Top Banner
1 ECE ECE 6345 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2
36

1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

Jan 03, 2016

Download

Documents

Alfred Burke
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

1

ECE 6345ECE 6345Spring 2011

Prof. David R. JacksonECE Dept.

Notes 2

Page 2: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

2

OverviewOverview

This set of notes treats circular polarization, obtained by using a single feed.

x

y

L

W

(x0, y0)

L W»

0 0y x=

Page 3: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

3

OverviewOverview

Goals:

Find the optimum dimensions of the CP patch Find the input impedance of the CP patch Find the pattern (axial-ratio) bandwidth Find the impedance bandwidth of CP patch

Page 4: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

4

Amplitude of Patch CurrentsAmplitude of Patch Currents

w

r

Ly

x

0 0( , )x y

h

W

1 [ ]I A

First Step: Find the patch currents (x and y directions), and relate them to the input impedance of the patch.

Page 5: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

5

Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)

ˆ sinxs x

xJ x A

L

x-directed current mode (1,0):

w

r

Ly

x

0 0( , )x y

h

W

1 [ ]I A

sinys y

πyˆJ y A

W

æ ö÷ç= ÷ç ÷÷çè øy-directed current mode (0,1):

Page 6: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

6

ˆ ˆsJ n H z H

ysx HJ

Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)

x mode:

so

sinx

πxˆH y A

L

æ ö÷ç= ÷ç ÷÷çè ø

EjH To find E, use

0 0

1 1cosy x

z xr r

H H xE A

j x y j L L

Page 7: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

7

Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)

( )x y x yin z z z in in

VZ V hE h E E Z Z

I= = =- =- + = +

0

0

cosxin x

r

xjhZ A

L L

0

0cos

xin r

x

Z LA

x j hL

For the (1,0) mode we have

or

A similar derivation holds for the y mode.

Page 8: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

8

Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)

0

0cos

yin r

y

Z WA

y j hW

y mode:

1

1

x xx in

y yy in

A A Z

A A Z

01

0

1

cos

x rLAx j hL

01

0

1

cos

y rWAy j h

W

The patch current amplitudes can then be written as

where

Page 9: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

9

Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)

0 0

L W

x y

Assume

01

0

1

cos

x rLAx j hL

01

0

1

cos

y rWAy j h

W

x

y

L

W

(x0, y0) 1 1 1x yA A A Then

Page 10: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

10

Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)

x yR R R

2

2

xx in

yy in

A A Z

A A Z

Because of the nearly equal dimensions and the feed along the diagonal, we have

We then have

Reminder: The bar denotes impedances that are normalized by R (either Rx or Ry).

2 1A AR

Ri = resonant input resistance of the mode i, when excited by itself (e.g., by a feed along the centerline).

where

Page 11: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

11

Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)

02

0

2 0

0

0

0 0

cos

cos

cos

cos

r

edger

redge

LRA

x j hL

xR

LLx j hL

x LR

L j h

The A2 coefficient can be written as

Page 12: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

12

Circular Polarization ConditionCircular Polarization Condition

xA

yA

( )1L W δ= +

amplitude of y mode

amplitude of x mode

x

y

L

W

(x0, y0)

0 0y x=

jA

A

x

y

The CP condition is

Page 13: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

13

Circular Polarization Condition (cont.)Circular Polarization Condition (cont.)

2

2

1 2 1

1 2 1

xrx

y

ry

AA

j Q f

AA

j Q f

The frequency f0 is defined as the frequency for which we get CP at broadside.

xf

0f

yff

0 0rx ry

x y

f ff f

f f

where

frx = resonance frequency of (1,0) mode

fry = resonance frequency of (0,1) mode

At f = f0:

Page 14: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

14

Qf

Qf

ry

rx

2

11

2

11

j

AA

j

AA

y

x

1

1

Choose

Then we have

(LHCP)

Circular Polarization Condition (cont.)Circular Polarization Condition (cont.)

je

e

e

j

j

A

A j

j

j

x

y

2

4

4

2

2

1

1

Page 15: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

15

0

0

0

0

1 1 11 1 1

2 2 2

1 1 11 1 1

2 2 2

xrx

x

yry

y

f ff

Q f Q f Q

fff

Q f Q f Q

0

2x yf f

f

yx fff 2

10

or

The frequency conditions can be written as

so

Circular Polarization Condition (cont.)Circular Polarization Condition (cont.)

Page 16: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

16

0

2

f

Q

0 0

1 1 1

2 2y xf f

f f Q Q Q

æ ö÷ç ÷- = - - =ç ÷ç ÷çè ø

xy fff

0

1f

f Q

Also

Let

xf

0f

yf

0

2

f

Q

Circular Polarization Condition (cont.)Circular Polarization Condition (cont.)

Then we have

f

Page 17: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

17

0 0

1 11 1

2 2x yf f f fQ Q

(LHCP)

0 0

1 11 1

2 2x yf f f fQ Q

(RHCP)

Circular Polarization Condition (cont.)Circular Polarization Condition (cont.)

Summary of frequencies

f0 = frequency for which we get CP at broadside.

Page 18: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

18

Patch Dimensions for CPPatch Dimensions for CP

L

W

L

r PMCPMC

L

WhfL r ,,

r

Page 19: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

19

2eL L L

WhfL r ,,

0e

rk L

0 0 0

0 0 0

2

2

x x

y y

k f

k f

Let

(resonance condition)

Physical Dimensions for CP (cont.)Physical Dimensions for CP (cont.)

Page 20: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

20

0 0 2ex r x rk L k L L

0 2y rk W W

0

0

2 , ,

2 , ,

r

x r

r

y r

L L h Wk

W W h Lk

Similarly, we have

Physical Dimensions for CP (cont.)Physical Dimensions for CP (cont.)

Hence

Note: For W, we use the same formula as L , but replace W L.

Page 21: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

21

Physical Dimensions for CP (cont.)Physical Dimensions for CP (cont.)

where

0

0

2

2

x r

y r

L Lk

W Lk

Note: For the calculation of L it is probably accurate enough to use the patch dimensions that come from neglecting fringing.

0 0 0

0 0 0

2

2

x x

y y

k f

k f

Since the patch is nearly square, the two fringing extensions are nearly equal. Hence we have

Page 22: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

22

Hammerstad’s FormulaHammerstad’s Formula

0.262 0.3000.412

0.2580.813

re

re

WhL hWh

1 1 1

2 21 12

r rre

ε εε

hW

æ ö æ ö+ -÷ ÷ç ç= +÷ ÷ç ç÷ ÷ç çè ø è ø+

Page 23: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

23

Input Impedance of CP PatchInput Impedance of CP Patch

1 2 1 1 2 1x y

in in inrx ry

R RZ f Z f Z f

j Q f j Q f

1 1/ (2 ) 1 1/ (2 )rx ryf Q f Q and

0 1 1

(1 ) (1 ) (1 ) (1 )

(1 )(1 ) 2

in

R RZ f

j j

R j R j R j R j

j j

RZ in

At f0

so

or

(LHCP)

The CP frequency f0 is also the resonance frequency where the input impedance is real (if we neglect the probe inductance).

Page 24: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

24

Input Impedance of CP PatchInput Impedance of CP Patch

2 0cosin edge

xZ R

L

Hence, at the resonance (CP) frequency f0 we have

Note: We have a CAD formula for Redge.

The fed position x0 can be chosen to give the desired input resistance at the resonance frequency f0.

Page 25: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

25

CP (Axial Ratio) BandwidthCP (Axial Ratio) Bandwidth

)1(21

)1(21

ry

rx

x

y

fQj

fQj

A

A

00

00

2

11

211

2

rxx

f ff

ff fQ

f f

f Qf

Q

We now examine the frequency dependence of the term

(LHCP)

where

Page 26: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

26

CP Bandwidth (cont.)CP Bandwidth (cont.)

0f

ff r

Qff rrx 2

11

Qff rry 2

11Similarly,

Then

Define(This is the ratio of the operating frequency to the CP (resonance) frequency.)

Page 27: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

27

CP Bandwidth (cont.)CP Bandwidth (cont.)

1 2 12

1 2 12

rr

y

x rr

fj Q f

A Q

A fj Q f

Q

æ ö÷ç+ + - ÷ç ÷ç ÷çè ø=

æ ö÷ç+ - - ÷ç ÷ç ÷çè ø

1 yr

x

Af j

A

2 1rx Q f

1 ( ) 1 (1 )

1 ( ) 1 (1 )y r

x r

A j f x j x

A j f x j x

Hence

Note:

Then

Let

Page 28: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

28

CP Bandwidth (cont.)CP Bandwidth (cont.)

1 (1 )

1 (1 )y

x

A j x

A j x

A

B

( )tE

x

y

AAR

B

2 1rx Q f 0f

ff r

Page 29: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

29

CP Bandwidth (cont.)CP Bandwidth (cont.)

1

sin 2 sin(2 )sin

tan

arg

y

x

y

x

A

A

A

A

21

2

1 1

1 (1 )tan

1 (1 )

tan (1 ) tan (1 )

x

x

x x

where

In our case,

cotAR From ECE 6340:

Page 30: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

30

CP Bandwidth (cont.)CP Bandwidth (cont.)

2 3 dBAR AR

348.0x

Set

From a numerical solution:

Page 31: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

31

CP Bandwidth (cont.)CP Bandwidth (cont.)

2 1 0.348

0.3481

2

r

r

Q f

fQ

Qf

Qf

r

r

2

348.01

2

348.01

0.348AR CPBWQ

Therefore

Hence

so

Hence

0.348r r rf f f

Q

0 0

AR CPr

f f fBW f

f f

Page 32: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

32

Impedance BandwidthImpedance Bandwidth

1 2 1 1 2 1

1 2 1 1 2 12 2

1 ( ) 1 ( )

11 (1 ) 1 (1 )

inrx ry

r rr r

r r

r

R RZ f

j Q f j Q f

R R

f fj Q f j Q f

Q Q

R R

j f x j f x

R Rf

j x j x

for

12 rfQxwhere

Note: At x = 0 we have1 1in

R RZ R

j j= + =

+ -

Page 33: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

33

1 1

1 (1 ) 1 (1 )in

in

ZZ

R j x j x

0

0

1

1in in in

in in in

Z Z Z R Z

Z Z Z R Z

1

1SWRS

2x

Set 0 2S S

(derivation omitted)

Impedance Bandwidth (cont.)Impedance Bandwidth (cont.)

(bandwidth limits)

Page 34: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

34

2 1 2

21

2

r

r

Q f

fQ

Hence

Impedance Bandwidth (cont.)Impedance Bandwidth (cont.)

11

2

11

2

r

r

fQ

fQ

so

The band edges (in normalized frequency) are then

Page 35: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

35

12

2imp CPBW

Q

2imp CPBWQ

Hence

Hence

imp CPr r rBW f f f

Impedance Bandwidth (cont.)Impedance Bandwidth (cont.)

Page 36: 1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.

36

Summary Summary

0.348AR CPBWQ

1.414imp CPBWQ

0.707imp LinBWQ

CP

Linear