Top Banner
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1
46

Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

Dec 14, 2015

Download

Documents

Rodrigo Fears
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

1

Prof. David R. JacksonECE Dept.

Spring 2014

Notes 36

ECE 6341

Page 2: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

2

Radiation Physics in Layered Media

Note: TMz and also TEy (since )0z

00 0

0

11

4y x

z

jk y jk xTEx x

y

A

Ik e e dk

j k

For y > 0:

ˆ ,zE z E x y

y

0Ix

rh

Line source on grounded substrate

Page 3: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

3

Reflection Coefficient

0

0

TE TEin x xTE

x TE TEin x x

Z k Z kk

Z k Z k

1 1tanTE TEin x yZ k jZ k h

01

1

TE

y

Zk

1/ 22 2

1 1y xk k k

where

00

0

TE

y

Zk

1/ 22 2

0 0y xk k k

00TEZ

01TEZ

I V+ -

z

Page 4: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

4

Poles

Poles:

0

0

TE TEin x xTE

x TE TEin x x

Z k Z kk

Z k Z k

0TE TEin xp xpZ k Z k

This is the same equation as the TRE for finding the wavenumber of a surface wave:

kxp = roots of TRE = kxSW

x xpk k

0TE SW TE SWin x xZ k Z k 00

TEZ

01TEZ

I V+ -

z

Page 5: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

5

If a slight loss is added, the SW poles are shifted off the real axis as shown.

Poles (cont.)

Complex kx plane

Cxrk

xik

SW0k1k0k1k

SW

x xr xik k jk

Page 6: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

6

Poles (cont.)

C

xrk

xik

0k1k

0k1k

For the lossless case, two possible paths are shown here.

C

xrk

xik

0k1k

0k1k

Page 7: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

7

Review of Branch Cuts and Branch Points

In the next few slides we review the basic concepts of branch points and branch cuts.

Page 8: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

8

Consider 1/ 2f z z jz r e

1/21/2 /2j jz r e r e

1z 0 : 1/2 1z

2 : 1/2 1z

4 : 1/2 1z

There are two possible values.

Choose

Branch Cuts and Points (cont.)

Page 9: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

9

The concept is illustrated for 1/ 2f z z jz r e

1/ 2 / 2jz r e

x

y

AB C

r = 1

Consider what happens if we encircle the origin:

Branch Cuts and Points (cont.)

Page 10: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

10

Branch Cuts and Points (cont.)

1/ 2 / 2jz r e

1/2

A 0 1

B +

C 2 -1

z

j

point

We don’t get back the same result!

x

y

AB C

r = 1

Page 11: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

11

Now consider encircling the origin twice:

1/ 2 / 2jz r e

1/2

A 0 1

B +

C 2 -1

D 3 -

E 4 1

z

j

j

point

We now get back the same result!

Hence the square-root function is a double-valued function.

Branch Cuts and Points (cont.)

x

y

AB CD

E

r = 1

r

Page 12: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

12

In order to make the square-root function single-valued, we must put a “barrier” or “branch cut”.

The origin is called a branch point: we are not allowed to encircle it if we wish to make the square-root function single-valued.

x

Branch cut

y

Here the branch cut was chosen to lie on the negative real axis (an arbitrary choice)

Branch Cuts and Points (cont.)

Page 13: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

13

We must now choose what “branch” of the function we want.

jz r e 1/ 2 / 2jz r e

x

Branch cut

y

1z 1/ 2 1z

Branch Cuts and Points (cont.)

This is the "principle" branch, denoted by z

MATLAB :

Page 14: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

14

Here is the other choice of branch.

jz r e 1/ 2 / 2jz r e

x

Branch cut

y

3

1z 1/ 2 1z

Branch Cuts and Points (cont.)

Page 15: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

15

Note that the function is discontinuous across the branch cut.

jz r e 1/ 2 / 2jz r e

x

Branch cut

y

1z 1/2 1z

1,z

1,z

1/ 2z j

1/ 2z j

Branch Cuts and Points (cont.)

Page 16: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

16

The shape of the branch cut is arbitrary.

jz r e 1/ 2 / 2jz r e

x

Branch cut

y

/ 2 3 / 2

1z 1/2 1z

Branch Cuts and Points (cont.)

Page 17: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

17

The branch cut does not even have to be a straight line

jz r e 1/ 2 / 2jz r e

In this case the branch is determined by requiring that the square-root function (and hence the angle ) change continuously as we start from a specified value (e.g., z = 1).

x

Branch cut

y

1z 1/2 1z

1z 1/ 2z j

z j 1/ 2 / 4 1 / 2jz e j

z j

1/ 2 / 4 1 / 2jz e j

Branch Cuts and Points (cont.)

Page 18: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

18

Consider this function:

1/ 22( ) 1f z z

Branch Cuts and Points (cont.)

What do the branch points and branch cuts look like for this function?

(similar to our wavenumber function)

Page 19: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

19

1/ 2 1/ 21/ 2 1/ 2 1/ 22( ) 1 1 1 1 1f z z z z z z

Branch Cuts and Points (cont.)

x

y

1

1

There are two branch cuts: we are not allowed to encircle either branch point.

Page 20: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

20

1/ 21/ 2 1/ 2 1/ 21 2( ) 1 1f z z z w w

Branch Cuts and Points (cont.)

Geometric interpretation

x

y

1

11w

2w

12

1 2/ 2 / 21 2( ) j jf z r e r e

1

2

1 1

2 2

1

( 1)

j

j

w z r e

w z r e

The function f (z) is unique once we specify its value at any point. (The function must change continuously away from this point.)

Page 21: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

21

Riemann Surface

Georg Friedrich Bernhard Riemann (September 17, 1826 – July 20, 1866) was an influential German mathematician who made lasting contributions to analysis and differential geometry, some of them enabling the later development of general relativity.

The function z1/2 is continuous everywhere on this surface (there are no branch cuts). It also assumes all possible values on the surface.

The Riemann surface is really multiple complex planes connected together.

The function z1/2 has a surface with two sheets.

Page 22: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

22

Riemann Surface

The concept of the Riemann surface is illustrated for

1/ 2f z z

( 1 1)

3 ( 1 1)

Top sheet:

Bottom sheet:

Consider this choice:

jz r e

Page 23: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

23

Riemann Surface (cont.)x

y

BD

Top

Bottom

BD

D

B

B

Dside view

x

y

top view

Page 24: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

24

Riemann Surface (cont.)

Bottom sheet

Top sheet

Branch cut

(where it used to be)

Branch point

Page 25: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

25

Riemann Surface (cont.)

x

y

AB CD

EBD

Connection betweensheets

1/2

A 0 1

B +

C 2 -1

D 3 -

E 4 1

z

j

j

point

r = 1

Page 26: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

26

Branch Cuts in Radiation Problem

Now we return to the original problem:

1

2 2 20 0y xk k k

00 0

0

11

4y x

z

jk y jk xTEx x

y

A

Ik e e dk

j k

Note: There are no branch points from ky1:

1

2 2 21 1y xk k k 1 1tanTE TE

in x yZ k jZ k h 01

1

TE

y

Zk

Page 27: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

27

Branch Cuts

1 1 12 2 2 2 2

0 0 0 0

1 1

2 20 0

y x x x

x x

k k k k k k k

j k k k k

Branch points appear at 0xk k

No branch cuts appear at 1xk k (The integrand is an even function of ky1.)

Note: It is arbitrary that we have factored out a –j instead of a +j, since we have not yet determined the meaning of the square roots.

Page 28: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

28

Branch Cuts (cont.)

1 1

2 20 0 0y x xk j k k k k

Cxrk

xik

0k

0k

1k1k

Branch cuts are lines we are not allowed to cross.

Page 29: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

29

For 0

0 0

,x

y y

k k

k j k

real

xrk

xik

0k

0k

Choose

0

0

arg 0

arg 0

x

x

k k

k k

This choice then uniquely defines ky0

everywhere in the complex plane.

1/22 20 0y xk k k

1 1

2 20 0 0y x xk j k k k k

Branch Cuts (cont.)

at this point

0 0y yk j k

Page 30: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

30

For

0

,

0x

x

k

k k

real we have

0

0

arg

arg 0

x

x

k k

k k

/ 20 0 0

jy x xk j k k e k k

0 0y yk k

Hence

Branch Cuts (cont.)

xik

xrk0k 0k

Page 31: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

31

Riemann Surface

1/22 20 0y xk k k

There are two sheets, joined at the blue lines.

xik

xrk

0k

0k

Top sheet

Bottom sheet

0 0y yk j k

0 0y yk j k

Page 32: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

32

Proper / Improper Regions

Let

“Proper” region:

0 0 0

x xr xik k jk

k k jk

1

2 2 20 0y xk k k

“Improper” region:

0

0

Im 0

Im 0

y

y

k

k

Boundary: 0Im 0yk

2 2 20 0 real >0y xk k k

The goal is to figure out which regions of the complex plane are "proper" and "improper."

Page 33: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

33

Proper / Improper Regions (cont.)

Hence

One point on curve:

2 2 2 20 0 0 02 2 real 0xr xi xr xik k k k j k k k k

0 0xr xik k k k

0

0

xr

xi

k k

k k

xik

0k

0 k

xrk

2

2

0 0 real 0xr xik jk k jk

Therefore

0 0 0xk k k jk

(hyperbolas)

0 0 0k k jk

Page 34: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

34

Proper / Improper Regions (cont.)

Also2 2 2 2

0 0 0xr xik k k k

xik

0k

0 k

xrk

The solid curves satisfy this condition.

Page 35: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

35

Complex plane: top sheet

xik

0k

0 k

xrk

Improper region

Proper

On the complex plane corresponding to the bottom sheet, the proper and improper regions are reversed from what is shown here.

Proper / Improper Regions (cont.)

Page 36: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

36

Sommerfeld Branch Cuts

Complex plane corresponding to top sheet: proper everywhereComplex plane corresponding to bottom sheet: improper everywhere

xik

0k

0 k

xrk

Hyperbola

Page 37: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

37

Sommerfeld Branch Cuts

Note: We can think of a single complex plane with branch cuts, or a Riemann surface with hyperbolic-shaped “ramps” connecting the two sheets.

xik

0k

0 k

xrk

Riemann surface

xik

0k

0 k

xrk

Complex plane

The Riemann surface allows us to show all possible poles, both proper (surface-wave) and improper (leaky-wave).

Page 38: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

38

Sommerfeld Branch Cut

Let

xik

0k

0 k

xrk

0 0k

The branch cuts now lie along the imaginary axis, and part of the real axis.

Page 39: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

39

Path of Integration

xik

0k

0 k

xrk

1k

1 kC

The path is on the complex plane corresponding to the top Riemann sheet.

Page 40: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

40

Numerical Path of Integration

xik

0k

0 k

xrk1k

1 k

C

Page 41: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

41

Leaky-Mode Poles

(improper)

0

0Im 0

LW LWin x x

y

Z k Z k

k

Note: TM0 never becomes improper

Review of frequency behavior

xik

0k

xrk1k

cf f

SW

ISW

LW

0f

sf f

TRE:

Bottom sheet

Page 42: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

42

Riemann Surface

xik

0k

0 k

xrk1k

1 kC

SWPLWP

BP

0 0Re LWxpk k k

The LW pole is then “close” to the path on the Riemann surface (and it usually makes an important contribution).

We can now show the leaky-wave poles!

LW LW LWxpk j

ReLW LWxpk

Page 43: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

43

SW and CS Fields

Total field = surface-wave (SW) field + continuous-spectrum (CS) field

xik

0k

xrk1k

SWLW

bC

CS fieldSW field

pC

Note: The CS field indirectly accounts for the LW pole.

Page 44: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

44

Leaky Waves

LW poles may be important if

0 0Re LWxpk k k

0Im xpk k

Physical Interpretation

Re( )LWLW xpk

0

leaky wave

radiation

0 0sinLW k

The LW pole is then “close” to the path on the

Riemann surface.

Page 45: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

45

Improper Nature of LWs

The rays are stronger near the beginning of the wave: this gives us exponential growth vertically.

Region of strong leakage fields

LWxpk j

“leakage rays”

Page 46: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 36 ECE 6341 1.

46

Improper Nature (cont.)Mathematical explanation of exponential growth (improper behavior):

Equate imaginary parts:

12 2 2

0 0

2 220 0

2 220

LW LWy xp

LW LWy xp

y y

k k k

k k k

j k j

y y

yy

(improper)0 0y