Top Banner
Spring 2015 Notes 5 ECE 6345 Prof. David R. Jackson ECE Dept. 1
52

Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

May 23, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Spring 2015

Notes 5

ECE 6345

Prof. David R. Jackson ECE Dept.

1

Page 2: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Overview

This set of notes discusses improved models of the probe inductance of a coaxially-fed patch (accurate for thicker

substrates). A parallel-plate waveguide model is initially assumed (at the end of the notes we will also look at the actual finite patch).

z

h ,r rε µ2a

x2b

2

Page 3: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Overview (cont.)

The following models are investigated:

Cosine-current model

Gap-source model

Frill model

H. Xu, D. R. Jackson, and J. T. Williams, “Comparison of Models for the Probe Inductance for a Parallel Plate Waveguide and a Microstrip Patch,” IEEE Trans. Antennas and Propagation, vol. 53, pp. 3229-3235, Oct. 2005.

Reference:

3

Derivations are given in the Appendix. Even more details may be found in the reference below.

Page 4: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Cosine Current Model

cosI z k z h

Note: The derivative of the current is zero at the top conductor (PEC).

2

2

0c

inPZ

I

Pc = complex power radiated by probe current

z

h ,r rε µ2a

x

I (z)

We assume a tube of current (as in Notes 4) but with a z variation.

4

*12

p

c z szS

P E J dS= ∫

Page 5: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

5

( ) 222 (2)0 0 0 0 0 0

0

1 1( ) sec (1 ) ( ) ( )8

min r m m m mmr

Z k h k h I k H k a J k aρ ρ ρη ε δε

=

= +

Cosine Current Model (cont.)

Final result:

where

0

1, 00, 0m

mm

δ=

= ≠

2 2

2 ( ) sin( )1 ( ) ( )m

mo

khI khkh mδ π

= + −

1/2221m

mk khρπ = −

0/m mk k kρ ρ=

Note: The wavenumber kρm is chosen to be a positive real number or a

negative imaginary number.

Page 6: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Gap Source Model

An ideal gap voltage source of height ∆ is assumed at the bottom of the probe.

z

h ,r rε µ2a

x1V + - ∆

1

inZI

6

Page 7: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Gap Source Model (cont.)

7

(2)0

(2)00 0 0

( )1 24 sinc(1 ) ( )

min r

m m m m

H k aa mY jh k H k a h

ρ

ρ ρ

ππ εη δ

=

′ ∆ = + ∑

Final result:

where 1/22

21m

mk khρπ = −

Note: The wavenumber kρm is chosen to be a positive real number or a

negative imaginary number.

0

1, 00, 0m

mm

δ=

= ≠

0/m mk k kρ ρ=

Page 8: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

A magnetic frill of radius b is assumed on the mouth of the coax.

s ρˆˆ ˆM z E z ρ E

z

h ,r rε µ2a

xb

1 1

lnρEρ b / a

sM Eφ ρ= −

(TEM mode of coax, assuming 1 V)

10inZ

I

Frill Model

8

Choose:

Page 9: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Frill Model (cont.)

9

( )

( ) ( )

( )

2 20 0

2200 0 0 0

( ) ( )1 1 1 4ln / ( ) (1 ) ( )

m min r

m m m m

H k b H k aY j

k h b a k H k aρ ρ

ρ ρ

πεη δ

=

− = +

Final result:

where

0

1, 00, 0m

mm

δ=

= ≠

Note: The wavenumber kρm is chosen to be a positive real number or a

negative imaginary number.

1/2221m

mk khρπ = −

0/m mk k kρ ρ=

Page 10: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Comparison of Models

Next, we show results that compare the various models, especially as the substrate thickness increases.

z

h ,r rε µ2a

x2b

10

Page 11: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Comparison of Models

0 0.005 0.01 0.015 0.02 0.025h (m)

-300

-200

-100

0

100

200

300

Xin

(Ω)

Uniform current modelFrill modelCosine current modelHFFS simulation

Models are compared for changing substrate thickness.

εr = 2.2 a = 0.635 mm f = 2 GHz Z0 = 50 Ω (b = 2.19 mm)

11

z

h ,r rε µ2a

x2b

(λ0 = 15 cm)

Page 12: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Comparison of Models (cont.)

0 0.005 0.01 0.015 0.02 0.025h (m)

0

50

100

150

200

250

300

350

400

450

500

Rin

(Ω)

Uniform current modelFrill modelCosine current modelHFFS simulation

εr = 2.2 a = 0.635 mm f = 2 GHz Z0 = 50 Ω (b = 2.19 mm)

/ 4 0.025 [m]dλ =Note:

Models are compared for varying substrate thickness.

12

z

h ,r rε µ2a

x2b

(λ0 = 15 cm)

Page 13: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

For the gap-source model, the results depend on ∆.

0 0.005 0.01 0.015 0.02 0.025h (m)

-300

-200

-100

0

100

200

300

Xin

(Ω)

Delta=0.01mmDelta=0.1mmDelta=1mm

Comparison of Models (cont.)

εr = 2.2 a = 0.635 mm f = 2 GHz Z0 = 50 Ω (b = 2.19 mm)

13

z

h ,r rε µ2a

x1V+-∆

(λ0 = 15 cm)

Page 14: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

The gap-source model is compared with the frill model,

for varying ∆, for a fixed h.

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001

∆ (m)

-300

-200

-100

0

100

200

300

400

500

Rin

or X

in (Ω

)

Gap source model reactance Frill model reactance Gap source model resistance Frill model resistance

Comparison of Models (cont.)

εr = 2.2 a = 0.635 mm f = 2 GHz Z0 = 50 Ω (b = 2.19 mm)

0.52mm3

b a−=

h = 20 mm

R

X

14

z

h ,r rε µ2a

x1V+-∆

(λ0 = 15 cm)

Page 15: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

These results suggest the “1/3” rule: The best ∆ is chosen as

3b a−

∆ =

This rule applies for a coax feed that has a 50 Ω impedance.

Comparison of Models (cont.)

15

z

h ,r rε µ2a

x1V+-∆

z

h ,r rε µ2a

x2b

Page 16: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Comparison of Models (cont.)

0 0.005 0.01 0.015 0.02 0.025h (m)

-300

-200

-100

0

100

200

Xin

(Ω)

Gap source modelFrill model

The gap-source model is compared with the frill model, using the

optimum gap height (1/3 rule).

εr = 2.2 a = 0.635 mm f = 2 GHz Z0 = 50 Ω (b = 2.19 mm)

16

z

h ,r rε µ2a

x2b

Reactance

(λ0 = 15 cm)

Page 17: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Comparison of Models (cont.)

The gap-source model is compared with the frill model, using the

optimum gap height (1/3 rule).

0 0.005 0.01 0.015 0.02 0.025h (m)

0

100

200

300

400

500

Rin

(Ω)

Gap source modelFrill model

εr = 2.2 a = 0.635 mm f = 2 GHz Z0 = 50 Ω (b = 2.19 mm)

17

z

h ,r rε µ2a

x2b

Resistance

(λ0 = 15 cm)

Page 18: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Probe in Patch A probe in a patch does not see an infinite parallel-plate waveguide.

Exact calculation of probe reactance:

L

W

x

y

(x0, y0)

cavityin p inZ jX Z

0

Imp in fX Z

f0 = frequency at which Rin is maximum

Zin may be calculated by HFSS or any other software, or it may be measured.

0cavityinX

18

Page 19: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Probe in Patch (cont.)

Using the cavity model, we can derive an expression for the probe reactance (derivation given later)

This formula assumes that there is no z variation of the probe current or cavity fields (thin-substrate approximation), but it does accurately account for the actual patch dimensions.

Le

We

x

y

PMC

(x0, y0)

Cavity Model

19

Page 20: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

2 2 20 0

0 2 21 0 20 0

cos cos sinc2

1 14

p

e ep r

m,n , e em n

e e

nπwmπx nπyL W

X ω μ μ hW L mπ nπδ δ k

L W

3 2/pw e a

a = probe radius

(x0, y0) = probe location

Probe in Patch (cont.)

20

Final result:

Page 21: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Using image theory, we have an infinite set of “image probes.”

Probe in Patch (cont.)

Image theory can be used to improve the simple parallel-plate waveguide model when the probe gets close to the patch edge.

Image Theory

21

Page 22: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

A simple approximate formula is obtained by using two terms: the original probe current in a parallel-plate waveguide and one image. This should be an improvement when the probe is close to an edge.

( ) ( ) ( ) ( )two 1 10 0 0 04 4 2inX = khY ka J ka khY k J ks aη η− −

0

0 /r

r

k k ε

η η ε

=

=

Probe in Patch (cont.)

Original

Image

two probe imagein in inX = X X+

22

Page 23: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

As shown on the next plot, the best overall approximation in obtained by using the following formula:

( )probe twomax ,in in inX X X=

Probe in Patch (cont.)

“modified CAD formula”

23

Page 24: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Probe in Patch (cont.) Results show that the simple formula (“modified CAD formula”) works fairly well.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Xr

0

5

10

15

20

25

30

35

X f (Ω

)

Uniform current modelCavity modelUniform current model (with one image)Modified CAD formulaHFFS simulation

L

W

x

y

(x0, y0)

0 / 2/ 2r

x LxL−

=

24

( )probe twomax ,in in inX X X=

center edge

Page 25: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Next, we investigate each of the improved probe models in more detail:

Cosine-current model Gap-source model Frill model

25

Appendix

Page 26: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Cosine Current Model

Assume that ( ) cos ( )I z k z h= −

Note: (0) cos ( )I kh=

z

h ,r rε µ2a

x

I (z)

26

Page 27: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

21 (0)2c inP Z I=

Cosine Current Model (cont.)

Circuit Model: (0)I

coax feed inZ

2

2

0c

inPZ

I

27

Page 28: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Represent the probe current as: 0

( ) cosmm

m zI z Ihπ∞

=

=

2

2

0c

inPZ

I

This will allow us to find the fields and hence the power radiated by the probe current.

z

h ,r rε µ2a

x

I (z)

28

Cosine Current Model (cont.)

Page 29: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Hence

00 0

( ) cos cos cosh h

mm

m z m z m zI z dz I dzh h hπ π π∞

=

′ ′ =

∑∫ ∫

( )

( )

00

00

( )cos 12

2 ( )cos1

h

m m

h

mm

m z hI z dz Ih

m zI I z dzh h

π δ

πδ

= + ⇒ = +

Using Fourier-series theory:

Cosine Current Model (cont.)

The integral is zero unless m = m′.

29

Page 30: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Result:

( ) 0

2 cos ( ) cos1

h

mmo

m zI k z h dzh h

πδ

= − + ∫or

2 2

2 ( ) sin( )1 ( ) ( )m

mo

khI khkh mδ π

= + −

(derivation omitted)

Cosine Current Model (cont.)

30

Page 31: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

(Time-Harmonic Fields)

Note: We have both Ez and Eρ To see this:

so

0E∇⋅ =

1 1( ) 0zE EEz

φρρ

ρ ρ ρ φ∂ ∂∂

+ + =∂ ∂ ∂

0Eρ ≠

Cosine Current Model (cont.)

31

Page 32: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

For Ez, we represent the field as follows:

where

( )00

cosz m mm

m zE A J kh ρπ ρ

∞− −

=

=

∑aρ <

aρ > ( )(2)0

0cosz m m

m

m zE A H kh ρπ ρ

∞+ +

=

=

( )

1/ 222

1/ 22 2

m

zm

mk kh

k k

ρπ = −

= −

Cosine Current Model (cont.)

32

Page 33: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

At

so

aρ =

z zE E+ −= (BC 1)

( ) ( )(2)0 0m m m mA H k a A J k aρ ρ

+ −=

Cosine Current Model (cont.)

33

Page 34: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Also we have

To solve for Eρ , use

(BC 2) 2 1 szH H Jφ φ− =

1 zE EHj z

ρφ ωµ ρ

∂ ∂−= − ∂ ∂

EjH ωε=×∇

Cosine Current Model (cont.)

where

34

Page 35: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

so 1

1

z HHj Ez

HE

j z

φρ

φρ

ωερ φ

ωε

∂∂= −

∂ ∂∂

= −∂

Hence we have 2

2

1 1 zH EHj j z

φφ ωµ ωε ρ

∂ ∂= − − −

∂ ∂

For the mth Fourier term:

( )( )

( ) 2 ( )1 1 mm m z

zmEH k H

j jφ φωµ ωε ρ ∂

= − − − − ∂

Cosine Current Model (cont.)

35

Page 36: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Hence

( )2 ( ) 2 ( )

mm m z

zmEk H k H jφ φ ωερ

∂− = −

2 2 2zm mk k kρ− =

so that

( )( )

2

mm z

m

EjHkφρ

ωερ

∂= −

where

Cosine Current Model (cont.)

36

Page 37: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

where ( )( )

2

mm z

m

EjHkφρ

ωερ

∂= −

2 1 2szIH H J

aφ φ π− = =

( ) ( ) ( )2 1 2m m m m

szIH H J

aφ φ π− = =

For the mth Fourier term:

Cosine Current Model (cont.)

37

Page 38: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Hence

we have

( ) ( )(2)0 02 ( )

2m

m m m m mm

Ij k A H k a A J k ak aρ ρ ρρ

ωεπ

+ − − ′ ′− =

(2)0(2)

0 00

( )( ) ( )

( ) 2m mm

m m m pmm

H k a kIA H k a A J k aJ k a a j

ρ ρρ

ρ π ωε+ +

′ ′− = −

Cosine Current Model (cont.)

( ) ( )(2)0 0m m m mA H k a A J k aρ ρ

+ −=Using (BC 1)

38

Page 39: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

(2) (2)0 0 0 0 0( ) ( ) ( ) ( ) ( )

2mm

m m m m m m

kIA J k a H k a H k a J k a J k aa j

ρρ ρ ρ ρ ρπ ωε

+ ′ ′− = −

02 ( )

2mm

m mm

kIA j J k ak a a j

ρρ

ρπ π ωε+ − = −

( )2

014

mm m m

kA I J k aρ

ρωε+

= −

Hence

or

or

(using the Wronskian identity)

Cosine Current Model (cont.)

39

Page 40: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

*

2*

0 0

*

0

*

0

(2) *00

0 ' 0

12

1 ( )2

( )

( ) ( )21 ( )cos cos2

scs

h

z sz

h

z sz

h

z

h

m m mm m

P E J dS

E a J a dz d

a E a J dz

a E a I z dza

m z m zA H k a I dzh h

π

ρ

φ

π

ππ

π π∞ ∞+

′= =

−= ⋅

−=

= −

= −

′ = − ⋅

∫ ∫

∑ ∑∫

We now find the complex power radiated by the probe:

Cosine Current Model (cont.)

40

Page 41: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

( )

( )

* (2)0 0

0

2(2) *

0 0 00

1 ( ) 12 2

11 ( ) ( )4 4

c m m m mm

mm m m m m

m

hP A I H k a

kh H k a I J k a I

ρ

ρρ ρ

δ

δωε

∞+

=

=

= − +

= − + −

Integrating in z and using orthogonality, we have:

Hence, we have:

2 2 (2)0 0 0

0

1 (1 ) ( ) ( )16c m pm m m m

m

hP I k H k a J k aρ ρδωε

=

= + +

Am+ coefficient

Cosine Current Model (cont.)

41

Page 42: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Therefore,

2

2cos ( )

cin

PZkh

=

( )22 2 (2)0 0 0

0

1 sec ( ) 1 ( ) ( )8in m m m m m

m

hZ kh I k H k a J k aρ ρ ρδωε

=

= +

Define: 0

2

0

mm

r r

kk

k

mk h

ρρ

πε µ

=

= −

42

Cosine Current Model (cont.)

Page 43: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

We then have

Also, use r

kεη

ωεεµω

ωε0000 ==

( ) 222 (2)0 0 0 0 0 0

0

1 1( ) sec (1 ) ( ) ( )8

min r m m m mmr

Z k h k h I k H k a J k aρ ρ ρη ε δε

=

= +

The probe reactance is: Im( )p inX Z=

43

Cosine Current Model (cont.)

Page 44: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Keep only the m = 0 term

( ) 222 (2)0 0 0 0 0 0

0

1 1( ) sec (1 ) ( ) ( )8

min r m m m mmr

Z k h k h I k H k a J k aρ ρ ρη ε δε

=

= +

0 1:k h <<

(2)0 0 0 0

1 ( ) ( ) ( )4in rZ k h J ka H kaη µ≈

(same as previous result using uniform model)

Thin substrate approximation

2 2

2 ( ) sin( )1 ( ) ( )m

mo

khI khkh mδ π

= + −

The result is

44

Cosine Current Model (cont.)

Page 45: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Gap Model z

h ,r rε µ2a

x1V + - ∆

( ) 1/ , 0,

0, otherwise.z

zE z a

− ∆ < < ∆=

( ) ( ) ( )20

0, cosz m m

m

m zE z B H khρπρ ρ

=

=

Note: It is not clear how best to choose ∆, but this will be re-visited later.

45

Page 46: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Gap Model (cont.) z

h ,r rε µ2a

x1V + - ∆

( ) ( ) ( )20 0

2 sinc1m

m m

mBhh H k aρ

πδ

− ∆ = +

From Fourier series analysis (details omitted):

( ) ( ) ( )20

0

1 / , 0, cos

0, otherwise.z m mm

zm zE z a B H k ahρπ∞

=

− ∆ < < ∆ = =

At ρ = a:

46

Page 47: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Gap Model (cont.)

( )2in szY a Jπ= ∆ ( ) ( )szJ z H zφ=where

The magnetic field is found from Ez , with the help of the magnetic vector potential Az (the field is TMz):

1 zAHφ µ ρ∂

= −∂

22

2

1z zE k A

j zωµε ∂

= + ∂

( ) ( ) ( )20

0, cosz m m

m

m zA z A H khρπρ ρ

=

=

where

z

h ,r rε µ2a

x1V + - ∆

Use:

Setting ρ = a allows us to solve for the coefficients Am.

47

Page 48: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Gap Model (cont.)

(2)0

(2)0 0 0

( )1 24 sinc(1 ) ( )

min

m m m m

H k aa mY j kh k H k a h

ρ

ρ ρ

ππη δ

=

′ ∆ = + ∑

Final result:

z

h ,r rε µ2a

x1V + - ∆

48

Page 49: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

z

h ,r rε µ2a

xb

Frill Model

To find the current I (z) , use reciprocity.

10inZ

I

Introduce a ring of magnetic current K = 1 in the φ direction at z (the testing current “B”).

( )1 1

ln /sMb aφ ρ

= −

F

a b

V

b a

V

bs

S

I z H M dV A,B B,A

H M dV

H M dS

A

B SF

z

1V frill

49

Page 50: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Frill Model (cont.)

( )

( )

( )

( ) ( )

( ) ( )

2

0

,0

2 ,0

1 12 ,0ln /

2 ,0ln /

F

bs

S

bb

sa

bb

sa

bb

a

bb

a

I z H M dS

H M d d

H M d

H db a

H db a

π

φ φ

φ φ

φ

φ

ρ ρ ρ φ

π ρ ρ ρ

π ρ ρ ρρ

π ρ ρ

= ⋅

=

=

= −

= −

∫ ∫

A B

SF z

50

Page 51: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

( ) ( ) ( )2 ,0ln /

bgap

a

I z H db a φπ ρ ρ= − ∫

z

b

The magnetic current ring B may be replaced by a 1V gap source of zero height (by the equivalence principle).

Let z → 0:

The field of the gap source is then calculated as was done in the gap-source model, using ∆ = 0.

Frill Model (cont.)

z

b

51

Page 52: Spring 2015 - University of Houstoncourses.egr.uh.edu/ECE/ECE6345/Class Notes/Topic 4... · Spring 2015. Notes 5 . ECE 6345 . Prof. David R. Jackson . ECE Dept. 1 . Overview This

Final result:

( )

( ) ( )

( )

2 20 0

220 0 0

( ) ( )1 1 4ln / ( ) (1 ) ( )

m min

m m m m

H k b H k aY j k

h b a k H k aρ ρ

ρ ρ

πη δ

=

− = +

Frill Model (cont.)

z

h ,r rε µ2a

xb

52