Top Banner
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot Mathematics §7.7 Complex §7.7 Complex Numbers Numbers
34

[email protected] MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

Dec 26, 2015

Download

Documents

Magnus McDaniel
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

§7.7 Complex§7.7 ComplexNumbersNumbers

Page 2: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt2

Bruce Mayer, PE Chabot College Mathematics

Review §Review §

Any QUESTIONS About• §7.6 → Radical Equations

Any QUESTIONS About HomeWork• §7.6 → HW-29

7.6 MTH 55

Page 3: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt3

Bruce Mayer, PE Chabot College Mathematics

Imaginary & Complex NumbersImaginary & Complex Numbers Negative numbers do not have square

roots in the real-number system. A larger number system that contains the

real-number system is designed so that negative numbers do have square roots. That system is called the complex-number system.

The complex-number system makes use of i, a number that with the property (i)2 = −1

Page 4: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt4

Bruce Mayer, PE Chabot College Mathematics

The “Number” The “Number” ii

i is the unique number for which i2 = −1 and so 1i

Thus for any positive number p we can now define the square root of a negative number using the product-rule as follows .

Page 5: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt5

Bruce Mayer, PE Chabot College Mathematics

Imaginary NumbersImaginary Numbers

An imaginary number is a number that can be written in the form bi, where b is a real number that is not equal to zero

Some Examples

5 2973

37

ii

i

i is called the “imaginary unit”

Page 6: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt6

Bruce Mayer, PE Chabot College Mathematics

Example Example Imaginary Imaginary NumbersNumbers Write each imaginary number as a

product of a real number and ia) b) c)16 21 32

SOLUTIONa) b) c)16

1 16

1 16 4i

21

1 21

1 21 21i

32

1 32

1 32 16 2i

4 2i

Page 7: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt7

Bruce Mayer, PE Chabot College Mathematics

ReWriting Imaginary NumbersReWriting Imaginary Numbers

To write an imaginary number in terms of the imaginary unit i:

n

1. Separate the radical into two factors 1 .n

2. Replace with i

3. Simplify

Page 8: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt8

Bruce Mayer, PE Chabot College Mathematics

Example Example Imaginary Imaginary NumbersNumbers Express in terms of i:

a) b)

SOLUTIONa)

b)

1 9 3, or 3 .i i

1 16 3 4 3 4 3i i

Page 9: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt9

Bruce Mayer, PE Chabot College Mathematics

Complex NumbersComplex Numbers

The union of the set of all imaginary numbers and the set of all real numbers is the set of all complex numbers

A complex number is any number that can be written in the form a + bi, where a and b are real numbers. • Note that a and b both can be 0

Page 10: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt10

Bruce Mayer, PE Chabot College Mathematics

Complex Number ExamplesComplex Number Examples

The following are examples of Complex numbers

7 2

12

3

11

i

i

i

Here a = 7, b =2.

Here 2, 1/3.a b

Here 0, 11.a b

Page 11: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt11

Bruce Mayer, PE Chabot College Mathematics

The complex numbers:

a = bi

Complex numbers thatare real numbers:

a + bi, b = 0

Rational numbers:

Complex numbers thatare not real numbers:

a + bi, b ≠ 0

Irrational numbers:

Complex numbers (Imaginary)

2

3

, 0, 0 :

3 , , 17 ,...

a bi a b

i i i

32, , 7,...

2

, 7, 18, 8.7...3

Complex numbers

2 73 5

, 0, 0:

2 2 ,5 4 ,

a bi a b

i i i

Page 12: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt12

Bruce Mayer, PE Chabot College Mathematics

Add/Subtract Complex No.sAdd/Subtract Complex No.s

Complex numbers obey the commutative, associative, and distributive laws.

Thus we can add and subtract them as we do binomials; i.e.,• Add Reals-to-Reals

• Add Imaginaries-to-Imaginaries

Page 13: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt13

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Add & Sub Complex Add & Sub

Add or subtract and simplify a+bi

(−3 + 4i) − (4 − 12i)

SOLUTION: We subtract complex numbers just like we subtract polynomials. That is, add/sub LIKE Terms → Add Reals & Imag’s Separately• (−3 + 4i) − (4 − 12i) = (−3 + 4i) + (−4 + 12i)

• = −7 + 16i

Page 14: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt14

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Add & Sub Complex Add & Sub

Add or subtract and simplify to a+bia) b)

SOLUTIONa)

b)

10 (2 8) 10 10i i

Combining real and imaginary parts

1 3i

Page 15: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt15

Bruce Mayer, PE Chabot College Mathematics

Complex MultiplicationComplex Multiplication

To multiply square roots of negative real numbers, we first express them in terms of i. For example,

6 5 1 6 1 5

6 5i i 2 30i

1 30 30.

Page 16: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt16

Bruce Mayer, PE Chabot College Mathematics

Caveat Complex-MultiplicationCaveat Complex-Multiplication

CAUTIONCAUTION With complex numbers, simply

multiplying radicands is incorrect when both radicands are negative:

3 5 15. The Correct Multiplicative Operation

151515315311

51315131532

Page 17: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt17

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Multiply Complex Multiply

Multiply & Simplify to a+bi forma) b) c)

SOLUTIONa)

2 10i i 2 20 1 2 5 2 5i

Page 18: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt18

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Multiply Complex Multiply

Multiply & Simplify to a+bi forma) b) c)

SOLUTION: Perform Distributionb)

210 6i i

10 6 6 10i i

Page 19: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt19

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Multiply Complex Multiply

Multiply & Simplify to a+bi forma) b) c)

SOLUTION : Use F.O.I.L.c)

8 2 3i

11 2i

Page 20: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt20

Bruce Mayer, PE Chabot College Mathematics

Complex Number CONJUGATEComplex Number CONJUGATE

The CONJUGATE of a complex number a + bi is a – bi, and the conjugate of a – bi is a + bi

Some Examples

231 Conjugate231

13 Conjugate13

ii

ii

Page 21: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt21

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Conjugate Complex Conjugate

Find the conjugate of each number a) 4 + 3i b) −6 − 9i c) i

SOLUTION:a) The conjugate is 4 − 3i

b) The conjugate is −6 + 9i

c) The conjugate is −i (think: 0 + i)

Page 22: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt22

Bruce Mayer, PE Chabot College Mathematics

Conjugates and DivisionConjugates and Division

Conjugates are used when dividing complex numbers. The procedure is much like that used to rationalize denominators.

Note the Standard Form for Complex Numbers does NOT permit i to appear in the DENOMINATOR• To put a complex division into Std Form,

Multiply the Numerator and Denominator by the Conjugate of the DENOMINATOR

Page 23: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt23

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Division Complex Division

Divide & Simplify to a+bi form

SOLUTION: Eliminate i from DeNom by multiplying the Numer & DeNom by the Conjugate of i

i

i

1

312232

2

i

i

ii

i32

Page 24: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt24

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Division Complex Division

Divide & Simplify to a+bi form

SOLUTION: Eliminate i from DeNom by multiplying the Numer & DeNom by the Conjugate of 2−3i

NEXT SLIDE for Reduction

Page 25: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt25

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Division Complex Division

SOLN2 3

2 3

i

i

2

2(4 )(2 3 ) 8 12 2 3

(2 3 )(2 3 ) 4 9

i i i i i

i i i

8 14 3 5 14

4 9 13

i i

5 14

13 13i

Page 26: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt26

Bruce Mayer, PE Chabot College Mathematics

Example Example Complex Division Complex Division

Divide & Simplify to a+bi form

SOLUTION: Rationalize DeNom by Conjugate of 5−i

3 5

5

i

i

3 5

5

i

i

53

5

5

5

i

i

i

i

2

2

15 3 25 5

25

i i i

i

15 3 25 5( 1)

25 ( 1)

i i

15 3 25 5

25 1

i i

10 28

26

i

10 28

26 26

i

5 14

13 13

i

Page 27: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt27

Bruce Mayer, PE Chabot College Mathematics

Powers of Powers of ii → → iinn

Simplifying powers of i can be done by using the fact that i2 = −1 and expressing the given power of i in terms of i2.

The First 12 Powers of i

i 1

i2 1

i3 i2 • i 1 1

i4 i2 • i2 1• 11

i5 1

i6 1

i7 1 1

i8 1

i9 1

i10 1

i11 1 1

i12 1

• Note that (i4)n = +1 for any integer n

Page 28: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt28

Bruce Mayer, PE Chabot College Mathematics

Example Example Powers of Powers of ii

Simplify using Powers of i a) b)

SOLUTION : Use (i4)n = 1a)

b)

= 1 Write i40 as (i4)10.

84 = i i

= 1 i = i

Write i32 as (i4)8.

Replace i4 with 1.

Page 29: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt29

Bruce Mayer, PE Chabot College Mathematics

WhiteBoard WorkWhiteBoard Work

Problems From §7.7 Exercise Set• 32, 50, 62, 78, 100, 116

Ohm’s Law of Electrical Resistance in the Frequency Domain uses Complex Numbers (See ENGR43) ZIV

Law sOhm' AC

Law sOhm' DC

r iv

Page 30: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt30

Bruce Mayer, PE Chabot College Mathematics

All Done for TodayAll Done for Today

ElectricalEngrs Use j instead

of i

jj

j

i

23or 17 :Examples

DefEngr 1

DefMath 1

Page 31: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt31

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

AppendiAppendixx

srsrsr 22

Page 32: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt32

Bruce Mayer, PE Chabot College Mathematics

Page 33: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt33

Bruce Mayer, PE Chabot College Mathematics

Graph Graph yy = | = |xx||

Make T-tablex y = |x |

-6 6-5 5-4 4-3 3-2 2-1 10 01 12 23 34 45 56 6

x

y

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

file =XY_Plot_0211.xls

Page 34: BMayer@ChabotCollege.edu MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.

[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt34

Bruce Mayer, PE Chabot College Mathematics

-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3 4 5

M55_§JBerland_Graphs_0806.xls -5

-4

-3

-2

-1

0

1

2

3

4

5

-10 -8 -6 -4 -2 0 2 4 6 8 10

M55_§JBerland_Graphs_0806.xls

x

y