

    R

    BEVBGV

    PTATV

    BEV

    TV

    GOV

    TPTATV

    TBEV

    R

    R

    2

    31

    2

    1

    1

    2

    Circuit gain G =2R2 /R1.

    Voltages other than1.2 V can be obtained

    by a adding resistive

    voltage divider.

    BG

    V

    R

    R

    O

    V

    3

    41

    Chap 16 - 29

  • 7/27/2019 Chap16-Analog Integrated Circuits

    30/55

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Bandgap Reference Example

    Problem: Design bandgap reference to meet given specifications.Given data: VO = 5 V,T=320 K, collector current= 25 mA,IS= 0.5 fA.

    Assumptions:VA is infinite,bFO is infinite,AE2 =10AE1, drop across R =2 V.

    Analysis:

    W

    k539.2A25mV47.63PTAT

    1

    mV47.63mV)ln(10)57.27(1

    2

    2

    1lnPTAT

    mEI

    VR

    EA

    EA

    CI

    CI

    q

    kTV

    V6792.0

    1

    1lnTBE1

    SIC

    I

    VV

    124.42

    3

    1

    2

    PTATV

    BEV

    TV

    GOV

    R

    R

    W k47.101

    124.42

    RR

    V203.1

    1

    221

    PTAT

    VR

    RBE

    VBG

    V

    157.31

    3

    4

    BGV

    OV

    R

    R

    k24

    33 I

    BGVR k9.75

    34

    IBG

    VO

    VR

    W k80A25

    V2m

    R

    Chap 16 - 30

  • 7/27/2019 Chap16-Analog Integrated Circuits

    31/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    CMOS Differential Amplifier with

    Active Load: DC Analysis

    ID3 =ID1= ID2 =ID4 =IDSS/2.

    Mirror ratio is set byM3 andM4 and is exactlyunity when VSD4 = VSD3 and thus VSD1 = VSD2.

    Differential amplifier is completely balanced at

    dc when:

    TP

    V

    pKSS

    I

    DDV

    SDV

    DDV

    OV

    4

    TPV

    pKSS

    I

    SGV

    SDV

    DDVpKSS

    I

    nKSS

    I

    TPVTNVDDVDSV

    33

    1

    Chap 16 - 31

  • 7/27/2019 Chap16-Analog Integrated Circuits

    32/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    CMOS Differential Amplifier with Active

    Load: Differential-Mode Signal Analysis

    The differential amplifier can be

    represented by its Norton equivalent.

    Total short circuit output current:

    idv

    22id

    v22oi m

    gmg

    Thevenin equivalent output resistance:

    Differential-mode voltage gain:

    42 or

    or

    thR

    2

    242

    for

    or

    m2g

    thRscidm

    Am

    Chap 16 - 32

  • 7/27/2019 Chap16-Analog Integrated Circuits

    33/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    CMOS Differential Amplifier with

    Active Load: Output Resistance

    AssumeRSS>>1/gm1.

    Resistance looking into drain ofM2 (C-G transistor) is:

    22

    1

    1

    21

    221

    2 or

    mgm

    gor

    SR

    mg

    or

    o2R

    Drain current ofM2 (vx/2ro2)is replicated by

    current mirror as drain current ofM4. Total

    current from source is 2(vx/2ro2)= vx/ro2.

    Total current is:

    Output resistance is:

    4

    xv

    2

    xv

    iTx

    or

    or

    42 or

    or

    odR

    Chap 16 - 33

  • 7/27/2019 Chap16-Analog Integrated Circuits

    34/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    CMOS Differential Amplifier with Active

    Load: Common-Mode Signal Analysis

    From small-signal equivalent:

    where it is assumed thatgm4 =gm3 and Goc

  • 7/27/2019 Chap16-Analog Integrated Circuits

    35/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    CMOS Differential Amplifier with Active

    Load: CMRR and Mismatch Contribution

    SSR

    mg

    for

    or

    SSRmgf

    cmAdmA

    232

    /3

    1

    232CMRR mm

    forro3 = ro2.

    With mismatched transistors, assuming

    vd1=0 and gate-sourcevoltages are equal,

    With vgs= vic- vs, vd1=0 and vd2=0,

    svoggsvmgdi

    disci 21

    icv

    icv

    SSRmgSS

    Rmg

    sv

    21

    2

    ic

    v

    fSSRmgic

    v

    SSRmg

    SSRog

    gs

    v

    m

    1

    2

    1

    21

    21

    fog

    og

    fSSRmgmg

    mg

    or

    ormg

    cmA

    dmAcmA

    mm

    11

    2

    1

    42

    1-CMRR

    Chap 16 - 35

  • 7/27/2019 Chap16-Analog Integrated Circuits

    36/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Differential Amplifier with

    Active Load: DC Analysis

    IC3 =IC1= IC2 =IC4 =IEE/2.

    IfbFO is very large, currentmirror ratio is set by Q3 and

    Q4 and is exactly 1 when VEC4

    = VEC3=VEB.

    EBV

    CCV

    OV

    CCV

    BEV

    EBV

    CCV

    EV

    CV

    CEV

    CEV )()(

    21

    Differential amplifier is completely balanced at dc when:

    Current gain defect in current mirror upsets dc balance.

    As longs as BJTs are in forward-active region, VEC4

    adjusts to make up for current-gain defect.

    AsIC2 =IC4 andIC2=IC1, MR must be

    1.

    FO4AVCE

    V

    AV

    CE4V

    C1I

    C4I

    b

    21

    )/(1

    FO4A

    V

    EBVEC4V b

    2

    This causes an equivalentinput offset voltage of

    ddA

    EBV

    EC4V

    ddA

    EC3V

    EC4V

    OSV

    Chap 16 - 36

  • 7/27/2019 Chap16-Analog Integrated Circuits

    37/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Differential Amplifier with Active

    Load: Differential-Mode Signal Analysis

    To eliminate offset error, buffered

    current mirror active load is used.

    Total short circuit output current:

    idv

    22id

    v22sci m

    gmg

    Thevenin equivalentoutput resistance:

    Differential-mode voltage gain:42 o

    ror

    thR

    LRm2gLRororm2gdm

    vth

    RL

    Rsci

    dmA

    42

    With added stages,

    output resistance of

    differential input

    stage is:

    5542 rrororeqR

    5/

    25

    2

    CI

    CI

    o

    eqRmg

    dmA

    b

    Chap 16 - 37

  • 7/27/2019 Chap16-Analog Integrated Circuits

    38/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Differential Amplifier with Active

    Load: Common-Mode Signal Analysis

    oroEERicv

    CR ic

    vccA

    oci b12 1

    EE

    Rorof2

    icv

    or

    mgEE

    Roroicvsci 2

    11

    )2

    2(3

    12112

    bmb

    From small-signal equivalent:

    1

    22

    1

    2

    1

    3

    2

    /

    2CMRR

    EER

    mg

    fooicv

    thRsci

    thR

    mg

    mbb

    EE

    Rorooicvsci 2

    112bb

    Current forced in differential output resistance

    is doubled due to current mirror action.

    Due to mismatches,

    fog

    og

    fSSR

    mgg

    g

    mg

    mg

    mm

    11

    2

    11-CMRR

    Chap 16 - 38

  • 7/27/2019 Chap16-Analog Integrated Circuits

    39/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Active Loads in Op Amps: Voltage Gain

    2

    5)52

    (2

    ))10

    (5

    (52

    2

    2)

    42

    (

    21f

    or

    or

    mg

    or

    GGR

    or

    mg

    vtA

    f

    o

    r

    o

    r

    m

    g

    vt

    A

    m

    m

    4

    52

    21)1(

    21bvov

    avbv

    idvav

    ff

    vtA

    vtA

    vtA

    vtA

    dmA

    mm

    Gain of output stage is approximately 1.

    If Wilson stage is used in first-stage activeload,Avt1 = mf2. If current sourceM10 is

    replaced by a Wilson or cascode source,

    Avt2 = mf5.Overall gain can be raised to:

    52 ffdm

    A mm

    Chap 16 - 39

  • 7/27/2019 Chap16-Analog Integrated Circuits

    40/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Active Loads in Op Amps: DC Design

    Considerations

    When op amp with active load is

    operated in closed-loop configuration,

    ID5 =I2, the output current of source

    M10.

    For minimum offset voltage, (W/L)5

    must be such that VSG5 = VSD4 = VSG3

    precisely setsID5 =I2 and accounts for

    VDSand ldifferences betweenM5 and

    M10.

    RGG, (W/L)6 and (W/L)7 determine

    quiescent current in class-AB output

    stage.

    VGS11 can be used to bias output stage

    in place ofRGG.

    Chap 16 - 40

  • 7/27/2019 Chap16-Analog Integrated Circuits

    41/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    CMOS Op Amp Analysis

    Problem: Find small-signal characteristics of given CMOS op amp.

    Given data:IREF= 100 mA, VDD = VSS = 5 V, VTN= 1 V, VTP= -0.75 V,

    Kn= 25 mA/V2,Kp= 10 mA/V

    2, l= 0.0125 V-1

    Analysis:A100

    12

    REF

    I/2I

    D

    I

    A200225

    REFII

    DI

    000,16

    5

    52

    5

    1

    2

    22

    2

    141

    4

    52

    DI

    pK

    DI

    nK

    ffdm

    A

    ll

    mm

    ic

    Rid

    R

    V54.2

    11

    112

    1111

    n

    KD

    I

    TNV

    GSV

    AsID6=ID7, VGS6= VSG7 = VGS11/2

    A7.33

    2)V75.0V27.1(2V

    A

    2

    25067

    DI

    DI

    S4103.167

    mgmg

    W k85.3

    7

    1

    6

    1

    mg

    mgout

    R

    Chap 16 - 41

  • 7/27/2019 Chap16-Analog Integrated Circuits

    42/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Op Amps

    Q1 to Q4 form differential input

    stage with active load.

    First stage is followed by high-

    gain C-E amplifier, Q5 and its

    current source load, Q8.

    Load resistance is driven by class-AB output stage formed by Q6 and

    Q7 , biased byI2 and diodes Q11

    and Q12.

    2

    55

    5

    225

    5555

    2

    )1()16

    (85252

    321

    fo

    CIC

    Ior

    mgr

    mg

    mgm

    g

    LR

    oor

    or

    mgr

    mg

    vt

    A

    vt

    A

    vt

    A

    dm

    A

    mb

    b

    Chap 16 - 42

  • 7/27/2019 Chap16-Analog Integrated Circuits

    43/55

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Bipolar Op Amps with Improved

    Voltage Gain

    To improve gain, 2-transistor Darlington circuit

    with current gain ofbo1bo2, amplification factormf2 /4, output resistance ro2 /2 and input

    resistance 2bo1 r2,is used to replace Q5. It

    requires emitter-base bias of 2VEB.

    Buffered current mirror maintains dcbalance at collectors ofQ3 and Q4.

    2

    7)

    1437

    2(

    27

    2

    2

    23.0)

    76

    2

    2

    2(

    21f

    oro

    rm

    g

    vtA

    f

    r

    o

    or

    m

    g

    vt

    A

    m

    m

    b

    UsingI2 =2I1,bo=50, VA=60 V,

    VCE= 15 V,

    51015.422

    72

    321

    ff

    vtA

    vtA

    vtA

    dmA

    mm

    Chap 16 - 43

  • 7/27/2019 Chap16-Analog Integrated Circuits

    44/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    Input Stage Breakdown in Bipolar Op

    Amps

    Input stage of bipolar op amp has no

    overvoltage protection and can easily be

    destroyed by large input voltage

    differences due to fault conditions or

    unavoidable transients, such as slew-rate

    limited recovery.

    In worst-case fault condition, B-E junction

    ofQ1 is forward-biased and that ofQ2 is

    reverse-biased by(VCC+ VEE- VBE1). IfVCC

    = VEE=22 V, reverse voltage > 41 V.

    Early IC op amps used external

    diode protection across input

    terminals to limit differential input

    voltage to about 1.4 V at the cost of

    extra components.

    Chap 16 - 44

  • 7/27/2019 Chap16-Analog Integrated Circuits

    45/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    mA741 Op Amp

    High gain, input resistance andCMRR, low output resistance

    and good frequency response.

    Fully protected input and output

    stages and offset adjustment port.

    Input stage is a differentialamplifier with buffered current

    mirror active load.

    Two stages of voltage gain

    (emitter-follower driving C-E

    amplifier) followed by short-circuit protected class-AB output

    stage buffered from second gain

    stage by emitter follower.

    Chap 16 - 45

  • 7/27/2019 Chap16-Analog Integrated Circuits

    46/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    mA741 Op Amp: Bias Circuitry

    mA733.0

    5

    2

    R

    BEV

    EEV

    CCV

    REF

    I

    1

    ln50001 I

    REFI

    TV

    ISolving iteratively,

    I1 =18.4 mA.

    Assuming VO =0, VCC=15 V and neglecting dropacrossR7 andR8 ,

    VEC23 = 15+1.4=16.4 V and VEC24 = 15-0.7 =14.3 V

    Given VA=60 V,bFO =50,

    A666)50/2()60/7.0(1

    )60/4.16(1mA)733.0(75.02 m I

    A216)50/2()60/7.0(1

    )60/4.14(1mA)733.0(25.0

    3m

    I

    W

    k115

    mA666.0

    16.4VV60

    2

    23232

    I

    ECV

    AV

    R

    W

    k344mA216.0

    14.3VV60

    3

    24243 I

    ECV

    AV

    R

    Chap 16 - 46

  • 7/27/2019 Chap16-Analog Integrated Circuits

    47/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    mA741 Op Amp:DC Analysis of Input

    Stage

    /2IC

    I161

    42

    )8

    /8

    ()8

    /2(1

    )8

    /8

    (1

    22

    1 BI

    AV

    EBV

    FO

    AV

    ECV

    CII

    b

    41

    412

    2222 B

    IFO

    FO

    FOEI

    FCI

    bbb

    4

    1

    8

    2

    8

    881

    121

    2

    FOFOAV

    EBV

    ECV

    I

    CI

    bb

    214

    4

    2

    12

    444 CI

    FO

    FO

    FO

    FOEI

    FCI

    b

    b

    b

    b

    CCV

    BEV

    EBV

    CCV

    CEV

    CEV

    2921

    V1.2

    V)4.1(--V7.0333

    EEV

    EEV

    CV

    EV

    ECV

    V7.07

    V4.18

    EEV

    CEV

    CCV

    ECV

    Chap 16 - 47

  • 7/27/2019 Chap16-Analog Integrated Circuits

    48/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    mA741 Op Amp: Input Stage Bias

    Currents Example

    Problem: Calculate bias currents in the 741 input stage with given parameters.

    Given data:I1 = 18 mA,VCC= VEE= 15 V,VAnpn = 75 V,bFOnpn = 150, VApnp = 60

    V,bFOpnp = 60

    Analysis:

    A32.7

    )160)(151/150(

    1

    )60/7.0()50/2(1

    )60/4.16(11

    2A18

    21

    V4.16318

    mm

    CI

    CI

    EBV

    BEV

    CCV

    ECV

    A25.735

    A25.72151

    150

    61

    60

    214

    4

    2

    12

    2

    2444436

    m

    m

    b

    b

    b

    b

    CI

    CI

    CI

    CI

    FO

    FO

    FO

    FO

    F

    CI

    FEI

    FCI

    CI

    CI

    Chap 16 - 48

  • 7/27/2019 Chap16-Analog Integrated Circuits

    49/55

  • 7/27/2019 Chap16-Analog Integrated Circuits

    50/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    mA741 Op Amp: Voltage Gain (Input

    Stage)

    idS)v41046.1(

    idv

    220

    2id

    v2-i2oi

    C

    Img

    W

    M54.6

    4

    79.0

    4

    2

    6

    3.1

    42

    261

    646

    o

    r

    o

    r

    o

    r

    orR

    mg

    or

    outR

    outR

    thR

    Based on values in Norton equivalent, open-

    circuit voltage gain of first stage is -955.

    Chap 16 - 50

  • 7/27/2019 Chap16-Analog Integrated Circuits

    51/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    mA741 Op Amp: Voltage Gain (Second

    Stage)

    k189

    10

    1010

    A8.19k5011

    11

    111010

    CI

    or

    BV

    F

    CI

    EICI

    b

    mb

    k63.511

    r

    To findy11 andy21:

    WW

    W

    .4M211

    k501101011

    k7.201001111111

    1

    inR

    ory

    or

    inR

    b

    b

    1v921.0

    11k501

    1010

    11k501

    101vev

    W

    W

    inR

    or

    inR

    o

    b

    b

    1v006701.0100)11

    /1( e

    v

    2i Wm

    g

    mS70.621

    y

    Chap 16 - 51

  • 7/27/2019 Chap16-Analog Integrated Circuits

    52/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    mA741 Op Amp: Voltage Gain (Second

    Stage contd.)

    To findy12 andy22:

    Open-circuit voltage gain for the first two

    stages is:

    W

    W

    k1.8911222

    k40710011

    11111

    1

    outRRy

    ER

    mg

    or

    outR

    idv000,153)

    idv256(597

    2v

    idv256

    idv2.4M6.54M41046.1

    1v

    1v597

    1v)k1.89(00670.0

    2v

    WW

    W

    Combined model for first and

    second stages is:

    Chap 16 - 52

  • 7/27/2019 Chap16-Analog Integrated Circuits

    53/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    mA741 Op Amp: Voltage Gain (Output

    Stage)

    From simplified output stage without

    short-circuit protection:

    W

    W

    W

    M27.81

    1121212

    k1622313141

    k3041

    15152

    eqR

    or

    inR

    eqRR

    dr

    dr

    eqR

    L

    R

    o

    r

    eq

    R

    b

    b

    W

    W

    2.261

    15

    315

    k08.2

    112

    12212

    131433

    o

    eqRroR

    o

    yr

    dr

    drR

    eqR

    b

    b

    Actual op amp output resistance is:

    W 537

    RoRoutR

    Chap 16 - 53

  • 7/27/2019 Chap16-Analog Integrated Circuits

    54/55

    Jaeger/Blalock

    7/1/03

    Microelectronic Circuit Design

    McGraw-Hill

    Gilbert Analog Multiplier

    Q1 and Q2 have significant emitterdegeneration, transconductance of

    the pair is 1/R1.Forv1

  • 7/27/2019 Chap16-Analog Integrated Circuits

    55/55

    Jaeger/Blalock Microelectronic Circ it Design

    Four-Quadrant Gilbert Analog Multiplier

    with Predistortion Circuit

    Forv3