Top Banner
Imagination at work. Jaikumar Loganathan Ashok Gopinath GE Global Research - Bangalore Advances in Wind Turbine Aerodynamics
33

Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Sep 11, 2018

Download

Documents

lamtuyen
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Imagination at work.

Jaikumar Loganathan Ashok Gopinath GE Global Research - Bangalore

Advances in Wind Turbine Aerodynamics

Page 2: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

2

Outline

Introduction

Wind turbine design process

Wind turbine aerodynamics

Airfoil and blade design

Wind park as a product

What next?

Conclusion

Page 3: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

3

Introduction

Wind cost of energy is poised to overtake fossil fuel

Exponential growth

Source :GWEC

Source :EWEA

Continuous technology improvement

Source :NREL

Source :EWEA

Page 4: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

4

• Understand Your Wind Resource

• Determine Proximity to Existing Transmission Lines

• Secure Access to Land

• Establish Access To Capital

• Identify Reliable Power Purchaser or Market

• Address Siting and Project Feasibility Considerations

• Understand Wind Energy's Economics

• Obtain Zoning and Permitting Expertise

• Establish Dialogue With Turbine Manufacturers and Project

Developers

• Secure Agreement to Meet O&M Needs

Steps Wind farm development Source : AWEA

Page 5: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

5

Wind Turbine Design Concepts

Savonius VAWT Darrieus VAWT Danish HAWT

Page 6: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

6

Components

Rotor main shaft

Pitch drive

Hub

Main bearing

‘Top box’: low voltage, control…

Generator

Bed Frame Yaw drives

High-speed coupling

Gearbox

Wind Sensors

1.5 wind turbine 52 metric ton nacelle 35 metric ton rotor

Pitch bearing

Mechanical brake

Yaw bearing

Page 7: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

7

Number of rotors

One Three Two

Gearbox

Efficiency

Loads

Page 8: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

8

Wind turbine design

Source: DTU

Page 9: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

9

Source: DTU Wind turbine design

Page 10: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

10

Wind Farm

Blade

Airfoil

Wind turbine

Wind turbine Aerodynamics

Page 11: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

11

Design goals

Airfoil design

Operation

Blade geometry

Source: TUDelft

Page 12: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

12

Airfoil polar - Clean Wind turbine airfoil

Airfoil polar - Rough Pressure distribution

Source: TUDelft

Airfoil design

Page 13: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

13

Airfoil design key parameters

1

2

3

1 Design point (Max lift to drag ratio)

2 Stall point (Max CL)

3 Extreme load point (Max CD)

Page 14: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

14

Design point

• Max L/D - highest efficiency

• Transition location is critical

• Boundary layer is attached

DU96-W-180, A0A = 6 Re = 4MM

XFOIL

• Panel method - Mark Drela, MIT

• Inviscid - linear-vorticity stream function

• Viscous - Integral BL formulation

• Transition - e^n criteria

AOA CL CL/CD X-Tran Suction X-Tran Pressure

Expt 5.90 1.08 150.26 38 70

XFOIL 6.00 1.10 153.25 40 71

Page 15: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

15

Design point

• Max L/D - highest efficiency

• Transition location is critical

• Boundary layer is attached

XFOIL

• Panel method - Mark Drela, MIT

• Inviscid - linear-vorticity stream function

• Viscous - Integral BL formulation

• Transition - e^n criteria

CFD (K SST)

• RANS – 2 eq turbulence model

• K SST (zonal model, limiter on eddy viscosity)

• -Re transition model

AOA CL CL/CD X-Tran Suction X-Tran Pressure

Expt 5.90 1.08 150.26 38 70

XFOIL 6.00 1.10 153.25 40 71

CFD 6.00 1.09 115.00 39 71

DU96-W-180, A0A = 6 Re = 4MM

0.00

0.40

0.80

1.20

1.60

0 0.01 0.02 0.03

CL

CD

EXPT

SST

Page 16: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

16

Stall point

• Max CL - high loads

• Boundary layer is partially separated

Comparison with XFOIL & CFD

DU96-W-180, A0A = 14 Re = 4MM

0.00

0.40

0.80

1.20

1.60

2.00

0 2 4 6 8 10 12 14 16 18 20

CL

AOA

EXPT

SST

XFOIL

Page 17: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

17

Delayed stall prediction

• Best practice K-SST predicts a delayed flow separation and stall

• Limitation of RANS models

Spectral Gap

• Overlap of turbulent length scales with energy containing scales

Anisotropy

• Turbulent velocity components assumed to be equal in magnitude

Stress – Strain lag

• Stress and strain are directly proportional

Reynolds shear stress

Mean strain rates

• Wind tip vortex flow by Jim chow

Page 18: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

18

Next gen airfoils

• Serrations (noise)

• Vortex generators (flow separation)

Add-Ons - 2 dB +0.5% Cp

• Flexible trailing edge

• Circulation control

Flow control Lift destruction Lift Augmentation

• Flexible airfoils

• Sail wing

New architecture Low cost Low loads

Page 19: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

19

Betz Limit

• Wind turbine extracts power by slowing down incoming wind

• Betz limit is the measure of optimal slow down

No slow down Full slow down Optimal slow down

Betz Limit - 59.3%

Page 20: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 2 4 6 8 10 12 14 16 18 20 22 24

0

500

1000

1500

2000

2500

electricaerodynamic"power curve"

0

500

1,000

1,500

2,000

2,500

0 5 10 15 20 25

0

1

2

3

4

5

6

7

portion of AEP

Wind distribution

Power

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

0 2 4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22 24

Annual Energy Yield (AEP)

AEP increase strategies:

• (higher) Wind distribution

• Rotor growth (increase swept area)

• (turbine) efficiency increase

• Biggest portion of AEP generated near knee of the power curve: 33% for 2 m/s wind speeds before rated

actual

Weibull

binelecpbinbin AEPRcvt 2

).(

3

)()(2

1

][)( smv bin

][)( ht bin ][)( binpc

][)( smv bin

][)( kWhYieldEnergy bin

][)( smv bin

][)( smv bin

[%]Portion

][kWPower

][kWPower

Page 21: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

21

Blade aero design

Inputs • Blade radius • Power

Airfoil selection • Efficiency • Stall • Roughness

Blade design • Chord • Twist • Thickness

Geo smoothing

Design point

Off - design

Conceptual design Detailed design Prototype test

$ $$$ $$$$$

Objectives

• Maximize Cp

• Minimize noise

Constraints

• Max chord

• Thickness and twist rate

Page 22: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

22

Conceptual design - Blade

Blade element momentum theory

• Blade element + momentum theory

applied to a rotor disk

• Propeller Helicopter wind turbines

• Each annular ring is independent

• Does not account for wake expansion

• Applicable only to straight blades

• Fails at high blade loading and off design

conditions

• Requires separate tip and root loss

model

Actuator disk model

Forces acting on a blade element

3 D Blades

A powerful design tool

Page 23: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

23

Conceptual design - Blade

Vortex lifting line model Blade representation

Wake representation

• Blade modeled as a set of lifting lines

• Vorticity shed from the trailing edge is modeled as vortex filaments

• Induced velocities on blade and wake is computed using Biot-savart law

Page 24: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

24

Detailed design - CFD

• A powerful tool to understand detailed flow structure

• RANS - K SST

• ~ 6 million cells for a single blade analysis

• Rotational effects

• Flow separation prediction ?

• Modelling transition – exorbitantly expensive

• Highly dissipative – smeared wake

Page 25: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

25

Small Navier- Stokes domain

Modeled wake shape (function of computed circulation from NS domain)

Source: UC Davis

Detailed design – Hybrid CFD

• Elegant combination of near wall Navier-Stokes and helicoidal vortex method

• Preservers wake structures

• Improved computational efficiency (1/8)

• Flow transition

• Unsteady, multi-blade analysis

Page 26: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

26

Aero Related Energy Losses for Wind Turbines •Tip Loss : Entitlement ~1.5% AEP

•Main Blade Loss : Entitlement ~1.5% AEP

•Root Loss : Entitlement ~3.5% AEP *)

•Operation Loss : Entitlement ~2.0% AEP

Improving Blade Performance

CFD wind velocity contours depicting high velocities in root region due to ‘slippage’ through the root ‘hole’

Root enhancement Tip enhancement

Page 27: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

27

Industry trends

Carbon

• Enhanced stiffness while managing weight

• ~32% mass reduction, 15% reduction in tip deflection • Costly (10X time glass fibers)

Segmented blade • Potential benefit in transportation & erection cost • 9% increase in blade mass

Active devices

• Morphing trailing edge • 2% rotor growth – loads neutral • Controlled with compressed air or piezo electrics

Passive – Material tailoring

• Bend- Twist coupling • 53m vs 49m Blade – less 500kg/5% more AEP

• Exploring natural fibers

Undeformed blade

Tip rotation under loads

Page 28: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

28

Wind farm as a product

• Wakes behind the rotor cause losses

• Coordinated control reduce these losses

• Around 1-2% of farm AEP is gained

Page 29: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

29

Wake structure

Source : SNL

Page 30: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

30

Wake modeling

objectives

• Predict the wake strength and behavior (stability, shear, veer & turbulence intensity)

• Determine sensitivity of wake development to rotor loading

• Micro siting

• Quantify effect of ambient flow conditions and terrain

RANS + Actuator disk LES + Actuator line BEM + Free vortex

Page 31: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

31

Summary

• Wind turbine aerodynamics - maximize power output

• Airfoils – high L/D – Stall prediction

• Blade – Maximize Cp – computational efficiency

• Wake – understand, minimize & optimize

• Big data

Page 32: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL

Blank

32

Thank you

Page 33: Advances in Wind Turbine Aerodynamics · Advances in Wind Turbine Aerodynamics . Blank 2 Outline ... DTU . Blank 9 Wind turbine design ... 1.60 2.00 0 2 4 6 8 10 12 14 16 18 20 CL