Top Banner
[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot Mathematics §9.3a §9.3a Logarithms Logarithms
33

[email protected] MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

Dec 27, 2015

Download

Documents

Lauren Thornton
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

§9.3a§9.3aLogarithmsLogarithms

Page 2: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt2

Bruce Mayer, PE Chabot College Mathematics

Review §Review §

Any QUESTIONS About• §9.2 → Inverse Functions

Any QUESTIONS About HomeWork• §9.2 → HW-43

9.2 MTH 55

Page 3: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt3

Bruce Mayer, PE Chabot College Mathematics

Logarithm → What is it?Logarithm → What is it?

Concept: If b > 0 and b ≠ 1, then

y = logbx is equivalent to x = by

Symbolically

x = by y = logbx

The exponent is the logarithm.

The base is the base of the logarithm.

Page 4: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt4

Bruce Mayer, PE Chabot College Mathematics

Logarithm IllustratedLogarithm Illustrated

Consider the exponential function f(x) = 3x. Like all exponential functions, f is one-to-one. Can a formula for f−1 be found? Use the 4-Step Method

f −1(x) ≡ the exponent to which we must raise 3 to get x.

y = 3x x = 3y

y ≡ the exponent to which we must raise 3 to get x.

4-Step

Page 5: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt5

Bruce Mayer, PE Chabot College Mathematics

Logarithm IllustratedLogarithm Illustrated

Now define a new symbol to replace the words “the exponent to which we must raise 3 to get x”:

log3x, read “the logarithm, base 3, of x,” or “log, base 3, of x,” means “the exponent to which we raise 3 to get x.”

Thus if f(x) = 3x, then f−1(x) = log3x. Note that f−1(9) = log39 = 2, as 2 is the exponent to which we raise 3 to get 9

Page 6: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt6

Bruce Mayer, PE Chabot College Mathematics

Example Example Evaluate Logarithms Evaluate Logarithms

Evaluate:a) log381 b) log31 c) log3(1/9)

Solution:a) Think of log381 as the exponent to which we

raise 3 to get 81. The exponent is 4. Thus, since 34 = 81, log381 = 4.

b) ask: “To what exponent do we raise 3 in order to get 1?” That exponent is 0. So, log31 = 0

c) To what exponent do we raise 3 in order to get 1/9? Since 3−2 = 1/9 we have log3(1/9) = −2

Page 7: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt7

Bruce Mayer, PE Chabot College Mathematics

The Meaning of logThe Meaning of logaaxx

For x > 0 and a a positive constant other than 1, logax is the exponent to which a must be raised in order to get x. Thus,

logax = m means am = x

or equivalently, logax is that unique exponent for which

Page 8: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt8

Bruce Mayer, PE Chabot College Mathematics

Example Example Exponential to Log Exponential to Log

Write each exponential equation in logarithmic form.

a. 43 64 b. 1

2

4

1

16c. a 2 7

Soln a. 43 64 log4 64 3

b. 1

2

4

1

16 log1 2

1

164

c. a 2 7 loga 7 2

Page 9: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt9

Bruce Mayer, PE Chabot College Mathematics

Example Example Log to Exponential Log to Exponential

Write each logarithmic equation in exponential form

a. log3 243 5 b. log2 5 x c. loga N x

Soln a. log3 243 5 243 35

b. log2 5 x 5 2x

c. loga N x N ax

Page 10: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt10

Bruce Mayer, PE Chabot College Mathematics

Example Example Evaluate Logarithms Evaluate Logarithms

Find the value of each of the following logarithmsa. log5 25 b. log2 16 c. log1 3 9

d. log7 7 e. log6 1 f. log4

1

2 Solution

a. log5 25 y 25 5y or 52 5y y 2

b. log2 16 y 16 2y or 24 2y y 4

Page 11: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt11

Bruce Mayer, PE Chabot College Mathematics

Example Example Evaluate Logarithms Evaluate Logarithms

Solution (cont.)

d. log7 7 y 7 7y or 71 7y y 1

e. log6 1 y 1 6y or 60 6y y 0

f. log4

1

2y

1

24 y or 2 1 22 y y

1

2

c. log1 3 9 y 9 1

3

y

or 32 3 y y 2

Page 12: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt12

Bruce Mayer, PE Chabot College Mathematics

Example Example Use Log Definition Use Log Definition

Solve each equation for x, y or z

a. log5 x 3 b. log3

1

27y

c. logz 1000 3 d. log2 x2 6x 10 1

a. log5 x 3

x 5 3

x 1

53 1

125

The solution set is 1

125

.

Solution

Page 13: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt13

Bruce Mayer, PE Chabot College Mathematics

Example Example Use Log Definition Use Log Definition

Solution (cont.)

b. log3

1

27y

1

273y

3 3 3y

3 y

c. logz 1000 3

1000 z3

103 z3

10 z

The solution set is 3 .

The solution set is 10 .

Page 14: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt14

Bruce Mayer, PE Chabot College Mathematics

Inverse Property of LogarithmsInverse Property of Logarithms

Recall Def: For x > 0, a > 0, and a ≠ 1,

In other words, The logarithmic function is the inverse function of the exponential function; e.g.

xaxa xxa

a loglog

Page 15: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt15

Bruce Mayer, PE Chabot College Mathematics

ShowShowLogLogaaaax

x = = xx

Page 16: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt16

Bruce Mayer, PE Chabot College Mathematics

Example Example Inverse Property Inverse Property

Evaluate:

SolutionRemember that log523 is the exponent to which 5 is raised to get 23. Raising 5 to that exponent, obtain

Page 17: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt17

Bruce Mayer, PE Chabot College Mathematics

Basic Properties of LogarithmsBasic Properties of Logarithms

For any base a > 0, with a ≠ 1, Discern from the Log Definition

1. Logaa = 1

• As 1 is the exponent to which a must be raised to obtain a (a1 = a)

2. Loga1 = 0

• As 0 is the exponent to which a must be raised to obtain 1 (a0 = 1)

Page 18: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt18

Bruce Mayer, PE Chabot College Mathematics

Graph Logarithmic FunctionGraph Logarithmic Function

Sketch the graph of y = log3x

Soln:MakeT-Table→

x y = log3x (x, y)

3–3 = 1/27 –3 (1/27, –3)

3–2 = 1/9 –2 (1/9, –2)

3–3 = 1/3 –1 (1/3, –1)

30 = 1 0 (1, 0)

31 = 3 1 (3, 1)

32 = 9 2 (9, 2)

Page 19: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt19

Bruce Mayer, PE Chabot College Mathematics

Graph Logarithmic FunctionGraph Logarithmic Function

Plot the ordered pairs and connect the dots with a smooth curve to obtain the graph of y = log3x

Page 20: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt20

Bruce Mayer, PE Chabot College Mathematics

Example Example Graph by Inverse Graph by Inverse Graph y = f(x) = 3x

Solution:Use Inverse Relationfor Logs & Exponentials

Reflect the graph of y = 3x in the line y = x to obtain the graph ofy = f−1(x) = log3x

Page 21: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt21

Bruce Mayer, PE Chabot College Mathematics

Domain of Logarithmic FcnsDomain of Logarithmic Fcns

Recall that the• Domain of f(x) = ax is (−∞, ∞)

• Range of f(x) = ax is (0, ∞)

Since the Logarithmic function is the inverse of the Exponential function,• Domain of f−1(x) = logax is (0, ∞)

• Range of f−1(x) = logax is (−∞, ∞)

Thus, the logarithms of 0 and negative numbers are NOT defined.

Page 22: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt22

Bruce Mayer, PE Chabot College Mathematics

Example Example Find Domain Find Domain

Find the domain of each function.

a. f x log3 2 x b. f x log3

x 2

x 1

Solution a.The Domain of a logarithmic function must be positive, that is,

2 x 0

2 x

Thus The domain of f is (−∞, 2).

Page 23: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt23

Bruce Mayer, PE Chabot College Mathematics

Example Example Find Domain Find Domain

Find the domain of each function.

b. f x log3

x 2

x 1

Solution b.The Domain of a logarithmic function must be positive, that is,

Need to Avoid Negative-Logs AND Division by Zero

x 2

x 1 0

Page 24: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt24

Bruce Mayer, PE Chabot College Mathematics

Example Example Find Domain Find Domain

Soln b. (cont.) b. f x log3

x 2

x 1

Set numerator = 0 & denominator = 0

Construct a SIGN CHART

x − 2 = 0 x + 1 = 0x = 2 x = −1

The domain of f is (−∞, −1)U(2, ∞).

Page 25: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt25

Bruce Mayer, PE Chabot College Mathematics

Properties of Exponential and Properties of Exponential and Logarithmic FunctionsLogarithmic Functions

Exponential Function f (x) = ax

Logarithmic Function f (x) = loga x

Domain (0, ∞) Range (–∞, ∞)

Domain (–∞, ∞) Range (0, ∞)

x-intercept is 1 No y-intercept

y-intercept is 1 No x-intercept

x-axis (y = 0) is the horizontal asymptote

y-axis (x = 0) is the vertical asymptote

Page 26: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt26

Bruce Mayer, PE Chabot College Mathematics

Properties of Exponential and Properties of Exponential and Logarithmic FunctionsLogarithmic Functions

Exponential Function f (x) = ax

Logarithmic Function f (x) = loga x

Is one-to-one, that is, logau = logav if and only if u = v

Is one-to-one , that is, au = av if and only if u = v

Increasing if a > 1 Decreasing if 0 < a < 1

Increasing if a > 1 Decreasing if 0 < a < 1

Page 27: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt27

Bruce Mayer, PE Chabot College Mathematics

Graphs of Logarithmic FcnsGraphs of Logarithmic Fcns

f (x) = loga x (0 < a < 1)f (x) = loga x (a > 1)

Page 28: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt28

Bruce Mayer, PE Chabot College Mathematics

Graph Logs by TranslationGraph Logs by Translation

Start with the graph of f(x) = log3x and use Translation Transformations to sketch the graph of each function

a. f x log3 x 2 b. f x log3 x 1

Also State the DOMAIN and RANGE and the VERTICAL ASYMPTOTE for the graph of each function

Page 29: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt29

Bruce Mayer, PE Chabot College Mathematics

Graph Logs by TranslationGraph Logs by Translation

Solutiona. f x log3 x 2

• Shift UP 2

• Domain (0, ∞)

• Range (−∞, ∞)

• Vertical asymptote x = 0

Page 30: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt30

Bruce Mayer, PE Chabot College Mathematics

Graph Logs by TranslationGraph Logs by Translation

Solution

• Shift RIGHT 1

• Domain (1, ∞)

• Range (−∞, ∞)

• Vertical asymptote x = 1

b. f x log3 x 1

Page 31: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt31

Bruce Mayer, PE Chabot College Mathematics

WhiteBoard WorkWhiteBoard Work

Problems From §9.3 Exercise Set• 8, 18, 26, 38, 48

Logs &ExponentialsAre InverseFunctions

Page 32: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt32

Bruce Mayer, PE Chabot College Mathematics

All Done for TodayAll Done for Today

Inventorof

Logarithms

Born: 1550 in Merchiston Castle, Edinburgh, Scotland

Died: 4 April 1617 in Edinburgh, Scotland

John Napier

Page 33: BMayer@ChabotCollege.edu MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

[email protected] • MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt33

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

AppendiAppendixx

srsrsr 22