Top Banner
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1
41

Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

Dec 18, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

1

Prof. David R. JacksonDept. of ECE

Fall 2013

Notes 4

ECE 6340Intermediate EM Waves

Page 2: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

2

Debye Model

Molecule:

Explains molecular effects

molecule at rest

molecule withapplied field xE

0x p

0xp

We consider an electric field applied in the x direction.

The dipole moment px of this

single molecule represents the average dipole moment in the x direction for all of the dipoles in a little volume.

q

-qx

y

xE

Page 3: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

3

Debye Model (cont.)

2

2

E S F

dT I

dtT T T T

cosE x

S

F

T qd

T s

dT c

dt

E

s = spring constant

c = friction constant

Note: T = -Tz

xE

ˆET qr qr q p d E E p E

ˆ sin2E xT z

pE

Page 4: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

4

Hence

Assume

2

2cosx

d dq d s c I

dt dt

E

1, cos 1

2

2x

d dq d s c I

dt dt

E

Debye Model (cont.)

(small fields)

Page 5: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

5

sinx q d

q d

pNote that

2

2x

d dq d s c I

dt dt

E

Hence: x

q d

pInsert this into the top equation.

Debye Model (cont.)

xE

Page 6: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

6

Then we have:

Assume sinusoidal steady state:

or

2

2

1 1x x xx

d dq d s c I

q d q d dt q d dt

p p pE

2

2

2

x xx x

d ds c I q d

dt dt

p pp E

22x x x xsp j cp I p q d E

Debye Model (cont.)

Page 7: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

7

Hence

Then we have

2

2x x

q dp E

s I j c

3

#moleculesmN

m

Mx m xP N p

The term P denotes the total

dipole moment per unit volume.

The M superscript reminds us that we are talking

about molecules

Debye Model (cont.)

Denote

Page 8: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

8

Also, for a linear material,

Hence

0M M

x e xP E

0 0

MM x m xe

x x

P N p

E E

Therefore 2

20

1M me

Nq d

s I j c

Assume2I s (The frequency is fairly low relative to

molecular resonances. The frequency is at millimeter wave frequencies and below.)

Debye Model (cont.)

Page 9: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

9

Denote the time constant as:

2

0

1 1

1

M me

Nq d

cs js

c

s

2

0

10M m

e

Nq d

s

0

1

MeM

e j

Denote the zero-frequency value as:

Debye Model (cont.)

(real constant)

Then we have

Page 10: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

10

0

1

MeM

e j

Debye Model (cont.)

This would imply that

01

1

Me

r j

At high frequency the molecules cannot respond to the field, so the relative permittivity due to the molecules tends to unity.

This equation gives the wrong result at high frequency, where atomic effects become important.

Page 11: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

11

0

1

MeM

e j

Include BOTH molecule and atomic effects:

Debye Model (cont.)

Molecule effects:

Atomic effects:

0 0

0

M Ax x x

M Ae x e x

e x

P P P

E E

E

Ae constant (real)

Atoms can respond much faster than molecules, so the atomic susceptibility

is almost constant (unless the frequency is very high, e.g., at THz

frequencies).

Page 12: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

12

We then have thatM A

e e e

0

1

Me A

e ej

Debye Model (cont.)

Hence:

Page 13: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

13

Permittivity formula: 1r e

21

01

1

1

MeA

r e j

aa

j

1

2

1

0

Ae

Me

a

a

where

Debye Model (cont.)

(a1 and a2 are real constants)

Page 14: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

14

1 2

1

0r

r

a a

a

so

1

2 0

r

r r

a

a

0

1r r

r r j

Note that:

Hence:

Debye Model (cont.)

21 1r

aa

j

Page 15: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

15

2

2

0

1

0

1

r rr r

r rr

r

0r

r

1/

r

r

Debye Model (cont.)

Page 16: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

16

Frequency for maximum loss:

Let x

20

1r r r

x

x

A maximum occurs at 1x

1

or

Debye Model (cont.)

Page 17: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

17

Water obeys the Debye model quite well.

Water obeys the Debye model quite well.

Debye Model (cont.)Complex relative permittivity for pure (distilled) water

Page 18: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

18

Water obeys the Debye model quite well.

Ocean water: = 4 [S/m]

Example

Calculate the complex relative permittivity rc for ocean water at 10.0 GHz.

0 0 0

1crc rj j

9 12

460 35

2 10.0 10 8.854 10rc j j

from previous plot for distilled water

60 42.19rc j 60 35 7.19rc j j Hence

or

Page 19: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

19

Cole-Cole Model

This is a modification of the Debye model.

10

1r r

r rj

When = 0, the model reduces to the Debye model.

This model has often been used to describe the permittivity of some polymers, as well as biological tissues.

Page 20: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

20

Cole-Cole Model (Cont.)Parameters for Some Biological Tissues

Page 21: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

21

Havriliak–Negami Model

This is another modification of the Debye model.

0

1

r rr r

j

When = 1 and = 1, the model reduces to the Debye model.

This has been used to describe the permittivity of some polymers.

Page 22: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

22

Lorentz ModelExplains atom and electron resonance effects (usually observed

at high frequencies, such as THz frequencies and optical frequencies, respectively).

Dipole effect:

Atom:

xE

qn= - qe

qnqe

0xE

electrons

Page 23: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

23

Lorentz Model (cont.)

Model:

Electron equation of motion for electrons in atom:

xqn

qe

m

xE

2

2x

E S Fx x x x

e x

d xm

dt

dxq sx c

dt

E

F

F F F F

The heavy positive nucleus is fixed.

Page 24: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

24

so

Hence

2

2e x

dx d xq sx c m

dt dt E

x n eq x q x p

22

2 x x

e x x

d dq s c m

dt dt

p pE p

Sinusoidal Steady State:

2 2e x x x xq E s p j c p m p

For a single atom, = /x ex qpor

Lorentz Model (cont.)

Page 25: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

25

Therefore,

2

2e

x x

qp E

s m j c

0

Ax a x

Ae x

P N p

E

0

A a xe

x

N p

E

The term P denotes the total

dipole moment per unit volume.

The A superscript reminds us that we are talking about

atoms.

Lorentz Model (cont.)

Page 26: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

26

Denote:

2

20

2

20

1

A a ee

a e

N q

s m j c

N qs cm jm m

220

0

a ef

N q s cA c

m m m

Hence

(real constants)

Lorentz Model (cont.)

Page 27: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

27

We then have

2 20

Ae

f

A

j c

2 20

2 22 22 2 2 20 0

1 fA Ar r

f f

A c A

c c

2 20

1Ar

f

A

j c

Permittivity formula: 1A Ar e

Lorentz Model (cont.)

Hence

Real and imaginary parts:

Page 28: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

28

A sharp resonance occurs at 0

Lorentz Model (cont.)

Low frequency value for Ae

Ar

0

1

Ar

Ar

201 /A

(This is still "high" frequency in the Debye model.)

Page 30: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

30

Atmospheric Attenuation

60 GHz

90 GHz

Page 31: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

31

Atmospheric Attenuation (cont.)

Atmosphericabsorption (% power

absorbed) formillimeter-wave

frequenciesover a 1-km path

2 (1000)100 1 e

% power absorbed

10

2 (1000)10

dB / km 10 log

10 log

out

in

P

P

e

Terabeam Document Number: 045-1038-0000Revision: A / Release Date: 09-03-2002Copyright © 2002 Terabeam Corporation. All Rights Reserved.

Attenuation in dB/km:

Page 32: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

32

Plasma

Electrically neutral plasma medium (positive ions and electrons):

ion (+)

electron (-)

We assume that only the electrons are free to move when an electric field is applied. This causes a current to flow.

Page 33: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

33

Plasma (cont.)

Equation of motion for average electron:

dvm e mv

dt F E

= collision frequency (rate of collisions per second of average electron)

Notes: (1) The last term assumes perfect inelastic collisions (loss mechanism). (2) We neglect the force due to the magnetic field.

Force due to electric field Force due to collisions with ions (loss of momentum)

There is no “spring” force now.

Page 34: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

34

Plasma (cont.)

Sinusoidal steady state:

m j v e E mv

ev E

m j

Current:

ve

ve

eJ v E

m j

Page 35: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

35

Plasma (cont.)

Amperes’ law:

0

0

0

ve

ve

c

H J j E

eE j E

m j

ej E

m j

j E

veve

eJ v E

m j

We assume that there is no polarization current – only conduction

current. Hence we use 0.

Page 36: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

36

Plasma (cont.)

Hence:

0ve

c

ej j

m j

so 0

1 vec

e

j m j

or 0

1vec

e

m j

Page 37: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

37

Plasma (cont.)

Define:

20

vep

e

m

2

0 1 pc j

(p plasma frequency)

We then have

0

1vec

e

m j

Page 38: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

38

Plasma (cont.)

Lossless plasma:

2

0 1 pc

0

(Drude equation)

0

0

: 0, ( )

: 0, ( )

p c c c

p c c c

k

k j

propagation

attenuation

Plane wave in lossless plasma:

Page 39: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

39

Plasma (cont.)

Complex relative permittivity of silver at optical frequencies

Rel

ativ

e pe

rmitt

ivity

The Drude model is an approximate model for how metals behave at optical frequencies.

“plasmonic behavior”

Page 40: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

40

Plasma (cont.)

At microwave frequencies, a plasma-like medium can be simulated by using a wire medium.

d

d

2a

y

x

1

2 ln 0.52752

p da

c

d

0 0

1c

Page 41: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.

41

Plasma (cont.)

An example of a directive antenna using a wire medium:

Geometrical optics (GO):Refraction towards broadside

y1r hsh

f

x

yzx

, 0 1p p r