Top Banner

of 39

04(1)-Nozzle Flow Theory

Jun 01, 2018

Download

Documents

Avoka John
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/9/2019 04(1)-Nozzle Flow Theory

    1/39

    MAE 5347/4322

    Rocket Propulsion

    04-Nozzle Flow Theory 

  • 8/9/2019 04(1)-Nozzle Flow Theory

    2/39

    • ASSUMPTIONS

     – Steady, one-dimensional flow

     – Adiabatic

     – Frictionless

     – Chemical equilibrium, established in combustion

    chamber & does not change through nozzle

     – Ideal gas model(TPG+CPG) (Thermal and Caloric)

     – Axial exhaust velocity

    Isentropic

  • 8/9/2019 04(1)-Nozzle Flow Theory

    3/39

    1. ENERGY EQUATION

    h

      p

    V  

    h

    2

    2

    0 0h p0

     p

     p

    ( , )h p

    0

    0

    0

    . 0

    constant

    constant

    CS 

    h V ndA Q W  

    mmh const  

    h

        

     

    2 21 2

    0 1 2

    2

    2 2 1 1

    2 2

    2( )

    V V  h h h

    V h h V    

    hopoV = 0

    First Law with

    Kinetic Energy

    Term

  • 8/9/2019 04(1)-Nozzle Flow Theory

    4/39

    2

    21 01 02 21

    0

    0

    0

    2 0 2

      0,

    and if we assume perfect gas with constant specific heats

      ( )

      ( )

    2 ( )

      2 (1 )

    for perfect gas

    )

    :

    2

    2(

     p

    e p e

    e p

     p

     NORMALLY V 

     p RT TPG

    h C T CPG

    V C 

    T T 

    T C T 

     R

    h

    h h h

    V h h

      

      

      

    0

    0

    1

      8314.3univ.gas constant 

    mol. weight   1544 -   f m

     R J KG MOL K  R R

     M    FT LB LB mol R

     

    =

    Exit

  • 8/9/2019 04(1)-Nozzle Flow Theory

    5/39

    Isentropic

    • From First Law: (No K.E. in this derivation)dE = dQ + dW

    •   dW = -PdV (reversible work)

     – Negative due to the convention that work done onthe system means that V2 < V1 in order for dW > 0,

    must have a “-”

    •   dQ = TdS (reversible, constant T)dE = TdS – PdV and dH = TdS +VdP

     – Prove dH formula by dH = dU + d(PV)

  • 8/9/2019 04(1)-Nozzle Flow Theory

    6/39

    Isentropic Relationship

    • Ideal Gas Law PV = RT, P = RT/VdS = dE/T + PdV/T

    dS = dH/T - RdP/P (R/P = V/T)

    • CvdT = dE and CpdT = dHdS = CvdT/T + RdV/V (R/V = P/T)

    dS = CpdT/T – RdP/P

    • dS = 0:

    Cv dT/T = -RdV/V

    Cp

    dT/T = RdP/P

    Forgive my use of

    Capitals vs. Lower

    Case

  • 8/9/2019 04(1)-Nozzle Flow Theory

    7/39

    Isentropic (Cont)

    R = CP - CV

    = CP/CV

    R/CV = ( - 1)• More Relationships, use Cp relationship

    Cp ln(T2/T1) = Rln(P2/P1)

    • Divide by Cv and use ln(T2/T1) = ( -1)ln(P2/P1)

    • The rest can be proven with calculus….

  • 8/9/2019 04(1)-Nozzle Flow Theory

    8/39

    1

    0 0

    1

    0

    0

     for isentropic flow in nozzle

    T

    T

    21

    1

    e e

    ee

    and 

     p

     p

     p RV T 

     M p

      

      

      

        

      

     

     

    From First Law and Isentropic

     Assumptions

  • 8/9/2019 04(1)-Nozzle Flow Theory

    9/39

    Derive cp based on

    • Algebra……prove it…and exercise for you to do

    • cp = R/( - 1)

    • cv = R/( - 1)

    • cp and do not vary greatly with temperature

    for air• Some exhaust gases can be modeled with the

    proper

  • 8/9/2019 04(1)-Nozzle Flow Theory

    10/39

    2. ISENTROPIC FLOW RELATIONS

     – Energy equation

     – Assume CPG (Caloric)

    2

    02

    V h h

    2

    0

    2 2

    0

    2

    2

    2

    1 12

    21

    -1  =1+

    2

     p p

     p

    V C T C T  

    T    V V 

    T C T   RT a

     M 

      

      

      

    Cp Relationship for In Denominator 

    Important

    Relationship

    (Eq 3-12)

  • 8/9/2019 04(1)-Nozzle Flow Theory

    11/39

    1

    1

    1

    1 2

    0 0

    1

    1

    0

    2

    0

     isentropic flow

    T -11+T 2

    T -11+T 2

    Reference: "Gas Tables", Keenan & Kaye

      "Gasdynamics", Zucrow & Hoffman

     

    e

    e e

    e

     For 

     p  M  p

     M 

      

      

      

      

      

      

      

        

      

       

       

           

      Tabulation for = 1.1,1.2,1.3,1.4 & 1.66  

  • 8/9/2019 04(1)-Nozzle Flow Theory

    12/39

    Figure 3-9

    Over expansion =

    shocks

    Under expansion =

    expansion waves

  • 8/9/2019 04(1)-Nozzle Flow Theory

    13/39

    3. NOZZLE MASS FLOW RATE

     – MASS FLOW RATE PARAMETER

    ASSUME

     – Steady,Quasi-one-dimensional flow

     – Isentropic flow

     – Perfect gas

    0

    0

     p

    ,TH e A A

    0

    0

    0 0

    m VA

      p M RT A

     RT  T    p

      p A  p RT T  

       

       

       

  • 8/9/2019 04(1)-Nozzle Flow Theory

    14/39

    1

    1

    2 1

    2 2

    0

    0

    0

    20 0

    -1 -11+ 1+

    2 2

    1

    -11+2

    m M p M M A RT 

    or 

    m T 

     M  Ap RT   M 

      

      

      

      

      

      

      

     

     

    0

    0

    m T 

     Ap

    21 3 M

    0 *

    0 max

    @ 1m T 

     M A A

     Ap

     

     

    In order to be

    supersonic at

    the exit, thethroat Mach

    number must

    be 1, choked

    flow

  • 8/9/2019 04(1)-Nozzle Flow Theory

    15/39

    1

    2 1

    0

    0

    2 mass flow rate parameter =

    1

    *Nozzle Discharge Coefficient

    C , ideal mass flow rated i

    i

    m T ideal 

     Ap R

    mm

    m

      

      

      

      

    1

    d C    d 

    Re

    .6

    1

    1

    ~.99

    ~1.15

    T T 

    Low T

    Used to

    determine mass

    flow rate

  • 8/9/2019 04(1)-Nozzle Flow Theory

    16/39

    4. AREA RATIO FUNCTION

     – Consider a nozzle flow with fixed 0 0,m T and p

    0

    0

     p

    T m

    1 2

    0

    02

    0

    01

    and calculate

    m T  Ap

    m T 

     Ap

  • 8/9/2019 04(1)-Nozzle Flow Theory

    17/39

    0

     from the mass flow parameter 

    m T 

    0 A p2

    0m T 

    0 A p1

     R

      

    2 M 

     R

      

    1

    2 1

    1

    2 1

    22

    2

    11

    2

    1

    2

    22 2

    21 11

    -11+2.-1

    1+2

    solving for

    -11+2.-1

    1+2

     M 

     M  M 

     A A

     M  A M 

     A M  M 

      

      

      

      

      

      

      

      

  • 8/9/2019 04(1)-Nozzle Flow Theory

    18/39

    1

    2 1

    2

    1

    *

    1 1

    2

    *

     Now let () ~any point in nozzle

      () ~sonic point in nozzle

      ~M =1; A =A

    1 2 -1. 1+

    1 2

     A M 

     A M 

      

      

      

      

       

  • 8/9/2019 04(1)-Nozzle Flow Theory

    19/39

    1

    *

     A

     A

    M>1

    0 M1

    M

  • 8/9/2019 04(1)-Nozzle Flow Theory

    20/39

    M1

    0 p   p

    NOTE: recall from ideal compressible flow theory,

    a C-D nozzle shape is required for continuous

    acceleration from subsonic to supersonic

    flow.

    2

    * Euler Eq.

    * Velocity/area DE

    11

    dp V V 

    dx x

    dV dAdx M dx

      

  • 8/9/2019 04(1)-Nozzle Flow Theory

    21/39

    5. THRUST

    1

    -1

    1

    -1

    -1

    0

    0

    *

    0

    0

    1

    2-12

    *

    0

    0 0 0 *

    -

    2  * 1--1

    2  *

    1

    2 21- -

    -1 1

    e e e a

    ee

    e e a e

     F mV A P P 

     P  RV T  M P 

     A P    M m

     RT 

     P P P A F A P 

     P P P A

     F f  

      

      

      

      

      

      

      

      

      

      

      

      

      

      

     

     

         

    * 00 0 *

    0

    , , , , ,

      ,

    e a e

    related 

     P P A A P 

     P P A

     Independent of T M 

      

  • 8/9/2019 04(1)-Nozzle Flow Theory

    22/39

    6. SPECIFIC IMPULSE

    0 0 0

    0 0  = ,

    a

     F mc c

     I  mg mg g  

    T P   f  

     M P 

  • 8/9/2019 04(1)-Nozzle Flow Theory

    23/39

    • THRUST COEFFICIENT ~IDEAL NOZZLE

    0

    0

     p

     TH e A A

     a

    e

     p

     p

    *0

     F

     thrust coefficient

    FC ( nozzle)

    G e e e e a

    G F TH 

    TH 

    Thrust m V A p p

     Define

     A A choked  p A

  • 8/9/2019 04(1)-Nozzle Flow Theory

    24/39

    0 e a

    0 0 0 0

    0 e a

    0 0 00

    0 0

    '

    0

    0

    '

    00

    P P. -

    P P

    P P. -

    P P

    from nozzle energy eqation

    V 2 2

      = 2 1

    2 1

    e e e

    TH TH  

    e   e e

    TH TH  

    e e p e

    e N p

    e e N p

    m V T A

     p A T A

    m T    V A

     p A AT 

    h h C T T  

    T C T 

    V T C 

    T T 

     

     

     

     

  • 8/9/2019 04(1)-Nozzle Flow Theory

    25/39

    1

    2 1

    1

    2 1

    1

    2 1

    0

    0

    1

    e a

    0 0 0

    1

    0

    for choked isentropic flow

    2

    1

    P P22 1 -

    1 P P

     and since .2 .21

    2 21

    1 1

    TH 

    e e F N p

    TH 

     p

    e F 

    m T 

     A p R

     p AC C 

     R p A

     RC 

     R R

     pC 

     p

      

      

      

      

      

      

      

      

      

      

      

      

       

      

      

      

         

       

     

     

       

    e a

    0 0

    P P-

    P P

    e

    TH 

     A

     A

       

     

  • 8/9/2019 04(1)-Nozzle Flow Theory

    26/39

     F C 

    e a p p

    e

    TH 

     A

     A

    underexpanded

    e a p p

    overexpanded

    e a p p

    constante

    a

     p

     p

    Complete

    expansion

    Typical variation

  • 8/9/2019 04(1)-Nozzle Flow Theory

    27/39

    For constant occurs for complete

    expansion

     – Derivation•

    • Physical argument

    0 , MAX  F 

    a

     p NPR C 

     p

    0 F 

    e

    TH 

     A A

    a

    i

     p

     p

  • 8/9/2019 04(1)-Nozzle Flow Theory

    28/39

    Underexpanded e a p p

    Loose available thrust

    Overexpanded e a p p

    Gain additional drag(+added weight)

    Note: CF ~ thrust amplification by nozzle expansion as

    compared to thrust produced by total pressure

    exerted over throat area

  • 8/9/2019 04(1)-Nozzle Flow Theory

    29/39

  • 8/9/2019 04(1)-Nozzle Flow Theory

    30/39

  • 8/9/2019 04(1)-Nozzle Flow Theory

    31/39

  • 8/9/2019 04(1)-Nozzle Flow Theory

    32/39

    Ref; NAVWEPS Report 1488 “Handbook of Supersonic Aerodynamics”

  • 8/9/2019 04(1)-Nozzle Flow Theory

    33/39

    • OS/SEPARATED BL-

    SUPERSONIC EXHAUST

    OVEREXPANDED NOZZLE PERFORMANCE LOSS

    (BL SEPARATION IN SUPERSONIC NOZZLE)

    INVISCID FLOW

    • NS IN NOZZLE WITH

    SUBSONIC EXHAUST

    VISCOUS CLOW

    M>1 M

  • 8/9/2019 04(1)-Nozzle Flow Theory

    34/39

    FLOW MODEL

    p p0

    pS

    x

    CORE

    MIXING REGION

  • 8/9/2019 04(1)-Nozzle Flow Theory

    35/39

    Ref; NAVWEPS Report 1488 “Handbook of Supersonic Aerodynamics”

  • 8/9/2019 04(1)-Nozzle Flow Theory

    36/39

  • 8/9/2019 04(1)-Nozzle Flow Theory

    37/39

    111 2

    1

    a

    2

    Thrust - Separated flow

    2 2

    C 11

    coef 

    P

    1

    fic

      + -

    P

    ien

    P

    t

     F 

    c

    TH c c

     s

     s s

     p

     p

     A

     A

        

        

         

     

         

  • 8/9/2019 04(1)-Nozzle Flow Theory

    38/39

  • 8/9/2019 04(1)-Nozzle Flow Theory

    39/39