Top Banner
Chapter 4 Isolation and Screening
15

Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

Sep 26, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

Chapter 4

Isolation and Screening

Page 2: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

59 |

Chapter 4 Isolation and Screening

Natural products, either as pure compounds or as standardized extracts mainly of plant

resources, provide unlimited opportunities for new discoveries in health care products because of

the unmatched availability of chemical diversity (Cos et al. 2006). Plants used for traditional

medicine contain a wide range of substances that can be used to treat chronic as well as

infectious diseases (Duraipandiyan et al. 2006). The increasing prevalence of multidrug resistant

strains of bacteria and the recent appearance of strains with reduced susceptibility to antibiotics

adds urgency to the search of new infection fighting strategies. The use of plant waste extracts

having antifungal and antibacterial properties can be of great significance in therapeutic

treatments (Hsieh et al. 2001; Arias and Ramon-Laca 2005).

Plants are capable of synthesizing a diverse array of secondary metabolites which include

tannins, terpenoides, coumarins, alkaloids and flavonoids (Perez and Anesini 1994). These may

be produced constitutively (preformed antimicrobial compounds or phytoanticipins) or in

response to pathogen or herbivore attack or stress (phytoalexins) (Wittstock and Gershenzon

2002). There are reports that these secondary metabolites are present in all parts of the plant viz.

bark, stalks, leaves, fruits, roots, flowers, pods, seeds, stems, latex, hull and fruit rind (Kaneria et

al. 2009; Aref et al. 2010; Rajaei et al 2010). Therefore, no part of the plant parts is considered

as wastes. Scientists have isolated antimicrobial compounds from different plants/plant parts

such as from the leaves of Psidium guajava (Burkill 1966), Vaccinium oxycoccos (Senchyuk and

Demkevich 1974), Garcinia mangostana (Sundram et al. 1983), Ziziphus spinachristi (Shah et

al. 1986), Annona montana (Wu et al. 1987), Carica papaya (Rajashekhara et al.) and

Passiflora edulis (Jensen et· al. 1990). Though the search for new compounds with antimicrobial

activity from plants/plant parts has been the subject of intense research since time immemorial

but there has been renewed interest over the last two decades (Cowan 1999; Hostettmann et al.

2003; Petiers and Vleitinck 2005; Harvey 2007; Lee et al., 2007).

. Therefore, screening of plant/plant parts for the therapeutically important

phytochemicals would be rewarding. Still many plants/plant parts remain unexplored. One of the

possible methodologies that can be used for the discovery of antimicrobials from these plant

parts is the screening of their crude extracts for the activity followed by bioassay.

This chapter deals with isolation and screening of antimicrobials from plant wastes.

.

Page 3: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

60 |

Chapter 4 Isolation and Screening

Methodology

Extraction of antimicrobial compound :

Commonly available plant wastes such as - Hay, Rice husk, Coconut fibre, Potato peel,

Pumpkin peel, and Betel leaf stalk were collected from Bolpur, West Bengal within a radius of

50 km (Fig 1). After repeated washing the wastes were shade dried and crushed into fine powder.

The powdered samples were sealed in polythene bags and were stored in dessicator at room

temperature.

Hay Rice husk Coconut fibre Potato peel Pumpkin peel Betel leaf stalk

The dried and powdered wastes (1kg) were extracted successively with 500ml of solvent

non-polar to polar seperately using soxhlet extractor (Lin et al. 1999). The extract was

concentrated to dryness in rotary vacuum evaporator below 50oC.

The crude extracts were transferred to different glass vials and kept at 4oC for further use.

For antimicrobial testing the different extracts were dissolved in DMSO (1%), a non toxic

solvent.

Screening for antimicrobial activity:

Screening of waste samples for their antimicrobial activity was done against, randomly

selected, two Gram positive, two Gram negative bacteria and three spore forming fungi by agar

cup assay (Mbata et al. 2006), paper disc assay (Freixa et al. 1996) using Nutrient agar (NA) for

bacteria and Malt agar plate (MA) for fungi.

The test organism used for the purpose were Bacillus subtilis (MTCC 121),

Staphylococcus aureus (MTCC 1430), Escherichia coli (MTCC 1610), Pseudomonas

aeruginosa (MTCC 424), Penicillium chrysogenum (MTCC 161), Alternaria solani (MTCC

2101) and Aspergillus niger (MTCC 1344).

Fig 1: Wastes used for antimicrobial screening

Page 4: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

61 |

Chapter 4 Isolation and Screening

Stock cultures were maintained at 4oC on nutrient agar medium and malt agar medium.

Active cultures were prepared by inoculating fresh nutrient broth and malt extract broth with a

loopful of cells from the stock and incubated at 37oC for 24h (Bacteria) and 25oC for 96h

(Fungi), to get a desirable cell/spore count (106 CFU/mL) for bioassay.

Antimicrobial activity of the crude extracts was made against the test bacteria and fungi

using agar diffusion. The agar plates were prepared by pouring 20mL of molten nutrient agar

medium into sterile petri plates. The plates were allowed to solidify and 0.1 % cell/spore

suspension (106 CFU/mL) of test organisms were spread uniformly and kept undisturbed for

15mins. Crude extracts were used in wells or as paper discs. Whether in wells or in paper discs

the plates were kept at low temperature in a refrigerator for 20mins and then incubated at 37oC

for 24h (Bacteria) and 25oC for 96h (Fungi). At the end of incubation, inhibition zones formed

around the wells/discs were recorded.

Page 5: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

62 |

Chapter 4 Isolation and Screening

Results:

The dried waste samples (1kg each) were powdered and attempted to extract with polar to

non-polar solvents. The extracted samples were filtered and concentrated in vacuum evaporator

to dryness and stored at 4oC for further use. The concentrates were redissolved in DMSO (1%)

and used for antimicrobial testing. All the samples showed positive activity against the test

bacteria both in agar cup and in disc assay, showing an inhibition zone diameter between 9-

27mm. It appeared that the solvent used were with certain role in the process of extraction and

diethylether showed the highest inhibition followed by those extracted with chloroform and

methanol. However, among all the extracted samples of different solvent system, the Betel Leaf

Stalk (BLS) sample exhibited highest activity (Fig 2-5). But it did not show inhibition against the

fungal strains used (Fig 6) Studies showed that suitability of extraction of antimicrobial

metabolites depended on polarity of solvents but the activity reciprocated with test organisms

(Khan and Kumar, 2011) Table (2-5).

Page 6: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

63 |

Chapter 4 Isolation and Screening

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 14±0.55 14 ±0.49 26±0.26 10 ±0.45 21±0.4 14 ± 0.26 20 ± 0.1 16±0.5

PP 10±0.26 12±0.26 14±0.26 9±0.26 15±0.43 12±0.37 14±0.45 14±0.15

HY 0 0 0 0 0 0 0 0

PK 12±0 13±0.23 13±0 11±0.1 14±0 15±0.05 16±0.17 13±0.05

RH 0 0 0 0 0 0 0 0

CF 12±0.1 11±0.23 13±0.1 14±0.1 12±0.05 12±0.05 11±0.46 11±0.1

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 12±0.1 15±0.15 18±0.1 9±0.1 16±0.05 12±0.26 15±0.1 12±0.05

PP 9±0.1 10±0.1 12±0.1 9±0.1 12±0.1 10±0.05 12±0.05 12±0.11

HY 0 0 0 0 0 0 0 0

PK 10±0.07 10±0.07 10±0 10±0.14 12±0.07 13±0.07 13±0.07 11±0

RH 0 0 0 0 0 0 0 0

CF 11.1±0.05 10±0.1 12±0.05 12±0.1 10±0.1 9±0.1 10±0 10±0.05

Fig 2: Effect of crude extract against Pseudomonas aeruginosa using (1) agar cup (2) paper disc assay

1 22

DEE DEE

MET MET

MET

CHL CHL

Table 2: Effect of crude extract against Pseudomonas aeruginosa using (1) agar cup (2) paperdisc assay

C C

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH –Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

63 |

Chapter 4 Isolation and Screening

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 14±0.55 14 ±0.49 26±0.26 10 ±0.45 21±0.4 14 ± 0.26 20 ± 0.1 16±0.5

PP 10±0.26 12±0.26 14±0.26 9±0.26 15±0.43 12±0.37 14±0.45 14±0.15

HY 0 0 0 0 0 0 0 0

PK 12±0 13±0.23 13±0 11±0.1 14±0 15±0.05 16±0.17 13±0.05

RH 0 0 0 0 0 0 0 0

CF 12±0.1 11±0.23 13±0.1 14±0.1 12±0.05 12±0.05 11±0.46 11±0.1

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 12±0.1 15±0.15 18±0.1 9±0.1 16±0.05 12±0.26 15±0.1 12±0.05

PP 9±0.1 10±0.1 12±0.1 9±0.1 12±0.1 10±0.05 12±0.05 12±0.11

HY 0 0 0 0 0 0 0 0

PK 10±0.07 10±0.07 10±0 10±0.14 12±0.07 13±0.07 13±0.07 11±0

RH 0 0 0 0 0 0 0 0

CF 11.1±0.05 10±0.1 12±0.05 12±0.1 10±0.1 9±0.1 10±0 10±0.05

Fig 2: Effect of crude extract against Pseudomonas aeruginosa using (1) agar cup (2) paper disc assay

1 22

DEE DEE

MET MET

MET

CHL CHL

Table 2: Effect of crude extract against Pseudomonas aeruginosa using (1) agar cup (2) paperdisc assay

C C

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH –Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

63 |

Chapter 4 Isolation and Screening

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 14±0.55 14 ±0.49 26±0.26 10 ±0.45 21±0.4 14 ± 0.26 20 ± 0.1 16±0.5

PP 10±0.26 12±0.26 14±0.26 9±0.26 15±0.43 12±0.37 14±0.45 14±0.15

HY 0 0 0 0 0 0 0 0

PK 12±0 13±0.23 13±0 11±0.1 14±0 15±0.05 16±0.17 13±0.05

RH 0 0 0 0 0 0 0 0

CF 12±0.1 11±0.23 13±0.1 14±0.1 12±0.05 12±0.05 11±0.46 11±0.1

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 12±0.1 15±0.15 18±0.1 9±0.1 16±0.05 12±0.26 15±0.1 12±0.05

PP 9±0.1 10±0.1 12±0.1 9±0.1 12±0.1 10±0.05 12±0.05 12±0.11

HY 0 0 0 0 0 0 0 0

PK 10±0.07 10±0.07 10±0 10±0.14 12±0.07 13±0.07 13±0.07 11±0

RH 0 0 0 0 0 0 0 0

CF 11.1±0.05 10±0.1 12±0.05 12±0.1 10±0.1 9±0.1 10±0 10±0.05

Fig 2: Effect of crude extract against Pseudomonas aeruginosa using (1) agar cup (2) paper disc assay

1 22

DEE DEE

MET MET

MET

CHL CHL

Table 2: Effect of crude extract against Pseudomonas aeruginosa using (1) agar cup (2) paperdisc assay

C C

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH –Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

Page 7: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

64 |

Chapter 4 Isolation and Screening

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 15±0.1 14±0.05 25±0.05 13±0.1 19±0.46 14±0.05 20.1±0.05 16±0

PP 11±0.05 13±0.05 15±0 9±0.05 17±0.05 13±0.05 15±0.05 16±0.05

HY 0 0 0 0 0 0 0 0

PK 12±0 15±0 15±0 12±0 14±0.07 15±0 17.±0.07 14±0.07

RH 0 0 0 0 0 0 0 0

CF 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 15±0.05 15±0.05 27±0.1 13±0.1 22±0.15 14±0.1 21±0.37 16±0.1

PP 11±0.05 13±0.1 15±0.05 9±0.1 17±0.1 13±0.1 15±0.1 16±0.1

HY 0 0 0 0 0 0 0 0

PK 13±0.07 15±0.07 15±0.07 12±0.07 14±0 15±0.07 17±0.07 14±0.07

RH 0 0 0 0 0 0 0 0

CF 13±0.05 13±0.05 15±0 15±0.05 14±0.05 14±0.05 15±0.05 12±0.05

Fig 3: Effect of crude extract against Escherichia coli using (1) agar cup (2) paper disc assay

DEE DEE

CHL CHL

MET MET

C C

Table 3: Effect of crude extract against Escherichia coli using (1) agar cup (2) paperdisc assay

1 2

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH–Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

64 |

Chapter 4 Isolation and Screening

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 15±0.1 14±0.05 25±0.05 13±0.1 19±0.46 14±0.05 20.1±0.05 16±0

PP 11±0.05 13±0.05 15±0 9±0.05 17±0.05 13±0.05 15±0.05 16±0.05

HY 0 0 0 0 0 0 0 0

PK 12±0 15±0 15±0 12±0 14±0.07 15±0 17.±0.07 14±0.07

RH 0 0 0 0 0 0 0 0

CF 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 15±0.05 15±0.05 27±0.1 13±0.1 22±0.15 14±0.1 21±0.37 16±0.1

PP 11±0.05 13±0.1 15±0.05 9±0.1 17±0.1 13±0.1 15±0.1 16±0.1

HY 0 0 0 0 0 0 0 0

PK 13±0.07 15±0.07 15±0.07 12±0.07 14±0 15±0.07 17±0.07 14±0.07

RH 0 0 0 0 0 0 0 0

CF 13±0.05 13±0.05 15±0 15±0.05 14±0.05 14±0.05 15±0.05 12±0.05

Fig 3: Effect of crude extract against Escherichia coli using (1) agar cup (2) paper disc assay

DEE DEE

CHL CHL

MET MET

C C

Table 3: Effect of crude extract against Escherichia coli using (1) agar cup (2) paperdisc assay

1 2

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH–Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

64 |

Chapter 4 Isolation and Screening

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 15±0.1 14±0.05 25±0.05 13±0.1 19±0.46 14±0.05 20.1±0.05 16±0

PP 11±0.05 13±0.05 15±0 9±0.05 17±0.05 13±0.05 15±0.05 16±0.05

HY 0 0 0 0 0 0 0 0

PK 12±0 15±0 15±0 12±0 14±0.07 15±0 17.±0.07 14±0.07

RH 0 0 0 0 0 0 0 0

CF 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05 13±0.05

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 15±0.05 15±0.05 27±0.1 13±0.1 22±0.15 14±0.1 21±0.37 16±0.1

PP 11±0.05 13±0.1 15±0.05 9±0.1 17±0.1 13±0.1 15±0.1 16±0.1

HY 0 0 0 0 0 0 0 0

PK 13±0.07 15±0.07 15±0.07 12±0.07 14±0 15±0.07 17±0.07 14±0.07

RH 0 0 0 0 0 0 0 0

CF 13±0.05 13±0.05 15±0 15±0.05 14±0.05 14±0.05 15±0.05 12±0.05

Fig 3: Effect of crude extract against Escherichia coli using (1) agar cup (2) paper disc assay

DEE DEE

CHL CHL

MET MET

C C

Table 3: Effect of crude extract against Escherichia coli using (1) agar cup (2) paperdisc assay

1 2

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH–Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

Page 8: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

65 |

Chapter 4 Isolation and Screening

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 12±0.05 12±0.05 20±0.1 11±0.05 18±0.05 12±0.05 15±0.1 12±0.05

PP 12±0.1 12±0.05 20±0.1 11±0.1 18±0.1 12±0.05 15.1±0 12±0

HY 0 0 0 0 0 0 0 0

PK 12±0.07 13±0.07 15±0.07 12±0 14±0 13±0.07 12.±0 11±0.14

RH 0 0 0 0 0 0 0 0

CF 12±0.05 11±0.05 15±0.05 12±0.05 15±0.05 13±0.1 12±0.05 11±0.1

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 11±0.05 12±0 19±0.05 12±0.1 16±0.05 11±0 14±0.1 11±0.05

PP 10±0.05 12±0.58 13±0.1 11±0.1 13±0.45 12±0.5 13±0.11 13±0.05

HY 0 0 0 0 0 0 0 0

PK 11±0.07 12±0.07 14±0.07 12±0 13±0.07 13±0.5 12±0 11±0.07

RH 0 0 0 0 0 0 0 0

CF 12±0.11 11±0.05 15±0.05 11±0.1 14±0.05 13±0.5 12±0.05 10±0.05

Fig 4: Effect of crude extract against Bacillus subtilis using (1) agar cup (2) paper disc assay

DEE DEE

MET MET

CHL CHL

C C

Table 4: Effect of crude extract against Bacillus subtilis using (1) agar cup (2) paper discassay

1 2

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH –Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

65 |

Chapter 4 Isolation and Screening

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 12±0.05 12±0.05 20±0.1 11±0.05 18±0.05 12±0.05 15±0.1 12±0.05

PP 12±0.1 12±0.05 20±0.1 11±0.1 18±0.1 12±0.05 15.1±0 12±0

HY 0 0 0 0 0 0 0 0

PK 12±0.07 13±0.07 15±0.07 12±0 14±0 13±0.07 12.±0 11±0.14

RH 0 0 0 0 0 0 0 0

CF 12±0.05 11±0.05 15±0.05 12±0.05 15±0.05 13±0.1 12±0.05 11±0.1

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 11±0.05 12±0 19±0.05 12±0.1 16±0.05 11±0 14±0.1 11±0.05

PP 10±0.05 12±0.58 13±0.1 11±0.1 13±0.45 12±0.5 13±0.11 13±0.05

HY 0 0 0 0 0 0 0 0

PK 11±0.07 12±0.07 14±0.07 12±0 13±0.07 13±0.5 12±0 11±0.07

RH 0 0 0 0 0 0 0 0

CF 12±0.11 11±0.05 15±0.05 11±0.1 14±0.05 13±0.5 12±0.05 10±0.05

Fig 4: Effect of crude extract against Bacillus subtilis using (1) agar cup (2) paper disc assay

DEE DEE

MET MET

CHL CHL

C C

Table 4: Effect of crude extract against Bacillus subtilis using (1) agar cup (2) paper discassay

1 2

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH –Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

65 |

Chapter 4 Isolation and Screening

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 12±0.05 12±0.05 20±0.1 11±0.05 18±0.05 12±0.05 15±0.1 12±0.05

PP 12±0.1 12±0.05 20±0.1 11±0.1 18±0.1 12±0.05 15.1±0 12±0

HY 0 0 0 0 0 0 0 0

PK 12±0.07 13±0.07 15±0.07 12±0 14±0 13±0.07 12.±0 11±0.14

RH 0 0 0 0 0 0 0 0

CF 12±0.05 11±0.05 15±0.05 12±0.05 15±0.05 13±0.1 12±0.05 11±0.1

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 11±0.05 12±0 19±0.05 12±0.1 16±0.05 11±0 14±0.1 11±0.05

PP 10±0.05 12±0.58 13±0.1 11±0.1 13±0.45 12±0.5 13±0.11 13±0.05

HY 0 0 0 0 0 0 0 0

PK 11±0.07 12±0.07 14±0.07 12±0 13±0.07 13±0.5 12±0 11±0.07

RH 0 0 0 0 0 0 0 0

CF 12±0.11 11±0.05 15±0.05 11±0.1 14±0.05 13±0.5 12±0.05 10±0.05

Fig 4: Effect of crude extract against Bacillus subtilis using (1) agar cup (2) paper disc assay

DEE DEE

MET MET

CHL CHL

C C

Table 4: Effect of crude extract against Bacillus subtilis using (1) agar cup (2) paper discassay

1 2

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH –Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

Page 9: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

66 |

Chapter 4 Isolation and Screening

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 14±0.05 13±0.05 18±0.1 12±0.05 16±0.05 13±0.2 15±0.1 12±0

PP 11±0.05 13±0.05 13±0.11 9±0.05 14±0.05 12±0.05 10±0.05 10±0

HY 0 0 0 0 0 0 0 0

PK 12±0.07 12±0.21 12±0.28 11±0 11±0.49 10±0.07 10±0.7 10±0.07

RH 0 0 0 0 0 0 0 0

CF 11±0.46 12±0.1 10±0.1 11±0.05 11±0.05 11±0.05 10±0.47 10±0.05

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 13±0.1 13±0.05 15±0.05 14±0.05 13±0.49 12±0.05 12±0.1 10±0.05

PP 10±0.05 12±0.05 12±0.05 13±0.05 9±0.05 9±0.05 11±0.43 10±0.05

HY 0 0 0 0 0 0 0 0

PK 10±0.7 9±0.14 11±0.07 10±0 11±0.07 10±0 10±0.07 10±0.07

RH 0 0 0 0 0 0 0 0

CF 9±0.58 10±0.1 9±0.51 10±0.1 11. ±0.45 9±0.15 10±0.05 10±0

Fig 5: Effect of crude extract against Staphylococcus aureus using (1) agar cup (2) paper disc assay

DEE DEE

MET MET

CHL CHL

C C

Table 5: Effect of crude extract against Staphylococcus aureus using (1) agar cup (2) paper discassay.

1 2

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH –Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

66 |

Chapter 4 Isolation and Screening

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 14±0.05 13±0.05 18±0.1 12±0.05 16±0.05 13±0.2 15±0.1 12±0

PP 11±0.05 13±0.05 13±0.11 9±0.05 14±0.05 12±0.05 10±0.05 10±0

HY 0 0 0 0 0 0 0 0

PK 12±0.07 12±0.21 12±0.28 11±0 11±0.49 10±0.07 10±0.7 10±0.07

RH 0 0 0 0 0 0 0 0

CF 11±0.46 12±0.1 10±0.1 11±0.05 11±0.05 11±0.05 10±0.47 10±0.05

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 13±0.1 13±0.05 15±0.05 14±0.05 13±0.49 12±0.05 12±0.1 10±0.05

PP 10±0.05 12±0.05 12±0.05 13±0.05 9±0.05 9±0.05 11±0.43 10±0.05

HY 0 0 0 0 0 0 0 0

PK 10±0.7 9±0.14 11±0.07 10±0 11±0.07 10±0 10±0.07 10±0.07

RH 0 0 0 0 0 0 0 0

CF 9±0.58 10±0.1 9±0.51 10±0.1 11. ±0.45 9±0.15 10±0.05 10±0

Fig 5: Effect of crude extract against Staphylococcus aureus using (1) agar cup (2) paper disc assay

DEE DEE

MET MET

CHL CHL

C C

Table 5: Effect of crude extract against Staphylococcus aureus using (1) agar cup (2) paper discassay.

1 2

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH –Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

66 |

Chapter 4 Isolation and Screening

1 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 14±0.05 13±0.05 18±0.1 12±0.05 16±0.05 13±0.2 15±0.1 12±0

PP 11±0.05 13±0.05 13±0.11 9±0.05 14±0.05 12±0.05 10±0.05 10±0

HY 0 0 0 0 0 0 0 0

PK 12±0.07 12±0.21 12±0.28 11±0 11±0.49 10±0.07 10±0.7 10±0.07

RH 0 0 0 0 0 0 0 0

CF 11±0.46 12±0.1 10±0.1 11±0.05 11±0.05 11±0.05 10±0.47 10±0.05

2 INHIBITION ZONE (dia in mm)

HE BE DEE EA CHL ACE MET ETHBLS 13±0.1 13±0.05 15±0.05 14±0.05 13±0.49 12±0.05 12±0.1 10±0.05

PP 10±0.05 12±0.05 12±0.05 13±0.05 9±0.05 9±0.05 11±0.43 10±0.05

HY 0 0 0 0 0 0 0 0

PK 10±0.7 9±0.14 11±0.07 10±0 11±0.07 10±0 10±0.07 10±0.07

RH 0 0 0 0 0 0 0 0

CF 9±0.58 10±0.1 9±0.51 10±0.1 11. ±0.45 9±0.15 10±0.05 10±0

Fig 5: Effect of crude extract against Staphylococcus aureus using (1) agar cup (2) paper disc assay

DEE DEE

MET MET

CHL CHL

C C

Table 5: Effect of crude extract against Staphylococcus aureus using (1) agar cup (2) paper discassay.

1 2

DEE – Diethylether, CHL- Chloroform, MET- methanol, C- Control

HE-Hexane, BE-Benzene, DEE-Diethylether, EA-Ethylacetate, CHL-Chloroform, ACE-Acetone, MET-Methanol, ETH –Ethanol

Betel leaf stalk –BLS, Potato peel- PP, Hay – HY, Pumpkin peel – PKP, Rice husk – RH, Coconut fibre -CF

Page 10: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

67 |

Chapter 4 Isolation and Screening

Penicillium chrysogenum Alternaria solani

Aspergillus niger

Fig 6: Effect of crude extract against test fungi

67 |

Chapter 4 Isolation and Screening

Penicillium chrysogenum Alternaria solani

Aspergillus niger

Fig 6: Effect of crude extract against test fungi

67 |

Chapter 4 Isolation and Screening

Penicillium chrysogenum Alternaria solani

Aspergillus niger

Fig 6: Effect of crude extract against test fungi

Page 11: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

68 |

Chapter 4 Isolation and Screening

Discussion:

Since long, there is exhaustive search for antimicrobial properties from plants. Successful

isolation of biologically active compounds from plant material is largely dependent on the type

of solvent used in the extraction procedure. Properties of a good solvent in plant extraction

include low toxicity, ease of evaporation at low heat, promotion of rapid physiologic absorption

of the extract, preservative action and inability to cause the extract to complex or dissociate

(Houghton and Raman 1998).

Scientists have used different types of solvent for the extraction of biologically active

compound from plants. Acamovic and Brooker (2005) used aqueous acetone although it is not a

very commonly used solvent but has been used by a number of workers (Dilika et al. 1996;

Mathkega et al. 2000; Lourens et al. 2004; Basri and Fan, 2005). Harmala et al. (1992) used

chloroform for the extraction of biologically active compounds. Hammer et al. (1999) used polar

solvents such as methanol to extract polyphenolic compounds such as flavonols and other

bioactive compounds reported. The most commonly used solvents for investigations of

antimicrobial activity in plants are methanol, ethanol and water (Salie et al. 1996; Bisignino et

al. 1999; Parekh et al. 2005; Rojas et al. 2006). Dichloromethane has also been used by a

number of researchers (Freixa et al. 1996). In a study by Masoko and Eloff (2006) both acetone

and methanol were found to extract saponins which have antimicrobial activity. Eloff (1998) and

Nostro et al. (2000) reported that the use of combination of all these solvents for better extraction

of biologically active substances.

Different workers use separate methods to screen antimicrobial potentialities of plants.

For instance Pavithra et al. (2010) used disc diffusion and broth dilution techniques to test the

antimicrobial activity of Delonix elata, Enicostemma axillare, Merremia tridentata, Mollugo

cerviana and Solanum incanum against Gram-positive bacterial strains and Gram-negative

bacterial strains. Agnihotri and Vaidya (1996) developed a novel approach for studying

antibacterial properties of certain plants like Eugenia caryophyllus, Thymus vulgaris,

Cinnamonum zeylanium and Cuminum cyminum. Volatile components of the hexane extracts of

these plants were tested against standard Gram positive and Gram negative bacteria grown on

agar slants and the results were expressed as percentage inhibition of the area of the slants. Gupta

et al. (2010) used Lowenstein Jensen (L-J) medium and colorimetric BacT/ALERT 3D system to

Page 12: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

69 |

Chapter 4 Isolation and Screening

test antituberculosis activity of Acalypha indica, Adhatoda vasica, Allium cepa, Allium sativum

and Aloe vera.

To test the antifungal activity different workers used different methods. Nair et al. (1991)

and Nene and Thapliyal (2000) used spore germination assay and poison food technique to test

the antifungal activity of essential oil isolated from the leaves of Aegle marmelos and Cassia

alata.

All these results suggests that proper choice of solvents and application of appropriate

antimicrobial technique might be useful in obtaining the compound with bioactivity which

supports the present study.

The result (Table 2-5) shows that among all the wastes samples used BLS has the highest

activity. As found positive, BLS was selected for further study.

Page 13: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

70 |

Chapter 4 Isolation and Screening

References:Acamovic T, Brooker J D (2005). Biochemistry of plant secondary metabolites and their effects

in animals. Proceedings of the Nutrition Society. 64: 403-412.

Agnihotri S, Vaidya A D (1996). A novel approach to study anti-bacterial properties of volatilecomponents of selected Indian medicinal herbs. Indian Journal of Experimental Biology.34: 712-5.

Aref H L, Salah K B H, Chaumont J P, Fekih A W, Aouni M, Said K (2010). In vitroantimicrobial activity of four Ficus carica latex fractions against resistant humanpathogens. Pakistan Journal of Pharmaceutical Sciences. 23: 53-58.

Arias B A, Ramon-Laca L (2005). Pharmacological properties of citrus and their ancient andmedieval uses in the Mediterranean region. Journal of Ethnopharmacology. 97: 89-95.

Basri D F, Fan S H (2005). The potential of aqueous and acetone extracts of galls of Quercusinfectoria as antibacterial agents. Indian Journal of Pharmacology. 37: 26-29.

Bisignino G, Sanogo R, Marino A, Aquino R, D’angelo V, Germano M P, de Pasquale R,Pizza C (1999). Antimicrobial activities of Mitracarpus scaber extract and isolatedconstituents. Letters in Applied Microbiology. 30: 105-108.

Burkill I H (1966). A Dictionary of the Economic Products of the Malay Peninsula. KualaLumpur. Malaysia: Ministry of Agriculture and Cooperatives.

Cos P, Vlietinck, A J, Berghe, D V, Maes, L (2006). Anti-infective potential of naturalproducts: How to develop a stronger in vitro ‘proof-of-concept’. Journal ofEthnopharmacology. 106: 290–302.

Cowan M M (1999). Plant products as antimicrobial agents. Clinical Microbiological Reviews.12: 564-582.

Dilika F, Afolayan A J, Meyer J J M (1996). Comparative antibacterial activity of twoHelichrysum species used in male circumcision in South Africa. South African Journal ofBotany. 63: 158-159.

Duraipandiyan V, Ayyanar M, Ignacimuthu S (2006). Antimicrobial activity of someethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. B M CComplementary Alternative Medicine. 6: 35-41.

Eloff J N (1998). A sensitive and quick microplate method to determine the minimum inhibitoryconcentration of plant extracts for bacteria. Planta Medica. 64: 711-713.

Freixa B, Vila R, Vargas L, Lozano N, Adzet T, Caniguera S (1996). Screening for antifungalactivity of nineteen Latin American plants. Phytotherapy Research.12: 427-430.

Gupta R, Thakur B, Singh B Singh H B, Sharma V D, Katoch V M, Chauhan S V S (2010).Anti-tuberculosis activity of selected medicinal plants against multidrug resistantMycobacterium tuberculosis isolates. Indian Journal of Medical Research. 131: 809-813.

Hammer K A, Carson C F, Riley T V (1999). Antimicrobial activity of essential oils and otherplant extracts. Journal of Applied Microbiology. 86: 985-990.

Page 14: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

71 |

Chapter 4 Isolation and Screening

Harmala P, Vuorela H, Tornquist K, Hiltunen R (1992). Choice of solvent in the extractionof Angelica archangelica roots with reference to calcium blocking activity. Planta Medica.58: 176-183.

Harvey A L (2007). Natural products as a screening resource. Current Opinion in ChemicalBiology. 11: 480-484.

Hostettmann K, Queiroz E F, Vieira P C (2003). Princípios ativos de plantas superiores, SãoCarlos: EdUFSCar. p 54.

Houghton P J, Raman A (1998). Laboratory Handbook for the fractionation of Naturalextracts. Chapman and Hall. pp 199.

Hsieh P C, Mau J, Huang S H (2001). Antimicrobial effect of various combinations of plantextracts. Food Microbiology.18: 35-43.

Jensen I, Werrmann U, Knorr D (1990). Use of Passiflora sp. plant tissue cultures in foodbiotechnology. In Proceedings of the International Conference on Biotechnology & Food.Food Biotechnology .4: 482.

Kaneria M, Baravalia Y, Vaghasiya Y, Chanda S (2009). Determination of antibacterial andantioxidant potential of some medicinal plants from Saurashtra region, India. IndianJournal of Pharmaceutical Sciences.71: 406-412.

Khan J A, Kumar N (2011). Evaluation of antibacterial properties of extract of Piper betleleaves. Journal of Pharmaceuticals and Biomedical Sciences. 11: 1-3.

Lee S H, Chang K S, Su M S, Huang Y S, Jang H D (2007). Effects of some Chinesemedicinal plant extracts on five different fungi. Food Control.18: 1547-1554.

Lin J, Opoku A R, Geheeb-Keller M, Hutchings A D,Terblanche S E, Jager A K, Staden JV (1999). Preliminary screening of some traditional Zulu medicinal plants for anti-inflammatory and anti-microbial activities. Journal of Ethnopharmacology. 68: 267-274.

Lourens A C U, Reddy D, Baser K H C, Viljoen A M, Van Vuuren S F (2004). In vitrobiological activity and essential oil composition of four indigenous South AfricanHelichrysum species. Journal of Ethnopharmacology. 9: 253-258.

Masoko P J, Eloff J N (2006). Bioautography indicates the multiplicity of antifungalCompounds from twenty-four Southern African Combretum species. African Journal ofBiotechnology. 5: 1625-1647.

Mathekga A D M, Meyer J J M, Horn M M, Drewes S E (2000). An acylated phloroglucinolwith antimicrobial properties from Helichrysum caesptitium. Phytochemistry. 53: 93-96.

Mbata T I, Debiao L, Saikia A (2006). Antibacterial activity of the crude extract of ChineseGreen Tea (Camellia sinensis) on Listeria minocytogenes. Internet Journal ofMicrobiology. 2: 2. Http://www.ispub.com/ostia/index.php?xmlFilePath=journals/ijmb/vol2n2/green.xml.

Nair M G, Safir G R, Siqueira J O (1991). Isolation and identification of vesicular arbuscularmycorrhiza stimulatory compounds from clover (Tnifolium repens) roots. Applied andEnvirononmental Microbiology. 57: 434-439.

Page 15: Chapter4shodhganga.inflibnet.ac.in/bitstream/10603/27168/8/08... · 2018. 7. 9. · Chapter4 IsolationandScreening. 59 | Chapter 4 Isolation and Screening Natural products, either

72 |

Chapter 4 Isolation and Screening

Nene Y, Thapilyal L (2002). Poisoned food technique of fungicides in plant disease control (3rdeds). Oxford and IBH Publishing Company, New Delhi.

Nostro A, Germano M P, D’Angelo V, Marino A, Cannatelli M A (2000). Extractionmethods and bioautography for evaluation of medicinal plant antimicrobial activity. Lettersin Microbiology. 30: 379-384.

Parekh J, Jadeja D, Chanda S (2005). Efficacy of aqueous and methanol extracts of somemedicinal plants for potential antibacterial activity. Turkish Journal of Biology. 29: 203-210.

Pavithra P S, Janani V S, Charumathi K H, Indumathy R, Potala S, Verma R S (2010).Antibacterial activity of plants used in Indian herbal medicine. International Journal ofGreen Pharmacy 4: 8-22.

Perez C, Anesini C (1994). Antibacterial activity of alimentary plants against Staphylococcusaureus growth. American Journal of Chinese Medicine. 22: 169-174.

Pieters L, Vlietinck A J (2005). Bioguided isolation of pharmacologically active plantcomponents, still a valuable strategy for the finding of new lead compounds? Journal ofEthnopharmacology. 100: 57-60.

Rajashekhara E, Tippannavar C M, Sreenivasa M N, Sharma J S (1990). Inhibition activityof papain on facultative pathogens. Zentralblatt Fuer Microbiologie 145: 455-456.

Rajaei A, Barzegar M, Mobarez A M, Sahari M A, Esfahani Z H (2010). Antioxidant,antimicrobial and antimutagenicity activities of pistachio (Pistachia vera) green hullextract. Food Chemistry and Toxicology. 48: 107-112.

Rojas J J, Ochoa V J, Ocampo S A, Monoz J F (2006). Screening for antimicrobial activity often medicinal plants used in Colombian folkloric medicine: a possible alternative intreatment of nonnosocomial infections. BMC Complementary and Alternative Medicine. 6:2

Salie F, Eagles P F K, Lens H M J (1996). Preliminary antimicrobial screening of four SouthAfrican Asteraceae species. Journal of Ethnopharmacology. 52: 27-33.

Senchyuk, G V, Demkevich L I (1974). Antimicrobial properties of cranberry juice.Tovarovedenie 7: 44-45.

Shah A H, Ageel A M, Tariq M, Mossa J S, Al - Yahya M A (1986). Chemical constituents ofthe stem bark of Zizyphus spinachristi. Fitoterapia 57: 452-454.

Sundaram B M, Gopalakrishnan C, Subramanian S, Shankaranarayanan D, KameswaranL (1983). Antimicrobial activities of Garcinia mangostana. Planta Medica. 48, 59–60.

Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense againstherbivores and pathogens. Current Opinion in Plant Biology. 5: 300-307.

Wu T S, Jong T T, Tien H J, Kuoh C S, Furukawa H, Lee K H (1987). AnnoquinoneA,anantimicrobial and cytotoxic principle from Annona montana. Phytochemistry. 26: 1623-1625.