Conversion from Implied Volatility to Local Volatility

Post on 03-Feb-2022

20 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Local Volatility Models

Copyright ยฉ Changwei Xiong 2016

June 2016

last update: October 28, 2017

TABLE OF CONTENTS

Table of Contents .........................................................................................................................................1

1. Kolmogorov Forward and Backward Equations ..................................................................................2

1.1. Kolmogorov Forward Equation ....................................................................................................2

1.2. Kolmogorov Backward Equation ..................................................................................................5

2. Local Volatility .....................................................................................................................................6

2.1. Local Volatility by Vanilla Call .....................................................................................................6

2.2. Local Volatility by Forward Call ...................................................................................................8

2.2.1. Local Variance as a Conditional Expectation of Instantaneous Variance ......................... 9

2.2.2. Formula in Log-moneyness ............................................................................................. 10

2.3. Local Volatility by Implied Volatility .......................................................................................... 11

2.3.1. Formula in Log-strike ...................................................................................................... 12

2.3.2. Formula in Log-moneyness ............................................................................................. 13

2.3.3. Equivalency in Formulas ................................................................................................. 14

3. Local Volatility: PDE by Finite Difference Method ..........................................................................16

3.1. Date Conventions of Equity and Equity Option..........................................................................16

3.2. Deterministic Dividends ..............................................................................................................17

3.3. Forward PDE ...............................................................................................................................18

3.3.1. Treatment of Deterministic Dividends ............................................................................ 19

3.4. Backward PDE ............................................................................................................................21

3.4.1. PDE in Centered Log-spot .............................................................................................. 21

3.4.1.1. Treatment of Deterministic Dividends ............................................................................ 22

3.4.1.2. Vanilla Call ...................................................................................................................... 23

3.4.2. PDE in Log-spot .............................................................................................................. 23

3.4.2.1. Treatment of Deterministic Dividends ............................................................................ 24

3.5. Local Volatility Surface ...............................................................................................................24

3.6. Barrier Option Pricing .................................................................................................................25

References ..................................................................................................................................................27

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

2

The note is prepared for the purpose of summarizing local volatility models frequently

encountered in derivative pricing. It at first derives the Kolmogorov forward and backward equations,

which fundamentally govern the transition probability density of the diffusion process in derivative price

dynamics. Subsequently, it introduces the local volatility model in the context of Dupire formula and

then presents a PDE based local volatility model, in which the local volatility function is parametrized to

be piecewise linear in log-moneyness and piecewise constant in time.

1. KOLMOGOROV FORWARD AND BACKWARD EQUATIONS

The time evolution of the transition probability density function is governed by Kolmogorov

forward and backward equations, which will be introduced as follows, without loss of generality, in

multi-dimension.

1.1. Kolmogorov Forward Equation

Letโ€™s consider the following ๐‘š-dimensional stochastic spot process ๐‘†๐‘ก โˆˆ โ„๐‘š driven by an ๐‘›-

dimensional Brownian motion ๐‘Š๐‘ก whose correlation matrix ๐œŒ is given by ๐œŒ๐‘‘๐‘ก = ๐‘‘๐‘Š๐‘ก๐‘‘๐‘Š๐‘กโ€ฒ

๐‘‘๐‘†๐‘ก๐‘šร—1

= ๐ด(๐‘ก, ๐‘†๐‘ก)๐‘šร—1

๐‘‘๐‘ก1ร—1

+ ๐ต(๐‘ก, ๐‘†๐‘ก)๐‘šร—๐‘›

๐‘‘๐‘Š๐‘ก๐‘›ร—1

(1)

We derive the dynamics of โ„Ž , where โ„Ž:โ„๐‘š โŸถโ„ in this case is a scalar-valued Borel-measurable

function only on variable ๐‘†๐‘ก

๐‘‘โ„Ž(๐‘†๐‘ก)1ร—1

= ๐ฝโ„Ž1ร—๐‘š

๐‘‘๐‘†๐‘ก๐‘šร—1

+1

2๐‘‘๐‘†๐‘ก

โ€ฒ

1ร—๐‘š๐ปโ„Ž๐‘šร—๐‘š

๐‘‘๐‘†๐‘ก๐‘šร—1

= ๐ฝโ„Ž๐ด๐‘‘๐‘ก + ๐ฝโ„Ž๐ต๐‘‘๐‘Š๐‘ก +1

2๐‘‘๐‘Š๐‘ก

โ€ฒ๐ตโ€ฒ๐ปโ„Ž๐ต๐‘‘๐‘Š๐‘ก (2)

where ๐ฝโ„Ž is the 1 ร— ๐‘š Jacobian (i.e. the same as gradient if โ„Ž is a scalar-valued function) and ๐ปโ„Ž the

๐‘š ร—๐‘š Hessian (with subscripts of ๐‘† now denoting the indices of vector components)

[๐ฝโ„Ž]๐‘– =๐œ•โ„Ž

๐œ•๐‘†๐‘– and [๐ปโ„Ž]๐‘–๐‘— =

๐œ•2โ„Ž

๐œ•๐‘†๐‘–๐œ•๐‘†๐‘— (3)

Expanding the expression in (2), we have

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

3

๐‘‘โ„Ž =โˆ‘๐œ•โ„Ž

๐œ•๐‘†๐‘–๐ด๐‘–๐‘‘๐‘ก

๐‘š

๐‘–=1

+โˆ‘๐œ•โ„Ž

๐œ•๐‘†๐‘–

๐‘š

๐‘–=1

โˆ‘๐ต๐‘–๐‘˜๐‘‘๐‘Š๐‘˜

๐‘›

๐‘˜=1

+1

2โˆ‘

๐œ•2โ„Ž

๐œ•๐‘†๐‘–๐œ•๐‘†๐‘—โˆ‘๐ต๐‘–๐‘˜๐œŒ๐‘–๐‘—๐ต๐‘—๐‘˜๐‘‘๐‘ก

๐‘›

๐‘˜=1

๐‘š

๐‘–,๐‘—=1

= (โˆ‘๐œ•โ„Ž

๐œ•๐‘†๐‘–๐ด๐‘–

๐‘š

๐‘–=1

+1

2โˆ‘

๐œ•2โ„Ž

๐œ•๐‘†๐‘–๐œ•๐‘†๐‘—๐›ด๐‘–๐‘—

๐‘š

๐‘–,๐‘—=1

)๐‘‘๐‘ก +โˆ‘๐œ•โ„Ž

๐œ•๐‘†๐‘–

๐‘š

๐‘–=1

โˆ‘๐ต๐‘–๐‘˜๐‘‘๐‘Š๐‘˜

๐‘›

๐‘˜=1

(4)

where ๐›ด = ๐ต๐œŒ๐ตโ€ฒ is the ๐‘š ร—๐‘š instantaneous variance-covariance matrix of ๐‘‘๐‘† . Integrating on both

sides of (4) from ๐‘ก to ๐‘‡, we have

โ„Ž(๐‘†๐‘‡) โˆ’ โ„Ž(๐‘†๐‘ก) = โˆซ (โˆ‘๐œ•โ„Ž

๐œ•๐‘†๐‘–๐ด๐‘–

๐‘š

๐‘–=1

+1

2โˆ‘

๐œ•2โ„Ž

๐œ•๐‘†๐‘–๐œ•๐‘†๐‘—๐›ด๐‘–๐‘—

๐‘š

๐‘–,๐‘—=1

)๐‘‘๐‘ข๐‘‡

๐‘ก

+โˆซ โˆ‘๐œ•โ„Ž

๐œ•๐‘†๐‘–

๐‘š

๐‘–=1

โˆ‘๐ต๐‘–๐‘˜๐‘‘๐‘Š๐‘˜

๐‘›

๐‘˜=1

๐‘‡

๐‘ก

(5)

Taking expectation on both sides of (5), we get (using notation ๐”ผ๐‘ก[โˆ™] = ๐”ผ[โˆ™|โ„ฑ๐‘ก])

LHS = ๐”ผ๐‘ก[โ„Ž(๐‘†๐‘‡)] โˆ’ โ„Ž(๐‘†๐‘ก) = โˆซโ„Ž๐‘ฆ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆ๐›บ

โˆ’ โ„Ž๐‘ฅ

RHS = ๐”ผ๐‘ก [โˆซ (โˆ‘๐œ•โ„Ž

๐œ•๐‘†๐‘–๐ด๐‘–

๐‘š

๐‘–=1

+1

2โˆ‘

๐œ•2โ„Ž

๐œ•๐‘†๐‘–๐œ•๐‘†๐‘—๐›ด๐‘–๐‘—

๐‘š

๐‘–,๐‘—=1

)๐‘‘๐‘ข๐‘‡

๐‘ก

] + ๐”ผ๐‘ก [โˆซ โˆ‘๐œ•โ„Ž

๐œ•๐‘†๐‘–

๐‘š

๐‘–=1

โˆ‘๐ต๐‘–๐‘˜๐‘‘๐‘Š๐‘˜

๐‘›

๐‘˜=1

๐‘‡

๐‘ก

]โŸ

=0

= โˆซ โˆ‘๐”ผ๐‘ก [๐œ•โ„Ž

๐œ•๐‘†๐‘–๐ด๐‘–]

๐‘š

๐‘–=1

๐‘‘๐‘ข๐‘‡

๐‘ก

+1

2โˆซ โˆ‘ ๐”ผ๐‘ก [

๐œ•2โ„Ž

๐œ•๐‘†๐‘–๐œ•๐‘†๐‘—๐›ด๐‘–๐‘—]

๐‘š

๐‘–,๐‘—=1

๐‘‘๐‘ข๐‘‡

๐‘ก

(6)

where ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ is the transition probability density having ๐‘†๐‘‡ = ๐‘ฆ at ๐‘‡ given ๐‘†๐‘ก = ๐‘ฅ at ๐‘ก (i.e. if we solve

the equation (1) with the initial condition ๐‘†๐‘ก = ๐‘ฅ โˆˆ โ„๐‘š , then the random variable ๐‘†๐‘‡ = ๐‘ฆ โˆˆ ๐›บ has a

density ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ in the ๐‘ฆ variable at time ๐‘‡). Differentiating (6) with respect to ๐‘‡ on both sides, we have

โˆซ โ„Ž๐‘ฆ๐œ•๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐œ•๐‘‡

๐‘‘๐‘ฆ๐›บ

=โˆ‘๐”ผ๐‘ก [๐œ•โ„Ž

๐œ•๐‘†๐‘–๐ด๐‘–]

๐‘š

๐‘–=1

+1

2โˆ‘ ๐”ผ๐‘ก [

๐œ•2โ„Ž

๐œ•๐‘†๐‘–๐œ•๐‘†๐‘—๐›ด๐‘–๐‘—]

๐‘š

๐‘–,๐‘—=1

=โˆ‘โˆซ๐œ•โ„Ž๐‘ฆ๐œ•๐‘ฆ๐‘–

๐ด๐‘–๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆ๐›บ

๐‘š

๐‘–=1

+1

2โˆ‘ โˆซ

๐œ•2โ„Ž๐‘ฆ๐œ•๐‘ฆ๐‘–๐œ•๐‘ฆ๐‘—

๐›ด๐‘–๐‘—๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆ๐›บ

๐‘š

๐‘–,๐‘—=1

(7)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

4

If we assume ๐›บ โ‰ก โ„๐‘š and also assume the probability density ๐‘ and its first derivatives ๐œ•๐‘/๐œ•๐‘ฆ๐‘– vanish

at a higher order of rate than โ„Ž and ๐œ•โ„Ž/๐œ•๐‘ฆ๐‘– as ๐‘ฆ๐‘– โ†’ ยฑโˆž โˆ€ ๐‘– = 1,โ‹ฏ ,๐‘š, then we can integrate by parts

for the right hand side of (7), once for the first integral and twice for the second

โˆซ๐œ•โ„Ž๐‘ฆ๐œ•๐‘ฆ๐‘–

๐ด๐‘–๐‘๐‘‘๐‘ฆ๐›บ

= โˆซ โ„Ž๐‘ฆ๐ด๐‘–๐‘|๐‘ฆ๐‘– =โˆ’โˆž+โˆž

โŸ =0

๐‘‘๐‘ฆโˆ’๐‘–๐›บโˆ’๐‘–

โˆ’โˆซ โ„Ž๐‘ฆ๐œ•(๐ด๐‘–๐‘)

๐œ•๐‘ฆ๐‘–๐‘‘๐‘ฆ

๐›บ

and

โˆซ๐œ•2โ„Ž๐‘ฆ๐œ•๐‘ฆ๐‘–๐œ•๐‘ฆ๐‘—

๐›ด๐‘–๐‘—๐‘๐‘‘๐‘ฆ๐›บ

= โˆซ๐œ•โ„Ž๐‘ฆ๐œ•๐‘ฆ๐‘—

๐›ด๐‘–๐‘—๐‘|๐‘ฆ๐‘–=โˆ’โˆž

+โˆž

โŸ =0

๐‘‘๏ฟฝฬ…๏ฟฝ๐‘–๏ฟฝฬ…๏ฟฝ๐‘–

โˆ’โˆซ๐œ•โ„Ž๐‘ฆ๐œ•๐‘ฆ๐‘—

๐œ•(๐›ด๐‘–๐‘—๐‘)

๐œ•๐‘ฆ๐‘–๐‘‘๐‘ฆ

๐›บ

= โˆ’โˆซ โ„Ž๐‘ฆ๐œ•(๐›ด๐‘–๐‘—๐‘)

๐œ•๐‘ฆ๐‘–|๐‘ฆ๐‘—=โˆ’โˆž

+โˆž

โŸ =0

๐‘‘๏ฟฝฬ…๏ฟฝ๐‘—๏ฟฝฬ…๏ฟฝ๐‘—

+โˆซ โ„Ž๐‘ฆ๐œ•2(๐›ด๐‘–๐‘—๐‘)

๐œ•๐‘ฆ๐‘–๐œ•๐‘ฆ๐‘—๐‘‘๐‘ฆ

๐›บ

where โˆซ (โˆ™)๐‘‘๏ฟฝฬ…๏ฟฝ๐‘–๏ฟฝฬ…๏ฟฝ๐‘–

= โˆซ โ‹ฏโˆซ โˆซ โ‹ฏโˆซ(โˆ™)๐‘‘๐‘ฆ1โ„

โ‹ฏ๐‘‘๐‘ฆ๐‘–โˆ’1โ„

๐‘‘๐‘ฆ๐‘–+1โ„

โ‹ฏ๐‘‘๐‘ฆ๐‘šโ„

(8)

Plugging the results of (8) into (7), we have

โˆซ โ„Ž๐‘ฆ๐œ•๐‘

๐œ•๐‘‡๐‘‘๐‘ฆ

๐›บ

= โˆ’โˆ‘โˆซ โ„Ž๐‘ฆ๐œ•(๐ด๐‘–๐‘)

๐œ•๐‘ฆ๐‘–๐‘‘๐‘ฆ

๐›บ

๐‘š

๐‘–=1

+1

2โˆ‘ โˆซ โ„Ž๐‘ฆ

๐œ•2(๐›ด๐‘–๐‘—๐‘)

๐œ•๐‘ฆ๐‘–๐œ•๐‘ฆ๐‘—๐‘‘๐‘ฆ

๐›บ

๐‘š

๐‘–,๐‘—=1

โŸนโˆซ โ„Ž๐‘ฆ (๐œ•๐‘

๐œ•๐‘‡+โˆ‘

๐œ•(๐ด๐‘–๐‘)

๐œ•๐‘ฆ๐‘–

๐‘š

๐‘–=1

โˆ’1

2โˆ‘

๐œ•2(๐›ด๐‘–๐‘—๐‘)

๐œ•๐‘ฆ๐‘–๐œ•๐‘ฆ๐‘—

๐‘š

๐‘–,๐‘—=1

)๐‘‘๐‘ฆ๐›บ

= 0

(9)

By the arbitrariness of โ„Ž, we conclude that for any ๐‘ฆ โˆˆ ๐›บ

๐œ•๐‘

๐œ•๐‘‡+โˆ‘

๐œ•(๐ด๐‘–๐‘)

๐œ•๐‘ฆ๐‘–

๐‘š

๐‘–=1

โˆ’1

2โˆ‘

๐œ•2(๐›ด๐‘–๐‘—๐‘)

๐œ•๐‘ฆ๐‘–๐œ•๐‘ฆ๐‘—

๐‘š

๐‘–,๐‘—=1

= 0, ๐›ด = ๐ต๐œŒ๐ตโ€ฒ (10)

This is the Multi-dimensional Fokker-Planck Equation (a.k.a. Kolmogorov Forward Equation) [1]. In

this equation, the ๐‘ก and ๐‘ฅ are held constant, while the ๐‘‡ and ๐‘ฆ are variables (called โ€œforward variablesโ€).

In the one-dimensional case, it reduces to

๐œ•๐‘

๐œ•๐‘‡+๐œ•(๐ด๐‘)

๐œ•๐‘ฆโˆ’1

2

๐œ•2(๐ต2๐‘)

๐œ•๐‘ฆ2= 0 (11)

where ๐ด = ๐ด(๐‘‡, ๐‘ฆ) and ๐ต = ๐ต(๐‘‡, ๐‘ฆ) are then scalar functions.

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

5

1.2. Kolmogorov Backward Equation

Letโ€™s express conditional expectation of โ„Ž(๐‘†๐‘ก) by ๐‘”(๐‘ก, ๐‘†๐‘ก) = ๐”ผ๐‘ก[โ„Ž(๐‘†๐‘‡)]. Because for ๐‘œ โ‰ค ๐‘ก โ‰ค ๐‘‡

we have

๐‘”(๐‘œ, ๐‘†๐‘œ) = ๐”ผ๐‘œ[โ„Ž(๐‘†๐‘‡)] = ๐”ผ๐‘œ[๐”ผ๐‘ก[โ„Ž(๐‘†๐‘‡)]] = ๐”ผ๐‘œ[๐‘”(๐‘ก, ๐‘†๐‘ก)] (12)

the ๐‘”(๐‘ก, ๐‘†๐‘ก) is a martingale by the tower rule (i.e. If โ„‹ holds less information than ๐’ข , then

๐”ผ[๐”ผ[๐‘‹|๐’ข]|โ„‹] = ๐”ผ[๐‘‹|โ„‹]). The dynamics of the ๐‘”(๐‘ก, ๐‘†๐‘ก) is given by

๐‘‘๐‘” =๐œ•๐‘”

๐œ•๐‘ก๐‘‘๐‘ก + ๐ฝ๐‘”

1ร—๐‘š

๐‘‘๐‘†๐‘ก๐‘šร—1

+1

2๐‘‘๐‘†๐‘ก

โ€ฒ

1ร—๐‘š๐ป๐‘”๐‘šร—๐‘š

๐‘‘๐‘†๐‘ก๐‘šร—1

=๐œ•๐‘”

๐œ•๐‘ก๐‘‘๐‘ก + ๐ฝ๐‘”๐ด๐‘‘๐‘ก + ๐ฝ๐‘”๐ต๐‘‘๐‘Š๐‘ก +

1

2๐‘‘๐‘Š๐‘ก

โ€ฒ๐ตโ€ฒ๐ป๐‘”๐ต๐‘‘๐‘Š๐‘ก

(13)

where ๐ฝ๐‘” is the Jacobian (i.e. the same as gradient if ๐‘” is a scalar-valued function) and ๐ป๐‘” the Hessian of

๐‘” with respect to ๐‘† (with subscripts denoting the indices of vector components)

๐ฝ๐‘” = (๐œ•๐‘”

๐œ•๐‘†1โ‹ฏ

๐œ•๐‘”

๐œ•๐‘†๐‘š) , ๐ป๐‘” =

(

๐œ•2๐‘”

๐œ•๐‘†12 โ‹ฏ

๐œ•2๐‘”

๐œ•๐‘†1๐œ•๐‘†๐‘šโ‹ฎ โ‹ฑ โ‹ฎ๐œ•2๐‘”

๐œ•๐‘†๐‘š๐œ•๐‘†1โ‹ฏ

๐œ•2๐‘”

๐œ•๐‘†๐‘š2 )

(14)

Expanding (13), we have

๐‘‘๐‘” = (๐œ•๐‘”

๐œ•๐‘ก+โˆ‘

๐œ•๐‘”

๐œ•๐‘†๐‘–๐ด๐‘–

๐‘š

๐‘–=1

+1

2โˆ‘

๐œ•2๐‘”

๐œ•๐‘†๐‘–๐œ•๐‘†๐‘—๐›ด๐‘–๐‘—

๐‘š

๐‘–,๐‘—=1

)๐‘‘๐‘ก +โˆ‘๐œ•๐‘”

๐œ•๐‘†๐‘–

๐‘š

๐‘–=1

โˆ‘๐ต๐‘–๐‘˜๐‘‘๐‘Š๐‘˜

๐‘›

๐‘˜=1

(15)

Since ๐‘”(๐‘ก, ๐‘†๐‘ก) is a martingale, the ๐‘‘๐‘ก-term must vanish, which gives

๐œ•๐‘”

๐œ•๐‘ก+โˆ‘

๐œ•๐‘”

๐œ•๐‘†๐‘–๐ด๐‘–

๐‘š

๐‘–=1

+1

2โˆ‘

๐œ•2๐‘”

๐œ•๐‘†๐‘–๐œ•๐‘†๐‘—๐›ด๐‘–๐‘—

๐‘š

๐‘–,๐‘—=1

= 0 (16)

This is the multi-dimensional Feynman-Kac formula1.

Using the transition probability density ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ, we can write the expectation as

1 https://en.wikipedia.org/wiki/Feynman-Kac_formula

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

6

๐‘”๐‘ก,๐‘ฅ = ๐”ผ๐‘ก[โ„Ž(๐‘†๐‘‡)] = โˆซโ„Ž๐‘ฆ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆ๐›บ

(17)

The formula (16) defines that

๐œ•

๐œ•๐‘กโˆซโ„Ž๐‘ฆ๐‘๐‘‘๐‘ฆ๐›บ

+โˆ‘๐ด๐‘–๐œ•

๐œ•๐‘ฅ๐‘–โˆซโ„Ž๐‘ฆ๐‘๐‘‘๐‘ฆ๐›บ

๐‘š

๐‘–=1

+1

2โˆ‘ ๐›ด๐‘–๐‘—

๐œ•2

๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—โˆซโ„Ž๐‘ฆ๐‘๐‘‘๐‘ฆ๐›บ

๐‘š

๐‘–,๐‘—=1

= 0

โŸนโˆซ โ„Ž๐‘ฆ (๐œ•๐‘

๐œ•๐‘ก+โˆ‘๐ด๐‘–

๐œ•๐‘

๐œ•๐‘ฅ๐‘–

๐‘š

๐‘–=1

+1

2โˆ‘ ๐›ด๐‘–๐‘—

๐œ•2๐‘

๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

๐‘š

๐‘–,๐‘—=1

)๐‘‘๐‘ฆ๐›บ

= 0

(18)

By the arbitrariness of โ„Ž, we have

๐œ•๐‘

๐œ•๐‘ก+โˆ‘๐ด๐‘–

๐œ•๐‘

๐œ•๐‘ฅ๐‘–

๐‘š

๐‘–=1

+1

2โˆ‘ ๐›ด๐‘–๐‘—

๐œ•2๐‘

๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

๐‘š

๐‘–,๐‘—=1

= 0, ๐›ด = ๐ต๐œŒ๐ตโ€ฒ (19)

This is the multi-dimensional Kolmogorov Backward Equation. In this equation, the ๐‘‡ and ๐‘ฆ are held

constant, while the ๐‘ก and ๐‘ฅ are variables (called โ€œbackward variablesโ€). In the 1-D case, it reduces to

๐œ•๐‘

๐œ•๐‘ก+ ๐ด

๐œ•๐‘

๐œ•๐‘ฅ+1

2๐ต2๐œ•2๐‘

๐œ•๐‘ฅ2= 0 (20)

where ๐ด = ๐ด(๐‘ก, ๐‘ฅ) and ๐ต = ๐ต(๐‘ก, ๐‘ฅ) are then scalar functions.

2. LOCAL VOLATILITY

In local volatility models, the volatility process is assumed to be a function of both the spot level

and the time. It is one step generalization of the well-known Black-Scholes model. Under risk neutral

measure, the spot process (e.g. an equity or an FX rate) is assumed to follow a geometric Brownian

motion

๐‘‘๐‘†๐‘ก๐‘†๐‘ก= ๐œ‡๐‘ก๐‘‘๐‘ก + ๐œŽ(๐‘ก, ๐‘†๐‘ก)๐‘‘๏ฟฝฬƒ๏ฟฝ๐‘ก , ๐œ‡๐‘ก = ๐‘Ÿ๐‘ก โˆ’ ๐‘ž๐‘ก (21)

with cash rate ๐‘Ÿ๐‘ก and dividend rate ๐‘ž๐‘ก (or foreign cash rate for FX).

2.1. Local Volatility by Vanilla Call

Under the assumption of deterministic ๐‘Ÿ๐‘ก , the European (vanilla) call option price can be

expressed as a function of maturity time ๐‘‡ and strike ๐พ

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

7

๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ = ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐ท๐‘ก,๐‘‡(๐‘†๐‘‡ โˆ’ ๐พ)+] = ๐ท๐‘ก,๐‘‡โˆซ (๐‘ฆ โˆ’ ๐พ)๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆ

โˆž

๐พ

(22)

where ๐ท๐‘ก,๐‘‡ = exp (โˆ’โˆซ ๐‘Ÿ๐‘ข๐‘‘๐‘ข๐‘‡

๐‘ก) is the deterministic discount factor and ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ is the transition

probability density having spot ๐‘†๐‘‡ = ๐‘ฆ at ๐‘‡ given initial condition ๐‘†๐‘ก = ๐‘ฅ at ๐‘ก. Differentiating (22) with

respect to ๐พ, we have the first order and second order partial derivative

๐œ•๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

= โˆ’๐ท๐‘ก,๐‘‡โˆซ ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆโˆž

๐พ

,๐œ•2๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

= ๐ท๐‘ก,๐‘‡๐‘๐‘‡,๐พ|๐‘ก,๐‘ฅ (23)

which gives the transition probability density function by

๐‘๐‘‡,๐พ|๐‘ก,๐‘ฅ =1

๐ท๐‘ก,๐‘‡

๐œ•2๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

(24)

The (24) is also known as Breeden-Litzenberger formula.

Taking the first derivative of ๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ in (22) with respect to ๐‘‡, we find

๐œ•๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐‘‡

= โˆ’๐‘Ÿ๐‘‡๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ + ๐ท๐‘ก,๐‘‡โˆซ (๐‘ฆ โˆ’ ๐พ)๐œ•๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐œ•๐‘‡

๐‘‘๐‘ฆโˆž

๐พ

= โˆ’๐‘Ÿ๐‘‡๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ + ๐ท๐‘ก,๐‘‡โˆซ (๐‘ฆ โˆ’ ๐พ)(1

2

๐œ•2(๐œŽ๐‘‡,๐‘ฆ2 ๐‘ฆ2๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ)

๐œ•๐‘ฆ2โˆ’๐œ•(๐œ‡๐‘‡๐‘ฆ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ)

๐œ•๐‘ฆ)๐‘‘๐‘ฆ

โˆž

๐พ

(25)

using the Kolmogorov Forward Equation (11)

๐œ•๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐œ•๐‘‡

=1

2

๐œ•2(๐œŽ๐‘‡,๐‘ฆ2 ๐‘ฆ2๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ)

๐œ•๐‘ฆ2โˆ’๐œ•(๐œ‡๐‘‡๐‘ฆ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ)

๐œ•๐‘ฆ (26)

Applying integration by parts to the integrals on the right hand side of (25) yields

โˆซ (๐‘ฆ โˆ’ ๐พ)๐œ•(๐œ‡๐‘‡๐‘ฆ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ)

๐œ•๐‘ฆ๐‘‘๐‘ฆ

โˆž

๐พ

= (๐‘ฆ โˆ’ ๐พ)๐œ‡๐‘‡๐‘ฆ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ|๐‘ฆ=๐พโˆž

โŸ =0

โˆ’โˆซ ๐œ‡๐‘‡๐‘ฆ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆโˆž

๐พ

= โˆ’๐œ‡๐‘‡ (โˆซ (๐‘ฆ โˆ’ ๐พ)๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆโˆž

๐พ

+ ๐พโˆซ ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆโˆž

๐พ

) =๐œ‡๐‘‡๐พ

๐ท๐‘ก,๐‘‡

๐œ•๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

โˆ’๐œ‡๐‘‡๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐ท๐‘ก,๐‘‡

and

(27)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

8

โˆซ (๐‘ฆ โˆ’ ๐พ)๐œ•2(๐œŽ๐‘‡,๐‘ฆ

2 ๐‘ฆ2๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ)

๐œ•๐‘ฆ2๐‘‘๐‘ฆ

โˆž

๐พ

= (๐‘ฆ โˆ’ ๐พ)๐œ•(๐œŽ๐‘‡,๐‘ฆ

2 ๐‘ฆ2๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ)

๐œ•๐‘ฆ|๐‘ฆ=๐พ

โˆž

โŸ =0

โˆ’โˆซ๐œ•(๐œŽ๐‘‡,๐‘ฆ

2 ๐‘ฆ2๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ)

๐œ•๐‘ฆ๐‘‘๐‘ฆ

โˆž

๐พ

= ๐œŽ๐‘‡,๐‘ฆ2 ๐‘ฆ2๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ|๐‘ฆ=๐พ

โˆž= ๐œŽ๐‘‡,๐พ

2 ๐พ2๐‘๐‘‡,๐พ|๐‘ก,๐‘ฅ =๐œŽ๐‘‡,๐พ2 ๐พ2

๐ท๐‘ก,๐‘‡

๐œ•2๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

where we have ๐‘๐‘‡,โˆž|๐‘ก,๐‘ฅ = 0 and ๐œ•๐‘๐‘‡,โˆž|๐‘ก,๐‘ฅ/๐œ•๐‘ฆ = 0 assuming the probability density ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ and its first

derivative vanish at a higher order of rate as ๐‘ฆ โ†’ โˆž. Plugging (27) into (25), we find

๐œ•๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐‘‡

= โˆ’๐‘Ÿ๐‘‡๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ +๐œŽ๐‘‡,๐พ2 ๐พ2

2

๐œ•2๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

โˆ’ ๐œ‡๐‘‡๐พ๐œ•๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

+ ๐œ‡๐‘‡๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ

=๐œŽ๐‘‡,๐พ2 ๐พ2

2

๐œ•2๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

โˆ’ ๐œ‡๐‘‡๐พ๐œ•๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

โˆ’ ๐‘ž๐‘‡๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ

(28)

and eventually the Dupire formula for the local volatility ๐œŽ๐‘‡,๐พ expressed in terms of vanilla call price

๐œŽ๐‘‡,๐พ2

2=

๐œ•๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐‘‡

+ ๐œ‡๐‘‡๐พ๐œ•๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

+ ๐‘ž๐‘‡๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ

๐พ2๐œ•2๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

(29)

2.2. Local Volatility by Forward Call

Sometimes, it is more convenient to express the Dupire formula in terms of a forward (i.e.

undiscounted) call, which is defined as

๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ = ๏ฟฝฬƒ๏ฟฝ๐‘ก[(๐‘†๐‘‡ โˆ’ ๐พ)+] = โˆซ (๐‘ฆ โˆ’ ๐พ)๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆ

โˆž

๐พ

=๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ๐ท๐‘ก,๐‘‡

(30)

with ๐’ž๐‘‡,๐พ|๐‘ก,๐‘ฅ given in (22) (note that (30) is true only if the interest rate is deterministic). Following a

similar derivation, we find that

๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

= โˆ’โˆซ ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆโˆž

๐พ

,๐œ•2๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

= ๐‘๐‘‡,๐พ|๐‘ก,๐‘ฅ and

๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐‘‡

= โˆซ (๐‘ฆ โˆ’ ๐พ)๐œ•๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐œ•๐‘‡

๐‘‘๐‘ฆโˆž

๐พ

=1

2๐œŽ๐‘‡,๐พ2 ๐พ2

๐œ•2๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

+ ๐œ‡๐‘‡(๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ โˆ’ ๐พ๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

)

(31)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

9

Therefore the Dupire formula for ๐œŽ๐‘‡,๐พ expressed in terms of forward call price reads

๐œŽ๐‘‡,๐พ2

2=

๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐‘‡

+ ๐œ‡๐‘‡๐พ๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

โˆ’ ๐œ‡๐‘‡๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ

๐พ2๐œ•2๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

(32)

2.2.1. Local Variance as a Conditional Expectation of Instantaneous Variance

The forward call (30) can be expressed as

๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ = ๏ฟฝฬƒ๏ฟฝ๐‘ก[(๐‘†๐‘‡ โˆ’ ๐พ)+] = ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)(๐‘†๐‘‡ โˆ’ ๐พ)] = ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)๐‘†๐‘‡] โˆ’ ๐พ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)] (33)

where ๐’ฝ is the Heaviside step function1. Differentiating once with respect to ๐พ, we get

๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

= โˆ’โˆซ ๐‘๐‘‡,๐‘ฆ|๐‘ก,๐‘ฅ๐‘‘๐‘ฆโˆž

๐พ

= โˆ’๏ฟฝฬƒ๏ฟฝ๐‘ก[๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)] โŸน ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)๐‘†๐‘‡] = ๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ โˆ’ ๐พ๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

(34)

Differentiating again with respect to ๐พ, we have

๐œ•2๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

= ๐‘๐‘‡,๐พ|๐‘ก,๐‘ฅ = ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐›ฟ(๐‘†๐‘‡ โˆ’ ๐พ)] (35)

where ๐›ฟ is the Dirac delta function2. Applying Itoโ€™s Lemma to the terminal payoff of the option gives

the identity

๐‘‘(๐‘†๐‘‡ โˆ’ ๐พ)+ = ๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)๐‘‘๐‘†๐‘‡ +

1

2๐›ฟ(๐‘†๐‘‡ โˆ’ ๐พ)๐œŽ๐‘‡

2๐‘†๐‘‡2๐‘‘๐‘‡

= ๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)๐œ‡๐‘‡๐‘†๐‘‡๐‘‘๐‘‡ +1

2๐›ฟ(๐‘†๐‘‡ โˆ’ ๐พ)๐œŽ๐‘‡

2๐‘†๐‘‡2๐‘‘๐‘‡ + ๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)๐œŽ๐‘‡๐‘†๐‘‡๐‘‘๏ฟฝฬƒ๏ฟฝ๐‘‡

(36)

Taking conditional expectations on both sides gives

๐‘‘๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ = ๐‘‘๏ฟฝฬƒ๏ฟฝ๐‘ก[(๐‘†๐‘‡ โˆ’ ๐พ)+] = ๐œ‡๐‘‡๏ฟฝฬƒ๏ฟฝ๐‘ก[๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)๐‘†๐‘‡]๐‘‘๐‘‡ +

1

2๏ฟฝฬƒ๏ฟฝ๐‘ก[๐›ฟ(๐‘†๐‘‡ โˆ’ ๐พ)๐œŽ๐‘‡

2๐‘†๐‘‡2]๐‘‘๐‘‡

โŸน๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐‘‡

= ๐œ‡๐‘‡๏ฟฝฬƒ๏ฟฝ๐‘ก[๐’ฝ(๐‘†๐‘‡ โˆ’ ๐พ)๐‘†๐‘‡] +1

2๏ฟฝฬƒ๏ฟฝ๐‘ก[๐›ฟ(๐‘†๐‘‡ โˆ’ ๐พ)๐œŽ๐‘‡

2๐‘†๐‘‡2]

(37)

Notice that

1 Heaviside step function: ๐’ฝ(๐‘ฅ) = {

0, ๐‘ฅ < 01, ๐‘ฅ โ‰ฅ 0

2 Dirac delta function can be viewed as the derivative of the Heaviside step function: ๐›ฟ(๐‘ฅ) =๐‘‘๐’ฝ(๐‘ฅ)

๐‘‘๐‘ฅ= {โˆž, ๐‘ฅ = 00, ๐‘ฅ โ‰  0

,

which is also constrained to satisfy the identity: โˆซ ๐›ฟ(๐‘ฅ)๐‘‘๐‘ฅโ„

= 1.

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

10

๏ฟฝฬƒ๏ฟฝ๐‘ก[๐›ฟ(๐‘†๐‘‡ โˆ’ ๐พ)๐œŽ๐‘‡2๐‘†๐‘‡2] = ๐พ2๏ฟฝฬƒ๏ฟฝ๐‘ก[๐›ฟ(๐‘†๐‘‡ โˆ’ ๐พ)๐œŽ๐‘‡

2] (38)

and from Bayesโ€™ rule

๏ฟฝฬƒ๏ฟฝ๐‘ก[๐›ฟ(๐‘†๐‘‡ โˆ’ ๐พ)๐œŽ๐‘‡2] = ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐œŽ๐‘‡

2|๐‘†๐‘‡ = ๐พ]๏ฟฝฬƒ๏ฟฝ๐‘ก[๐›ฟ(๐‘†๐‘‡ โˆ’ ๐พ)] (39)

we can derive from (37)

๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐‘‡

= ๐œ‡๐‘‡๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ โˆ’ ๐œ‡๐‘‡๐พ๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

+1

2๐พ2๐œ•2๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

๏ฟฝฬƒ๏ฟฝ๐‘ก[๐œŽ๐‘‡2|๐‘†๐‘‡ = ๐พ]

โŸน๏ฟฝฬƒ๏ฟฝ๐‘ก[๐œŽ๐‘‡

2|๐‘†๐‘‡ = ๐พ]

2=

๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐‘‡

+ ๐œ‡๐‘‡๐พ๐œ•๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ

โˆ’ ๐œ‡๐‘‡๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ

๐พ2๐œ•2๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ๐œ•๐พ2

(40)

This is identical to (32). It means that the conditional expectation of the stochastic variance must equal

the Dupire local variance [2]. That is, local variance is the risk-neutral expectation of the instantaneous

variance conditional on the final stock price ๐‘†๐‘‡ being equal to the strike price ๐พ [3].

2.2.2. Formula in Log-moneyness

In real applications, numerical methods are often in favor of log-moneyness to be the spatial

variable, which can be regarded as a centered log-strike

๐‘˜ = ln๐พ

๐น๐‘ก,๐‘‡ where

๐œ•๐‘˜

๐œ•๐พ=1

๐พ,

๐œ•๐‘˜

๐œ•๐‘‡= โˆ’๐œ‡๐‘‡ (41)

We want to express the Dupire formula in the (๐‘‡, ๐‘˜)-plane using call option price ๐ถ๐‘‡,๐‘˜ (short for ๐ถ๐‘‡,๐‘˜|๐‘ก,๐‘ง

for ๐‘ง = ln๐‘ฅ

๐น๐‘ก,๐‘‡) equivalent to the forward call ๐ถ๐‘‡,๐พ (short for ๐ถ๐‘‡,๐พ|๐‘ก,๐‘ฅ). Note that although the ๐ถ๐‘‡,๐‘˜ and

๐ถ๐‘‡,๐พ are equivalent, they are two different functions. The conversion from (๐‘‡, ๐พ)-plane to (๐‘‡, ๐‘˜)-plane

is achieved by using the following partial derivatives derived by chain rule

๐œ•๐ถ๐‘‡,๐พ๐œ•๐‘‡

=๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘‡

+๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

๐œ•๐‘˜

๐œ•๐‘‡=๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘‡

โˆ’ ๐œ‡๐‘‡๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

๐œ•๐ถ๐‘‡,๐พ๐œ•๐พ

=๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘‡

๐œ•๐‘‡

๐œ•๐พ+๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

๐œ•๐‘˜

๐œ•๐พ=1

๐พ

๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

๐œ•2๐ถ๐‘‡,๐พ๐œ•๐พ2

=๐œ•

๐œ•๐‘‡(๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

)๐œ•๐‘‡

๐œ•๐พ+๐œ•

๐œ•๐‘˜(๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

)๐œ•๐‘˜

๐œ•๐พ=1

๐พ

๐œ•

๐œ•๐‘˜(1

๐พ

๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

) =1

๐พ2(๐œ•2๐ถ๐‘‡,๐‘˜๐œ•๐‘˜2

โˆ’๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

)

(42)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

11

Plugging these partial derivatives into (32), we have the Dupire formula expressed in ๐‘˜

๐œŽ๐‘‡,๐‘˜2

2=

๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘‡

โˆ’ ๐œ‡๐‘‡๐ถ๐‘‡,๐‘˜

๐œ•2๐ถ๐‘‡,๐‘˜๐œ•๐‘˜2

โˆ’๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

(43)

where ๐œŽ๐‘‡,๐‘˜ is the local volatility in (๐‘‡, ๐‘˜)-plane equivalent to ๐œŽ๐‘‡,๐พ.

2.3. Local Volatility by Implied Volatility

It is a market standard to quote option prices as Black-Scholes implied volatilities. Hence, it is

more straightforward to express the local volatility in terms of the implied volatilities rather than option

prices. Taking ๐‘ก as of today, we can define the forward price as

๐น๐‘ก,๐‘‡ = ๐‘†๐‘ก exp(โˆซ ๐œ‡๐‘ข๐‘‘๐‘ข๐‘‡

๐‘ก

) (44)

The forward call price in Black-Scholes model is then given by

๐‘‹๐‘‡,๐พ,๐œ‰ = ๐น๐‘ก,๐‘‡ฮฆ(๐‘‘+) โˆ’ ๐พฮฆ(๐‘‘โˆ’) with ๐‘‘ยฑ =ln๐น๐‘ก,๐‘‡๐พ

๐œ‰๐‘‡,๐พโˆš๐œยฑ๐œ‰๐‘‡,๐พโˆš๐œ

2, ๐œ = ๐‘‡ โˆ’ ๐‘ก (45)

where ๐œ‰๐‘‡,๐พ is the Black-Scholes implied volatility derived from market quotes of vanilla options and ฮฆ

the standard normal cumulative density function. Its partial derivatives can be derived as

๐œ•๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐‘‡= ๐œ‡๐‘‡๐น๐‘ก,๐‘‡ฮฆ(๐‘‘+) + ๐น๐‘ก,๐‘‡๐œ™(๐‘‘+)

๐œ•๐‘‘+๐œ•๐‘‡

โˆ’ ๐พ๐œ™(๐‘‘โˆ’)๐œ•๐‘‘โˆ’๐œ•๐‘‡

= ๐œ‡๐‘‡๐น๐‘ก,๐‘‡ฮฆ(๐‘‘+) +๐พ๐œ™(๐‘‘โˆ’)๐œ‰

2โˆš๐œ

๐œ•๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐พ= ๐น๐‘ก,๐‘‡๐œ™(๐‘‘+)

๐œ•๐‘‘+๐œ•๐พ

โˆ’ ๐พ๐œ™(๐‘‘โˆ’)๐œ•๐‘‘โˆ’๐œ•๐พ

โˆ’ ฮฆ(๐‘‘โˆ’) = โˆ’ฮฆ(๐‘‘โˆ’),๐œ•2๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐พ2=๐œ™(๐‘‘โˆ’)

๐พ๐œ‰โˆš๐œ

๐œ•๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐œ‰= ๐น๐‘ก,๐‘‡๐œ™(๐‘‘+)

๐œ•๐‘‘+๐œ•๐œ‰

โˆ’ ๐พ๐œ™(๐‘‘โˆ’)๐œ•๐‘‘โˆ’๐œ•๐œ‰

= ๐พ๐œ™(๐‘‘โˆ’)โˆš๐œ,๐œ•2๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐œ‰2=๐‘‘+๐‘‘โˆ’๐พ๐œ™(๐‘‘โˆ’)โˆš๐œ

๐œ‰

๐œ•2๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐œ‰๐œ•๐พ=๐œ™(๐‘‘โˆ’)๐‘‘+

๐œ‰

(46)

where we have used

๐œ•๐‘‘ยฑ๐œ•๐‘‡

=๐œ‡๐‘‡

๐œ‰โˆš๐œโˆ’๐‘‘โˆ“2๐œ,

๐œ•๐‘‘ยฑ๐œ•๐พ

= โˆ’1

๐พ๐œ‰โˆš๐œ,

๐œ•๐‘‘ยฑ๐œ•๐œ‰

= โˆ’๐‘‘โˆ“๐œ‰,

๐œ•2๐‘‘ยฑ๐œ•๐พ๐œ•๐œ‰

=1

๐พ๐œ‰2โˆš๐œ (47)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

12

and the identity

๐น๐‘ก,๐‘‡๐œ™(๐‘‘+) = ๐พ๐œ™(๐‘‘โˆ’) (48)

Further using the partial derivatives

๐œ•๐ถ๐‘‡,๐พ๐œ•๐‘‡

=๐œ•๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐‘‡+๐œ•๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐‘‡,

๐œ•๐ถ๐‘‡,๐พ๐œ•๐พ

=๐œ•๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐พ+๐œ•๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐พ

๐œ•2๐ถ๐‘‡,๐พ๐œ•๐พ2

=๐œ•2๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐พ2+ 2

๐œ•2๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐พ๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐พ+๐œ•๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐œ‰

๐œ•2๐œ‰

๐œ•๐พ2+๐œ•2๐‘‹๐‘‡,๐พ,๐œ‰

๐œ•๐œ‰2(๐œ•๐œ‰

๐œ•๐พ)2

(49)

the local volatility given by implied volatility can be derived from (32) as

๐œŽ๐‘‡,๐พ2 =

๐œ•๐ถ๐‘‡,๐พ๐œ•๐‘‡

+ ๐œ‡๐‘‡๐พ๐œ•๐ถ๐‘‡,๐พ๐œ•๐พ

โˆ’ ๐œ‡๐‘‡๐ถ๐‘‡,๐พ

๐พ2

2๐œ•2๐ถ๐‘‡,๐พ๐œ•๐พ2

=

๐œ•๐‘‹๐œ•๐‘‡+๐œ•๐‘‹๐œ•๐œ‰(๐œ•๐œ‰๐‘‡,๐พ๐œ•๐‘‡

+ ๐œ‡๐‘‡๐พ๐œ•๐œ‰๐‘‡,๐พ๐œ•๐พ

) + ๐œ‡๐‘‡๐พ๐œ•๐‘‹๐œ•๐พ

โˆ’ ๐œ‡๐‘‡๐‘‹

๐พ2

2(๐œ•2๐‘‹๐œ•๐พ2

+ 2๐œ•2๐‘‹๐œ•๐พ๐œ•๐œ‰

๐œ•๐œ‰๐‘‡,๐พ๐œ•๐พ

+๐œ•๐‘‹๐œ•๐œ‰๐œ•2๐œ‰๐‘‡,๐พ๐œ•๐พ2

+๐œ•2๐‘‹๐œ•๐œ‰2

(๐œ•๐œ‰๐œ•๐พ)2

)

=

๐œ‡๐‘‡๐น๐‘ก,๐‘‡ฮฆ(๐‘‘+) +๐พ๐œ™(๐‘‘โˆ’)๐œ‰

2โˆš๐œ+๐œ•๐‘‹๐œ•๐œ‰(๐œ•๐œ‰๐œ•๐‘‡+ ๐œ‡๐‘‡๐พ

๐œ•๐œ‰๐œ•๐พ) โˆ’ ๐œ‡๐‘‡๐พฮฆ(๐‘‘โˆ’) โˆ’ ๐œ‡๐‘‡๐‘‹

๐พ2

2๐œ™(๐‘‘โˆ’)

๐พ๐œ‰โˆš๐œ+ ๐พ2

๐œ™(๐‘‘โˆ’)๐‘‘+๐œ‰

๐œ•๐œ‰๐œ•๐พ

+๐พ2

2๐œ•๐‘‹๐œ•๐œ‰๐œ•2๐œ‰๐œ•๐พ2

+๐พ2

2๐‘‘+๐‘‘โˆ’๐พ๐œ™(๐‘‘โˆ’)โˆš๐œ

๐œ‰(๐œ•๐œ‰๐œ•๐พ)2

=

๐œ•๐‘‹๐œ•๐œ‰(๐œ‰2๐œ+๐œ•๐œ‰๐œ•๐‘‡+ ๐œ‡๐‘‡๐พ

๐œ•๐œ‰๐œ•๐พ)

12๐œ‰๐œ

๐œ•๐‘‹๐œ•๐œ‰+๐พ๐‘‘+๐œ‰โˆš๐œ

๐œ•๐‘‹๐œ•๐œ‰๐œ•๐œ‰๐œ•๐พ

+๐พ2

2๐œ•๐‘‹๐œ•๐œ‰๐œ•2๐œ‰๐œ•๐พ2

+๐พ2๐‘‘+๐‘‘โˆ’2๐œ‰

๐œ•๐‘‹๐œ•๐œ‰(๐œ•๐œ‰๐œ•๐พ)2

=๐œ‰2 + 2๐œ‰๐œ (

๐œ•๐œ‰๐œ•๐‘‡+ ๐œ‡๐‘‡๐พ

๐œ•๐œ‰๐œ•๐พ)

1 + 2โˆš๐œ๐พ๐‘‘+๐œ•๐œ‰๐œ•๐พ

+ ๐‘‘+๐‘‘โˆ’๐œ๐พ2 (๐œ•๐œ‰๐œ•๐พ)2

+ ๐œ‰๐œ๐พ2๐œ•2๐œ‰๐œ•๐พ2

(50)

Numerical methods, e.g. PDE or Monte Carlo simulation, often demand a local volatility

function constructed on a 2D grid to perform pricing. In these methods, it is often more numerically

stable and convenient to work with a spatial dimension in log-strike or in log-moneyness.

2.3.1. Formula in Log-strike

The local volatility formula in log strike ๐‘ฅ = ln๐พ can be derived from (50)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

13

๐œŽ๐‘‡,๐‘ฅ2 =

๐œ‰2 + 2๐œ‰๐œ (๐œ•๐œ‰๐œ•๐‘‡+ ๐œ‡๐‘‡

๐œ•๐œ‰๐œ•๐‘ฅ)

1 + 2โˆš๐œ๐‘‘+๐œ•๐œ‰๐œ•๐‘ฅ+ ๐‘‘+๐‘‘โˆ’๐œ (

๐œ•๐œ‰๐œ•๐‘ฅ)2

+ ๐œ‰๐œ (๐œ•2๐œ‰๐œ•๐‘ฅ2

โˆ’๐œ•๐œ‰๐œ•๐‘ฅ)

=๐œ‰2 + 2๐œ‰๐œ (

๐œ•๐œ‰๐œ•๐‘‡+ ๐œ‡๐‘‡

๐œ•๐œ‰๐œ•๐‘ฅ)

1 + (๐œ‰๐œ โˆ’ 2๐‘˜๐œ‰)๐œ•๐œ‰๐œ•๐‘ฅ+ (๐‘˜2

๐œ‰2โˆ’๐œ‰2๐œ2

4 ) (๐œ•๐œ‰๐œ•๐‘ฅ)2

+ ๐œ‰๐œ (๐œ•2๐œ‰๐œ•๐‘ฅ2

โˆ’๐œ•๐œ‰๐œ•๐‘ฅ)

=๐œ‰2 + 2๐œ‰๐œ (

๐œ•๐œ‰๐œ•๐‘‡+ ๐œ‡๐‘‡

๐œ•๐œ‰๐œ•๐‘ฅ)

(1 โˆ’๐‘˜๐œ‰๐œ•๐œ‰๐œ•๐‘ฅ)2

โˆ’ (๐œ‰๐œ2๐œ•๐œ‰๐œ•๐‘ฅ)2

+ ๐œ‰๐œ๐œ•2๐œ‰๐œ•๐‘ฅ2

(51)

providing that we have the following identities

๐œ•๐œ‰

๐œ•๐พ=๐œ•๐œ‰

๐œ•๐‘ฅ

๐œ•๐‘ฅ

๐œ•๐พ=1

๐พ

๐œ•๐œ‰

๐œ•๐‘ฅ,

๐œ•2๐œ‰

๐œ•๐พ2=๐œ•

๐œ•๐‘ฅ(1

๐พ

๐œ•๐œ‰

๐œ•๐‘ฅ)๐œ•๐‘ฅ

๐œ•๐พ=1

๐พ2(๐œ•2๐œ‰

๐œ•๐‘ฅ2โˆ’๐œ•๐œ‰

๐œ•๐‘ฅ) ,

๐œ•๐‘ฅ

๐œ•๐พ=1

๐พ

๐‘‘ยฑ =โˆ’๐‘˜

๐œ‰โˆš๐œยฑ๐œ‰โˆš๐œ

2, ๐‘˜ = ln

๐พ

๐น๐‘ก,๐‘‡

(52)

2.3.2. Formula in Log-moneyness

We may also want to change the spatial variable to log-moneyness ๐‘˜. Defining a new quantity,

implied total variance ๐‘ฃ๐‘‡,๐‘˜, which is equivalent to ๐œ‰๐‘‡,๐พ2 ๐œ, the Black-Scholes call price that is equivalent

to (45) then transforms into

๐‘‹๐‘‡,๐‘˜,๐‘ฃ = ๐น๐‘ก,๐‘‡(ฮฆ(๐‘‘+) โˆ’ exp(๐‘˜)ฮฆ(๐‘‘โˆ’)) with ๐‘‘ยฑ =โˆ’๐‘˜

โˆš๐‘ฃ๐‘‡,๐‘˜ยฑโˆš๐‘ฃ๐‘‡,๐‘˜

2 (53)

The partial derivatives of ๐‘‹๐‘‡,๐‘˜,๐‘ฃ can be derived as

๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

= ๐น๐‘ก,๐‘‡ (๐œ•ฮฆ(๐‘‘+)

๐œ•๐‘‘+

๐œ•๐‘‘+๐œ•๐‘ฃ

โˆ’ exp(๐‘˜)๐œ•ฮฆ(๐‘‘โˆ’)

๐œ•๐‘‘โˆ’

๐œ•๐‘‘โˆ’๐œ•๐‘ฃ) = ๐น๐‘ก,๐‘‡๐œ™(๐‘‘+) (

๐œ•๐‘‘+๐œ•๐‘ฃ

โˆ’๐œ•๐‘‘โˆ’๐œ•๐‘ฃ) =

๐น๐‘ก,๐‘‡๐œ™(๐‘‘+)

2โˆš๐‘ฃ

๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ2

=๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

(โˆ’1

2๐‘ฃโˆ’ ๐‘‘+

๐œ•๐‘‘+๐œ•๏ฟฝฬ‚๏ฟฝ) =

๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

(โˆ’1

2๐‘ฃโˆ’ (โˆ’

๐‘˜

โˆš๐‘ฃ+โˆš๐‘ฃ

2) (

๐‘˜

2โˆš๐‘ฃ3+

1

4โˆš๐‘ฃ))

=๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

(๐‘˜2

2๐‘ฃ2โˆ’1

2๐‘ฃโˆ’1

8)

(54)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

14

๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜

= ๐น๐‘ก,๐‘‡ (๐œ™(๐‘‘+)๐œ•๐‘‘+๐œ•๐‘˜

โˆ’ exp(๐‘˜)ฮฆ(๐‘‘โˆ’) โˆ’ exp(๐‘˜)๐œ™(๐‘‘โˆ’)๐œ•๐‘‘โˆ’๐œ•๐‘˜) = โˆ’๐น๐‘ก,๐‘‡ exp(๐‘˜)ฮฆ(๐‘‘โˆ’)

๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜2

= โˆ’๐น๐‘ก,๐‘‡ exp(๐‘˜)ฮฆ(๐‘‘โˆ’) + ๐น๐‘ก,๐‘‡exp(๐‘˜)๐œ™(๐‘‘โˆ’)

โˆš๐‘ฃ=๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜

+ 2๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜๐œ•๐‘ฃ

=๐œ•

๐œ•๐‘˜(๐น๐‘ก,๐‘‡๐œ™(๐‘‘+)

2โˆš๐‘ฃ) =

๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐‘‘+๐œ•๐‘‘+๐œ•๐‘˜

=๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

(1

2โˆ’๐‘˜

๐‘ฃ)

๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘‡

= (ฮฆ(๐‘‘+) โˆ’ exp(๐‘˜)ฮฆ(๐‘‘โˆ’))๐œ•๐น๐‘ก,๐‘‡๐œ•๐‘‡

= ๐œ‡๐‘‡๐‘‹๐‘‡,๐‘˜,๐‘ฃ

We may connect the local volatility ๐œŽ๐‘‡,๐‘˜ to the implied total variance ๐‘ฃ๐‘‡,๐‘˜ via two steps. Firstly

we bridge the ๐œŽ๐‘‡,๐‘˜ to ๐‘‹๐‘‡,๐‘˜,๐‘ฃ by (43) using the chain rule

๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘‡

=๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘‡

+๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•๐‘ฃ

๐œ•๐‘‡,

๐œ•๐ถ๐‘‡,๐‘˜๐œ•๐‘˜

=๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜

+๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•๐‘ฃ

๐œ•๐‘˜

๐œ•2๐ถ๐‘‡,๐‘˜๐œ•๐‘˜2

=๐œ•

๐œ•๐‘˜(๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜

+๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•๐‘ฃ

๐œ•๐‘˜) +

๐œ•

๐œ•๐‘ฃ(๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜

+๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•๐‘ฃ

๐œ•๐‘˜)๐œ•๐‘ฃ

๐œ•๐‘˜

=๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜2

+๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜๐œ•๐‘ฃ

๐œ•๐‘ฃ

๐œ•๐‘˜+๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•2๐‘ฃ

๐œ•๐‘˜2+๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ๐œ•๐‘˜

๐œ•๐‘ฃ

๐œ•๐‘˜+๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ2

(๐œ•๐‘ฃ

๐œ•๐‘˜)2

=๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜2

+ 2๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜๐œ•๐‘ฃ

๐œ•๐‘ฃ

๐œ•๐‘˜+๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•2๐‘ฃ

๐œ•๐‘˜2+๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ2

(๐œ•๐‘ฃ

๐œ•๐‘˜)2

(55)

This gives the local volatility expressed in terms of derivatives of ๐‘‹๐‘‡,๐‘˜,๐‘ฃ

๐œŽ๐‘‡,๐‘˜2 =

2(๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘‡

+๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•๐‘ฃ๐œ•๐‘‡โˆ’ ๐œ‡๐‘‡๐‘‹๐‘‡,๐‘˜,๐‘ฃ)

๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜2

+ 2๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜๐œ•๐‘ฃ

๐œ•๐‘ฃ๐œ•๐‘˜+๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•2๐‘ฃ๐œ•๐‘˜2

+๐œ•2๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ2

(๐œ•๐‘ฃ๐œ•๐‘˜)2

โˆ’๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘˜

โˆ’๐œ•๐‘‹๐‘‡,๐‘˜,๐‘ฃ๐œ•๐‘ฃ

๐œ•๐‘ฃ๐œ•๐‘˜

(56)

Secondly we substitute the partial derivatives in (54) into (56) and reach the final equation

๐œŽ๐‘‡,๐‘˜2 =

2(๐œ‡๐‘‡๐‘‹ +๐œ•๐‘‹๐œ•๐‘ฃ๐œ•๐‘ฃ๐œ•๐‘‡โˆ’ ๐œ‡๐‘‡๐‘‹)

๐œ•๐‘‹๐œ•๐‘˜+ 2

๐œ•๐‘‹๐œ•๐‘ฃ+ 2

๐œ•๐‘‹๐œ•๐‘ฃ(12โˆ’๐‘˜๐‘ฃ)๐œ•๐‘ฃ๐œ•๐‘˜+๐œ•๐‘‹๐œ•๐‘ฃ๐œ•2๐‘ฃ๐œ•๐‘˜2

+๐œ•๐‘‹๐œ•๐‘ฃ(๐‘˜2

2๐‘ฃ2โˆ’12๐‘ฃโˆ’18)(๐œ•๐‘ฃ๐œ•๐‘˜)2

โˆ’๐œ•๐‘‹๐œ•๐‘˜โˆ’๐œ•๐‘‹๐œ•๐‘ฃ๐œ•๐‘ฃ๐œ•๐‘˜

โŸน ๐œŽ๐‘‡,๐‘˜2 =

๐œ•๐‘ฃ๐œ•๐‘‡

1 โˆ’๐‘˜๐‘ฃ๐œ•๐‘ฃ๐œ•๐‘˜+14 (๐‘˜2

๐‘ฃ2โˆ’1๐‘ฃโˆ’14)(๐œ•๐‘ฃ๐œ•๐‘˜)2

+12๐œ•2๐‘ฃ๐œ•๐‘˜2

(57)

2.3.3. Equivalency in Formulas

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

15

The ๐œŽ๐‘‡,๐พ2 in (50) is in fact equivalent to the ๐œŽ๐‘‡,๐‘˜

2 in (57). This can be shown as follows

๐œŽ๐‘‡,๐‘˜2 =

๐œ•๐‘ฃ๐œ•๐‘‡

1 โˆ’๐‘˜๐‘ฃ๐œ•๐‘ฃ๐œ•๐‘˜+ (

๐‘˜2

4๐‘ฃ2โˆ’14๐‘ฃโˆ’116) (๐œ•๐‘ฃ๐œ•๐‘˜)2

+12๐œ•2๐‘ฃ๐œ•๐‘˜2

=๐œ‰2 + 2๐œ‰๐œ (

๐œ•๐œ‰๐œ•๐‘‡+ ๐œ‡๐พ

๐œ•๐œ‰๐œ•๐พ)

1 โˆ’ 2๐œ‰๐œ๐พ๐‘˜๐‘ฃ๐œ•๐œ‰๐œ•๐พ

+ (๐‘˜2

๐‘ฃ2โˆ’1๐‘ฃโˆ’14)(๐œ‰๐œ๐พ

๐œ•๐œ‰๐œ•๐พ)2

+ ๐œ๐พ2 ((๐œ•๐œ‰๐œ•๐พ)2

+๐œ‰๐พ๐œ•๐œ‰๐œ•๐พ

+ ๐œ‰๐œ•2๐œ‰๐œ•๐พ2

)

=๐œ‰2 + 2๐œ‰๐œ (

๐œ•๐œ‰๐œ•๐‘‡+ ๐œ‡๐พ

๐œ•๐œ‰๐œ•๐พ)

1 + (1 โˆ’ 2๐‘˜๐‘ฃ) ๐œ‰๐œ๐พ

๐œ•๐œ‰๐œ•๐พ

+ (๐‘˜2

๐‘ฃโˆ’๐‘ฃ4)๐œ๐พ2 (

๐œ•๐œ‰๐œ•๐พ)2

+ ๐œ‰๐œ๐พ2๐œ•2๐œ‰๐œ•๐พ2

=๐œ‰2 + 2๐œ‰๐œ (

๐œ•๐œ‰๐œ•๐‘‡+ ๐œ‡๐พ

๐œ•๐œ‰๐œ•๐พ)

1 + 2โˆš๐œ๐พ๐‘‘+๐œ•๐œ‰๐œ•๐พ

+ ๐‘‘+๐‘‘โˆ’๐œ๐พ2 (๐œ•๐œ‰๐œ•๐พ)2

+ ๐œ‰๐œ๐พ2๐œ•2๐œ‰๐œ•๐พ2

= ๐œŽ๐‘‡,๐พ2

(58)

where by definition we have

๐‘˜ = ln๐พ

๐น๐‘ก,๐‘‡, ๐‘ฃ = ๐œ‰2๐œ, ๐‘‘ยฑ =

ln๐น๐‘ก,๐‘‡๐พยฑ๐œ‰2๐œ2

๐œ‰โˆš๐œ=โˆ’๐‘˜

โˆš๐‘ฃยฑโˆš๐‘ฃ

2, ๐‘‘+๐‘‘โˆ’ =

๐‘˜2

๐‘ฃโˆ’๐‘ฃ

4 (59)

and also have the identities

๐œ•๐‘ฃ

๐œ•๐‘‡=๐œ•(๐œ‰2๐œ)

๐œ•๐‘‡= ๐œ‰2 + 2๐œ‰๐œ (

๐œ•๐œ‰

๐œ•๐‘‡+๐œ•๐œ‰

๐œ•๐พ

๐œ•๐พ

๐œ•๐‘‡) = ๐œ‰2 + 2๐œ‰๐œ (

๐œ•๐œ‰

๐œ•๐‘‡+ ๐œ‡๐พ

๐œ•๐œ‰

๐œ•๐พ)

๐œ•๐‘ฃ

๐œ•๐‘˜=๐œ•(๐œ‰2๐œ)

๐œ•๐‘˜=๐œ•(๐œ‰2๐œ)

๐œ•๐‘‡

๐œ•๐‘‡

๐œ•๐‘˜+๐œ•(๐œ‰2๐œ)

๐œ•๐พ

๐œ•๐พ

๐œ•๐‘˜= 2๐œ‰๐œ

๐œ•๐œ‰

๐œ•๐พ

๐œ•๐พ

๐œ•๐‘˜= 2๐œ‰๐œ๐พ

๐œ•๐œ‰

๐œ•๐พ

๐œ•2๐‘ฃ

๐œ•๐‘˜2=๐œ• (2๐œ‰๐œ๐พ

๐œ•๐œ‰๐œ•๐พ)

๐œ•๐‘‡

๐œ•๐‘‡

๐œ•๐‘˜+๐œ• (2๐œ‰๐œ๐พ

๐œ•๐œ‰๐œ•๐พ)

๐œ•๐พ

๐œ•๐พ

๐œ•๐‘˜= 2๐œ๐พ (๐œ‰

๐œ•๐œ‰

๐œ•๐พ+ ๐พ

๐œ•๐œ‰

๐œ•๐พ

๐œ•๐œ‰

๐œ•๐พ+ ๐œ‰๐พ

๐œ•2๐œ‰

๐œ•๐พ2)

= 2๐œ๐พ2 ((๐œ•๐œ‰

๐œ•๐พ)2

+๐œ‰

๐พ

๐œ•๐œ‰

๐œ•๐พ+ ๐œ‰

๐œ•2๐œ‰

๐œ•๐พ2)

(60)

considering the fact that in (๐‘‡, ๐‘˜)-plane the ๐‘‡ and ๐พ are no longer independent

๐œ•๐พ

๐œ•๐‘‡=๐œ•(๐น๐‘ก,๐‘‡ exp(๐‘˜))

๐œ•๐‘‡= ๐œ‡๐‘‡๐พ,

๐œ•๐พ

๐œ•๐‘˜=๐œ•(๐น๐‘ก,๐‘‡ exp(๐‘˜))

๐œ•๐‘˜= ๐พ (61)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

16

3. LOCAL VOLATILITY: PDE BY FINITE DIFFERENCE METHOD

In this chapter, we will present a PDE based local volatility model, in which the local volatility

surface is constructed as a 2-D function that is piecewise constant in maturity and piecewise linear in

log-moneyness (for equity) or delta (for FX). Due to great similarity between FX and equity processes,

our interest lies primarily in the context of equity derivatives, the conclusions and formulas drawn from

our discussion here are in general applicable to FX products with minor changes. In contrast to the

traditional way to construct the local volatility by estimating highly sensitive and numerically unstable

partial derivatives in Dupire formulas, this method relies heavily on solving forward PDEโ€™s to calibrate a

parametrized local volatility surface to vanilla option prices in a bootstrapping manner. Once the local

volatility surface is calibrated, the backward PDE can then be used to price exotic options (e.g. barrier

options) that are in consistent with the market observed implied volatility surface.

Before proceeding to the PDEโ€™s, it is important to have an overview of the date conventions for

equity and equity options. The date conventions for FX products are defined in a similar manner.

3.1. Date Conventions of Equity and Equity Option

The diagram illustrates the date definitions for an equity and its associated option. The quantities

appeared in the diagram are listed in Table 1.

ฮ”๐‘’,๐‘  ๐‘ก๐‘’,๐‘  ๐‘ก๐‘–,๐‘’ ๐‘ก๐‘–,๐‘ ฮ”๐‘’,๐‘

๐‘ก

ฮ”๐‘œ,๐‘  ๐‘ก๐‘œ,๐‘  ฮ”๐‘œ,๐‘

๐œ๐‘œ = ๐‘ก๐‘œ,๐‘š โˆ’ ๐‘ก0 ๐‘ก๐‘œ,๐‘š ๐‘‡๐‘œ,๐‘

๐œ๐‘’ = ๐‘ก๐‘’,๐‘š โˆ’ ๐‘ก0 ๐‘ก๐‘’,๐‘š ๐‘‡๐‘’,๐‘ ๐‘ก0

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

17

Table 1. Dates of Equities and Options

attribute symbol description remark/example

trade date ๐‘ก0 on which the equity/option is traded today

equity spot lag ฮ”๐‘’,๐‘  equity premium settlement lag 3D

equity spot date ๐‘ก๐‘’,๐‘  on which the equity premium is settled ๐‘ก๐‘’,๐‘  = ๐‘ก0โŠ•ฮ”๐‘’,๐‘ 

equity maturity date ๐‘ก๐‘’,๐‘š equity maturity date ๐‘ก๐‘’,๐‘š = ๐‘ก0โŠ•1๐‘Œ

equity pay lag1 ฮ”๐‘’,๐‘ lag between ๐‘ก๐‘’,๐‘š and ๐‘ก๐‘’,๐‘ e.g. same as ฮ”๐‘’,๐‘ 

equity pay date ๐‘ก๐‘’,๐‘ on which the equity payoff is settled ๐‘ก๐‘’,๐‘ = ๐‘ก๐‘’,๐‘šโŠ•ฮ”๐‘’,๐‘

๐‘–-th dividend ๐œƒ๐‘– dividend payment amount

๐‘–-th ex- div. date ๐‘ก๐‘–,๐‘’ ex-dividend date

๐‘–-th div. pay date ๐‘ก๐‘–,๐‘ dividend pay date

option spot lag ฮ”๐‘œ,๐‘  option premium settlement lag 2D

option spot date ๐‘ก๐‘œ,๐‘  on which the option is settled ๐‘ก๐‘œ,๐‘  = ๐‘ก0โŠ•ฮ”๐‘œ,๐‘ 

option maturity date ๐‘ก๐‘œ,๐‘š option maturity date ๐‘ก๐‘œ,๐‘š = ๐‘ก0โŠ•1๐‘Œ

option pay lag ฮ”๐‘œ,๐‘ lag between ๐‘ก๐‘œ,๐‘š and ๐‘ก๐‘œ,๐‘ e.g. same as ฮ”๐‘œ,๐‘ 

option pay date ๐‘ก๐‘œ,๐‘ on which the equity payoff is settled ๐‘ก๐‘œ,๐‘ = ๐‘ก๐‘œ,๐‘šโŠ•ฮ”๐‘œ,๐‘

day rolling โŠ• rolling with convention โ€œfollowingโ€ Following

calendar defining business days and holidays US / UK / HK

As most of the quantities are self-explanatory, our discussion focuses more on the treatment of

equity dividends.

3.2. Deterministic Dividends

In our example, we can assume both the short rate and the dividend rate are deterministic and

continuous, e.g. time-dependent ๐‘Ÿ๐‘ข and ๐‘ž๐‘ข as in (21). the equity forward in this case can be calculated by

๐น(๐‘ก0, ๐‘ก๐‘’,๐‘š) = ๐‘†(๐‘ก0)๐‘ƒ๐‘ž(๐‘ก๐‘’,๐‘ , ๐‘ก๐‘’,๐‘)

๐‘ƒ๐‘Ÿ(๐‘ก๐‘’,๐‘ , ๐‘ก๐‘’,๐‘) where

๐‘ƒ๐‘ž(๐‘ก, ๐‘‡) = exp(โˆ’โˆซ ๐‘ž๐‘ข๐‘‘๐‘ข๐‘‡

๐‘ก

) , ๐‘ƒ๐‘Ÿ(๐‘ก, ๐‘‡) = exp(โˆ’โˆซ ๐‘Ÿ๐‘ข๐‘‘๐‘ข๐‘‡

๐‘ก

)

(62)

In a more realistic implementation, we may assume the underlying equity issues a series of

discrete dividends with fixed amounts in a foreseeable future. It is obvious that the equity spot still

follows the SDE (21) with ๐‘ž๐‘ข = 0 in between two adjacent ex-dividend dates (There is discontinuity in

1 Equity settlement delay

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

18

spot process on ex-dividend dates that demands special treatment. This will be discussed in detail in due

course). With fixed dividends, the equity forward becomes

๐น(๐‘ก0, ๐‘ก๐‘’,๐‘š) =๐‘†(๐‘ก0) โˆ’ โˆ‘ ๐œƒ๐‘–๐‘ƒ๐‘Ÿ(๐‘ก๐‘’,๐‘ , ๐‘ก๐‘–,๐‘)๐‘–

๐‘ƒ๐‘Ÿ(๐‘ก๐‘’,๐‘ , ๐‘ก๐‘’,๐‘) for ๐‘ก0 < ๐‘ก๐‘–,๐‘’ โ‰ค ๐‘ก๐‘’,๐‘š (63)

where ๐œƒ๐‘– is the fixed amount of the ๐‘–-th dividend issued on ex-dividend date ๐‘ก๐‘–,๐‘’.

Discrete dividend can also be modeled as proportional dividend. It assumes that at each ex-

dividend date, the dividend payment will result in a price drop in equity spot proportional to the spot

level. For example, the equity spot before and after the dividend fall has the relationship

๐‘†(๐‘ก๐‘–,๐‘’ + ฮ”) = ๐‘†(๐‘ก๐‘–,๐‘’ โˆ’ ฮ”)(1 โˆ’ ๐œ‚๐‘–) (64)

where ฮ” denotes an infinitesimal amount of time and ๐œ‚๐‘– the proportional dividend rate at ex-dividend

date ๐‘ก๐‘–,๐‘’. By this relationship, we can write the equity forward as

๐น(๐‘ก0, ๐‘ก๐‘’,๐‘š) = ๐‘†(๐‘ก0)โˆ (1 โˆ’ ๐œ‚๐‘–)๐‘–

๐‘ƒ๐‘Ÿ(๐‘ก๐‘’,๐‘ , ๐‘ก๐‘’,๐‘) for ๐‘ก0 < ๐‘ก๐‘–,๐‘’ โ‰ค ๐‘ก๐‘’,๐‘š (65)

Sometimes it is often more convenient to approximate the fixed dividends by proportional

dividends. The conversion can be achieved by equating the equity forward in (63) and in (65), such that

โˆ(1โˆ’ ๐œ‚๐‘–)

๐‘–

= 1 โˆ’1

๐‘†(๐‘ก0)โˆ‘๐œƒ๐‘–๐‘ƒ๐‘Ÿ(๐‘ก๐‘’,๐‘ , ๐‘ก๐‘–,๐‘)

๐‘–

for ๐‘ก0 < ๐‘ก๐‘–,๐‘’ โ‰ค ๐‘ก๐‘’,๐‘š (66)

The proportional dividend ๐œ‚๐‘– can then be bootstrapped from a series of fixed dividends ๐œƒ๐‘– starting from

the first ex-dividend date.

3.3. Forward PDE

In the following, our derivation is based on the spot process ๐‘†๐‘ก defined in (21) and its variants.

For example, depending on the application we may write the SDE (21) in terms of log-spot ๐“๐‘ข = ln ๐‘†๐‘ข

or in terms of centered log-spot ๐‘ง๐‘ข = ln๐‘†๐‘ข

๐น๐‘ก,๐‘ข

๐‘‘๐“๐‘ข = (๐œ‡๐‘ข โˆ’1

2๐œŽ(๐‘ข, ๐“)2) ๐‘‘๐‘ข + ๐œŽ(๐‘ข, ๐“)๐‘‘๏ฟฝฬƒ๏ฟฝ๐‘ข and ๐‘‘๐‘ง๐‘ข = โˆ’

1

2๐œŽ(๐‘ข, ๐‘ง)2๐‘‘๐‘ข + ๐œŽ(๐‘ข, ๐‘ง)๐‘‘๏ฟฝฬƒ๏ฟฝ๐‘ข (67)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

19

where ๐œŽ(๐‘ข, ๐“) and ๐œŽ(๐‘ข, ๐‘ง) are the local volatility function of ๐“ and ๐‘ง, respectively.

Letโ€™s denote the forward temporal variable by ๐‘ข for ๐‘ก < ๐‘ข < ๐‘‡ , the spatial variable by log-

moneyness ๐‘˜ = ln๐พ

๐น๐‘ก,๐‘ข (as in (41)) and the spot by ๐‘ง = ln

๐‘†๐‘ข

๐น๐‘ก,๐‘ข. Given that ๐‘ง๐‘ก = 0 , the value of a

normalized forward call can be defined as

๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง =๐ถ๐‘ข,๐‘˜|๐‘ก,๐‘ง๐น๐‘ก,๐‘ข

=๏ฟฝฬƒ๏ฟฝ[(๐‘†๐‘ข โˆ’ ๐พ)

+|๐‘ก, ๐‘†๐‘ก]

๐น๐‘ก,๐‘ข (68)

Let ๐œŽ๐‘ข,๐‘˜ be the local volatility function of variable ๐‘˜ equivalent to ๐œŽ๐‘‡,๐พ. We can derive the forward PDE

for ๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง from (43)

๐œŽ๐‘ข,๐‘˜2

2=๐น๐‘ก,๐‘ข

๐œ•๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘ข

+ ๐œ‡๐‘ข๐น๐‘ก,๐‘ข๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง โˆ’ ๐œ‡๐‘ข๐ถ๐‘ข,๐‘˜|๐‘ก,๐‘ง

๐น๐‘ก,๐‘ข๐œ•2๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜2

โˆ’ ๐น๐‘ก,๐‘ข๐œ•๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜

=

๐œ•๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘ข

๐œ•2๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜2

โˆ’๐œ•๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜

โŸน๐œ•๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘ข

=๐œŽ๐‘ข,๐‘˜2

2(๐œ•2๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜2

โˆ’๐œ•๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜

)

(69)

with initial condition

๐‘‰๐‘ก,๐‘˜|๐‘ก,๐‘ง =๐ถ๐‘ก,๐‘˜|๐‘ก,๐‘ง๐น๐‘ก,๐‘ก

=๏ฟฝฬƒ๏ฟฝ [(๐‘†๐‘ก โˆ’ ๐น๐‘ก,๐‘ก๐‘’

๐‘˜)+| ๐‘ก, ๐‘†๐‘ก]

๐น๐‘ก,๐‘ก= (1 โˆ’ ๐‘’๐‘˜)+ (70)

using the partial derivatives

๐œ•๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘ข

=1

๐น๐‘ก,๐‘ข

๐œ•๐ถ๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘ข

โˆ’ ๐œ‡๐‘ข๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง , ๐œ•๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜

=1

๐น๐‘ก,๐‘ข

๐œ•๐ถ๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜

, ๐œ•2๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜2

=1

๐น๐‘ก,๐‘ข

๐œ•2๐ถ๐‘ข,๐‘˜|๐‘ก,๐‘ง๐œ•๐‘˜2

(71)

The PDE (69) appears drift-less and provides more robust calibration stability at low volatility and/or

high drift due to the โ€œtransparencyโ€ of drift in the PDE.

3.3.1. Treatment of Deterministic Dividends

A (discrete) dividend pay-out will typically result in a drop in equity price on the ex-dividend

date. Suppose that time ๐‘ข is the ex-dividend date, the no-arbitrage condition states that at ๐‘ข+ the time

right after the ex-dividend date (e.g. the difference between ๐‘ข and ๐‘ข+ can be infinitesimal), we must

have

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

20

๐‘†๐‘ข+ = ๐‘†๐‘ข โˆ’ ๐œƒ๐‘ข (72)

where ๐œƒ๐‘ข is the value of dividend issued at ๐‘ข (note that in a rigorous setup the value must take into

account the discounting effect due to dividend payment delay). Since a forward is expectation of spot

under risk neutral measure1, we may write

๐น๐‘ก,๐‘ข+ = ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐‘†๐‘ข+] = ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐‘†๐‘ข โˆ’ ๐œƒ๐‘ข] = ๐น๐‘ก,๐‘ข โˆ’ ๏ฟฝฬƒ๏ฟฝ๐‘ก[๐œƒ๐‘ข] (73)

Under the assumption that ๐œƒ๐‘ข is a fixed amount, it reads

๐น๐‘ก,๐‘ข+ = ๐น๐‘ก,๐‘ข โˆ’ ๐œƒ๐‘ข (74)

In our finite difference method, the spatial grid for log-moneyness ๐‘˜ is assumed uniform such that ๐‘˜๐‘– โˆ’

๐‘˜๐‘–โˆ’1 is constant for all ๐‘–. Dividend payment causes discontinuity in the underlying spot. Evolving the

forward PDE (69) from initial time ๐‘ก produces a state vector ๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง at time ๐‘ข. Immediately after the

issuance of dividend at time ๐‘ข+, the spot and forward drop the same ๐œƒ๐‘ข amount and hence the state

vector ๐‘‰๐‘ข+,๐‘˜|๐‘ก,๐‘ง must be realigned to reflect the dividend fall. This can be done using the option no-

arbitrage condition, such that

๐ถ๐‘ข+,๐‘˜|๐‘ก,๐‘ง = ๏ฟฝฬƒ๏ฟฝ๐‘ก [(๐‘†๐‘ข+ โˆ’ ๐พ)+] = ๏ฟฝฬƒ๏ฟฝ๐‘ก [(๐‘†๐‘ข โˆ’ ๐œƒ๐‘ข โˆ’ ๐น๐‘ก,๐‘ข+๐‘’

๐‘˜)+] = ๏ฟฝฬƒ๏ฟฝ๐‘ก [(๐‘†๐‘ข โˆ’ ๐น๐‘ก,๐‘ข๐‘’

๏ฟฝฬ‚๏ฟฝ)+] = ๐ถ๐‘ข,๏ฟฝฬ‚๏ฟฝ|๐‘ก,๐‘ง

where ๏ฟฝฬ‚๏ฟฝ = ln๐น๐‘ก,๐‘ข+๐‘’

๐‘˜ + ๐œƒ๐‘ข

๐น๐‘ก,๐‘ข

(75)

Subsequently we can use ๏ฟฝฬ‚๏ฟฝ to interpolate from the ๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง state vector and transform the interpolated

value to form ๐‘‰๐‘ข+,๐‘˜|๐‘ก,๐‘ง vector by

๐‘‰๐‘ข+,๐‘˜|๐‘ก,๐‘ง =๐ถ๐‘ข+,๐‘˜|๐‘ก,๐‘ง

๐น๐‘ก,๐‘ข+=๐ถ๐‘ข,๏ฟฝฬ‚๏ฟฝ|๐‘ก,๐‘ง

๐น๐‘ก,๐‘ข

๐น๐‘ก,๐‘ข๐น๐‘ก,๐‘ข+

=๐น๐‘ก,๐‘ข๐น๐‘ก,๐‘ข+

๐‘‰๐‘ข,๏ฟฝฬ‚๏ฟฝ|๐‘ก,๐‘ง (76)

If the dividend is proportional, we must have spot price ๐‘†๐‘ข+ = ๐‘†๐‘ข(1 โˆ’ ๐œ‚๐‘ข) for a rate ๐œ‚๐‘ข and

hence forward price ๐น๐‘ก,๐‘ข+ = ๐น๐‘ก,๐‘ข(1 โˆ’ ๐œ‚๐‘ข) before and after the dividend fall. Because we can show that

1 Strictly speaking, a forward on time ๐‘‡ spot is an expectation of the spot under ๐‘‡-forward measure, i.e. ๐น๐‘ก,๐‘‡ =

๏ฟฝฬ‚๏ฟฝ๐‘ก๐‘‡[๐‘†๐‘‡]. However since the interest rate is assumed deterministic, the ๐‘‡-forward measure coincides with the risk

neutral measure.

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

21

๐‘‰๐‘ข+,๐‘˜|๐‘ก,๐‘ง =๏ฟฝฬƒ๏ฟฝ๐‘ก [(๐‘†๐‘ข+ โˆ’ ๐พ)

+]

๐น๐‘ก,๐‘ข+=(1 โˆ’ ๐œ‚๐‘ข)๏ฟฝฬƒ๏ฟฝ๐‘ก [(๐‘†๐‘ข โˆ’ ๐น๐‘ก,๐‘ข๐‘’

๐‘˜)+]

๐น๐‘ก,๐‘ข(1 โˆ’ ๐œ‚๐‘ข)=๏ฟฝฬƒ๏ฟฝ๐‘ก [(๐‘†๐‘ข โˆ’ ๐น๐‘ก,๐‘ข๐‘’

๐‘˜)+]

๐น๐‘ก,๐‘ข= ๐‘‰๐‘ข,๐‘˜|๐‘ก,๐‘ง (77)

the state vector remains unchanged before and after the issuance of dividend.

With continuous dividend ๐‘ž๐‘ข, the realignment of state vector is unnecessary because there is no

discontinuity in equity spot.

3.4. Backward PDE

Again we assume the spot follows the SDE (21). Without loss of generality, letโ€™s denote

๐บ(๐‘†๐‘‡|๐พ) an arbitrary payoff function with parameter ๐พ, whose value is contingent on ๐‘†๐‘‡ at time ๐‘‡. One

example of such function would be the payoff function of a call option: ๐บ(๐‘†๐‘‡|๐พ) = (๐‘†๐‘‡ โˆ’ ๐พ)+. Let

๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ be the expectation of the function ๐บ(๐‘†๐‘‡|๐พ) at time ๐‘ข with spatial variable ๐‘ฅ = ๐‘†๐‘ข, which can be

written as

๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ = ๏ฟฝฬƒ๏ฟฝ[๐บ(๐‘†๐‘‡|๐พ)|๐‘ข, ๐‘ฅ] = โˆซ๐บ(๐‘ฆ|๐พ)๐‘๐‘‡,๐‘ฆ|๐‘ข,๐‘ฅ๐‘‘๐‘ฆโ„

(78)

where the transition probability ๐‘๐‘‡,๐‘ฆ|๐‘ข,๐‘ฅ follows the Kolmogorov backward equation (20)

๐œ•๐‘๐‘‡,๐‘ฆ|๐‘ข,๐‘ฅ๐œ•๐‘ข

= ๐œ‡๐‘ข๐‘ฅ๐œ•๐‘๐‘‡,๐‘ฆ|๐‘ข,๐‘ฅ๐œ•๐‘ฅ

+๐œŽ๐‘ข,๐‘ฅ2 ๐‘ฅ2

2

๐œ•2๐‘๐‘‡,๐‘ฆ|๐‘ข,๐‘ฅ๐œ•๐‘ฅ2

(79)

In turn, we can derive the backward PDE for the ๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ such that

๐œ•๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ๐œ•๐‘ข

= โˆซ ๐บ(๐‘ฆ|๐พ)๐œ•๐‘๐‘‡,๐‘ฆ|๐‘ข,๐‘ฅ๐œ•๐‘ข

๐‘‘๐‘ฆโ„

= โˆ’โˆซ ๐บ(๐‘ฆ|๐พ) (๐œ‡๐‘ข๐‘ฅ๐œ•๐‘๐‘‡,๐‘ฆ|๐‘ข,๐‘ฅ๐œ•๐‘ฅ

+๐œŽ๐‘ข,๐‘ฅ2 ๐‘ฅ2

2

๐œ•2๐‘๐‘‡,๐‘ฆ|๐‘ข,๐‘ฅ๐œ•๐‘ฅ2

)๐‘‘๐‘ฆโ„

= โˆ’๐œ‡๐‘ข๐‘ฅ๐œ•๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ๐œ•๐‘ฅ

โˆ’๐œŽ๐‘ข,๐‘ฅ2 ๐‘ฅ2

2

๐œ•2๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ๐œ•๐‘ฅ2

(80)

with terminal condition

๐‘ˆ๐‘‡,๐‘ฅ|๐‘‡,๐พ = ๐บ(๐‘ฅ|๐พ) (81)

3.4.1. PDE in Centered Log-spot

Assuming the spatial variable is ๐‘ง๐‘ข = ln๐‘ฅ

๐น๐‘ก,๐‘ข at time ๐‘ข, we may write ๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜ in the (๐‘ข, ๐‘ง)-plane

equivalent to ๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ. The backward PDE (80) can then be transformed into

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

22

๐œ•๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ข

= โˆ’๐œŽ๐‘ข,๐‘ง2

2(๐œ•2๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ง2

โˆ’๐œ•๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ง

) (82)

with terminal condition

๐‘ˆ๐‘‡,๐‘ง|๐‘‡,๐‘˜ = ๐บ(๐น๐‘ก,๐‘‡๐‘’๐‘ง|๐น๐‘ก,๐‘‡๐‘’

๐‘˜) (83)

by using the following partial derivatives derived from the chain rule

๐œ•๐‘ง

๐œ•๐‘ฅ=1

๐‘ฅ,

๐œ•๐‘ง

๐œ•๐‘ข= โˆ’๐œ‡๐‘ข,

๐œ•๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ๐œ•๐‘ข

=๐œ•๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ข

+๐œ•๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ง

๐œ•๐‘ง

๐œ•๐‘ข=๐œ•๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ข

โˆ’ ๐œ‡๐‘ข๐œ•๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ง

๐œ•๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ๐œ•๐‘ฅ

=๐œ•๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ง

๐œ•๐‘ง

๐œ•๐‘ฅ=1

๐‘ฅ

๐œ•๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ง

,๐œ•2๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ๐œ•๐‘ฅ2

=1

๐‘ฅ2(๐œ•2๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ง2

โˆ’๐œ•๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜๐œ•๐‘ง

)

(84)

3.4.1.1. Treatment of Deterministic Dividends

With fixed dividend ๐œƒ๐‘ข, we have

๐‘†๐‘ข+ = ๐‘†๐‘ข โˆ’ ๐œƒ๐‘ข and ๐น๐‘ก,๐‘ข+ = ๐น๐‘ก,๐‘ข โˆ’ ๐œƒ๐‘ข (85)

The no arbitrage condition shows that for the spatial grid ๐‘ง

๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜ = ๏ฟฝฬƒ๏ฟฝ[๐บ(๐‘†๐‘‡|๐น๐‘ก,๐‘‡๐‘’๐‘˜)|๐‘ข, ๐น๐‘ก,๐‘ข๐‘’

๐‘ง] = ๏ฟฝฬƒ๏ฟฝ[๐บ(๐‘†๐‘‡|๐น๐‘ก,๐‘‡๐‘’๐‘˜)|๐‘ข+, ๐น๐‘ก,๐‘ข๐‘’

๐‘ง โˆ’ ๐œƒ๐‘ข]

= ๏ฟฝฬƒ๏ฟฝ[๐บ(๐‘†๐‘‡|๐น๐‘ก,๐‘‡๐‘’๐‘˜)|๐‘ข+, ๐น๐‘ก,๐‘ข+๐‘’

๏ฟฝฬ‚๏ฟฝ] = ๐‘ˆ๐‘ข+,๏ฟฝฬ‚๏ฟฝ|๐‘‡,๐‘˜ where ๏ฟฝฬ‚๏ฟฝ = ln๐น๐‘ก,๐‘ข๐‘’

๐‘ง โˆ’ ๐œƒ๐‘ข๐น๐‘ก,๐‘ข+

(86)

It is likely that if ๐‘ง is sufficiently small (e.g. at lower boundary of spatial grid) we may end up with

๐น๐‘ก,๐‘ข๐‘’๐‘ง โˆ’ ๐œƒ๐‘ข < 0, which makes the ๏ฟฝฬ‚๏ฟฝ not well defined. A solution is to floor it to a small positive number,

e.g. taking max(10โˆ’10, ๐น๐‘ก,๐‘ข๐‘’๐‘ง โˆ’ ๐œƒ๐‘ข) . This is valid because equity spot must be positive and the

๐‘ˆ๐‘ข+,๏ฟฝฬ‚๏ฟฝ|๐‘‡,๐‘˜ flattens as ๏ฟฝฬ‚๏ฟฝ goes to negative infinity. After the special treatment, we can use the ๏ฟฝฬ‚๏ฟฝ to

interpolate from the ๐‘ˆ๐‘ข,๐‘ง|๐‘‡,๐‘˜ state vector and convert the interpolated value into vector ๐‘ˆ๐‘ข+,๐‘ง|๐‘‡,๐‘˜.

With proportional dividend, the conclusion drawn for forward PDE still applies here and the

state vector remains unchanged before and after the dividend fall. With continuous dividend, the

realignment of state vector is unnecessary because there is no discontinuity in equity spot.

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

23

3.4.1.2. Vanilla Call

Due to the duality between the forward and backward PDE, it is evident that vanilla calls (or

puts) must admit the identity: ๐‘ˆ๐‘ก,๐‘ง|๐‘‡,๐‘˜ = ๐‘‰๐‘‡,๐‘˜|๐‘ก,๐‘ง๐น๐‘ก,๐‘‡ , where ๐‘ˆ๐‘ก,๐‘ง|๐‘‡,๐‘˜ is the forward call solved from

backward PDE (82) and ๐‘‰๐‘‡,๐‘˜|๐‘ก,๐‘ง the normalized forward call solved from forward PDE (69). This

relationship can be used to check the correctness of implementation of the numerical engines of forward

and backward PDE.

3.4.2. PDE in Log-spot

For pricing some exotic options, e.g. barrier options, it is more convenient to use log-spot ๐“ =

ln ๐‘ฅ as the spatial variable. Similarly we can define ๐“€ = ln๐พ. Letโ€™s denote the (discounted) price of a

derivative product by

๐‘‹๐‘ข,๐“|๐‘‡,๐“€ = ๐ท๐‘ข,๐‘‡๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€ = ๏ฟฝฬƒ๏ฟฝ[๐ท๐‘ข,๐‘‡๐บ(๐‘†๐‘‡|๐‘’๐‘˜)|๐‘ข, ๐‘’๐“] (87)

By taking into account the discount factor, it must follow the following backward PDE

๐œ•๐‘‹๐‘ข,๐“|๐‘‡,๐“€๐œ•๐‘ข

= ๐‘Ÿ๐‘ข๐‘‹๐‘ข,๐“|๐‘‡,๐“€ + ๐ท๐‘ข,๐‘‡๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐‘ข

= ๐‘Ÿ๐‘ข๐‘‹๐‘ข,๐“|๐‘‡,๐“€ + ๐ท๐‘ข,๐‘‡ (โˆ’๐œ‡๐‘ข๐‘ฅ1

๐‘ฅ

๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“

โˆ’๐œŽ๐‘ข,๐“2

2

1

๐‘ฅ2(๐œ•2๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“2

โˆ’๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“

))

= โˆ’๐œŽ๐‘ข,๐“2

2

๐œ•2๐‘‹๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“2

+ (๐œŽ๐‘ข,๐“2

2โˆ’ ๐œ‡๐‘ข)

๐œ•๐‘‹๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“

+ ๐‘Ÿ๐‘ข๐‘‹๐‘ข,๐“|๐‘‡,๐“€

(88)

where the partial derivatives below have been used

๐œ•๐“

๐œ•๐‘ฅ=1

๐‘ฅ,

๐œ•๐“

๐œ•๐‘ข= 0,

๐œ•๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ๐œ•๐‘ข

=๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐‘ข

+๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“

๐œ•๐“

๐œ•๐‘ข=๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐‘ข

๐œ•๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ๐œ•๐‘ฅ

=๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅ+๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“

๐œ•๐“

๐œ•๐‘ฅ=1

๐‘ฅ

๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“

๐œ•2๐‘ˆ๐‘ข,๐‘ฅ|๐‘‡,๐พ๐œ•๐‘ฅ2

=๐œ•

๐œ•๐‘ฅ(1

๐‘ฅ

๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“

) = โˆ’1

๐‘ฅ2๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“

+1

๐‘ฅ

๐œ•2๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“๐œ•๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅ+1

๐‘ฅ

๐œ•2๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“2

๐œ•๐“

๐œ•๐‘ฅ

=1

๐‘ฅ2(๐œ•2๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“2

โˆ’๐œ•๐‘ˆ๐‘ข,๐“|๐‘‡,๐“€๐œ•๐“

)

(89)

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

24

3.4.2.1. Treatment of Deterministic Dividends

With fixed dividend ๐œƒ๐‘ข, the no arbitrage condition states that

๐‘‹๐‘ข,๐“|๐‘‡,๐“€ = ๏ฟฝฬƒ๏ฟฝ[๐ท๐‘ข,๐‘‡๐บ(๐‘†๐‘‡|๐‘’๐“€)|๐‘ข, ๐‘’๐“] = ๏ฟฝฬƒ๏ฟฝ[๐ท๐‘ข+,๐‘‡๐บ(๐‘†๐‘‡|๐‘’

๐“€)|๐‘ข+, ๐‘’๐“ โˆ’ ๐œƒ๐‘ข]

= ๏ฟฝฬƒ๏ฟฝ[๐ท๐‘ข+,๐‘‡๐บ(๐‘†๐‘‡|๐‘’๐“€)|๐‘ข+, ๐‘’

๏ฟฝฬ‚๏ฟฝ] = ๐‘‹๐‘ข+,๏ฟฝฬ‚๏ฟฝ|๐‘‡,๐“€ where ๏ฟฝฬ‚๏ฟฝ = ln(๐‘’๐“ โˆ’ ๐œƒ๐‘ข)

(90)

Again, extremely small ๐“ may result in ๏ฟฝฬ‚๏ฟฝ that is not well defined, we may floor the difference ๐‘’๐“ โˆ’ ๐œƒ๐‘ข

to a small positive number, e.g. taking max(10โˆ’10, ๐‘’๐“ โˆ’ ๐œƒ๐‘ข) . The vector ๐‘‹๐‘ข,๐“|๐‘‡,๐“€ can then be

interpolated from the known ๐‘‹๐‘ข+,๐“|๐‘‡,๐“€ using the ๏ฟฝฬ‚๏ฟฝ.

With proportional dividend ๐œ‚๐‘ข, again the no arbitrage condition shows

๐‘‹๐‘ข,๐“|๐‘‡,๐“€ = ๏ฟฝฬƒ๏ฟฝ[๐ท๐‘ข,๐‘‡๐บ(๐‘†๐‘‡|๐‘’๐“€)|๐‘ข, ๐‘’๐“] = ๏ฟฝฬƒ๏ฟฝ[๐ท๐‘ข+,๐‘‡๐บ(๐‘†๐‘‡|๐‘’

๐“€)|๐‘ข+, ๐‘’๐“(1 โˆ’ ๐œ‚๐‘ข)]

= ๏ฟฝฬƒ๏ฟฝ[๐ท๐‘ข+,๐‘‡๐บ(๐‘†๐‘‡|๐‘’๐“€)|๐‘ข+, ๐‘’

๏ฟฝฬ‚๏ฟฝ] = ๐‘‹๐‘ข+,๏ฟฝฬ‚๏ฟฝ|๐‘‡,๐“€ where ๏ฟฝฬ‚๏ฟฝ = ๐“ + ln(1 โˆ’ ๐œ‚๐‘ข)

(91)

The vector ๐‘‹๐‘ข,๐“|๐‘‡,๐“€ can be interpolated from the ๐‘‹๐‘ข+,๐“|๐‘‡,๐“€ using the ๏ฟฝฬ‚๏ฟฝ.

With continuous dividend, the realignment of state vector is unnecessary because there is no

discontinuity in equity spot.

3.5. Local Volatility Surface

This section is devoted to discussing the construction of local volatility surface ๐œŽ(๐‘ข, ๐‘˜). There

are various ways to define the local volatility surface. The one that we would like to discuss is a 2-D

function that is piecewise constant in maturity ๐‘ข and piecewise linear in log-moneyness ๐‘˜ = ln๐พ

๐น๐‘ก,๐‘ข (or in

delta for FX). The volatility surface comprises a series of volatility smiles ๐œŽ๐‘—(๐‘˜) for maturity ๐‘ก < ๐‘ข1 <

โ‹ฏ < ๐‘ข๐‘— < โ‹ฏ < ๐‘ข๐‘š = ๐‘‡ . At each maturity ๐‘ข๐‘— , volatility smile ๐œŽ๐‘—(๐‘˜) is constructed by linear

interpolation between log-moneyness pillars ๐‘˜๐‘– = ln๐พ๐‘–

๐น๐‘ก,๐‘ข for strikes ๐พ1 < โ‹ฏ < ๐พ๐‘– < โ‹ฏ < ๐พ๐‘› and flat

extrapolation where the volatility values at ๐‘˜1 and ๐‘˜๐‘› are used for all ๐‘˜ < ๐‘˜1 and ๐‘˜ > ๐‘˜๐‘›, respectively.

The smile ๐œŽ๐‘—(๐‘˜) constructed at ๐‘ข๐‘— is assumed to remain constant over time for any ๐‘ข between the two

adjacent maturities ๐‘ข๐‘—โˆ’1 < ๐‘ข โ‰ค ๐‘ข๐‘—.

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

25

Calibration of the local volatility surface is conducted in a bootstrapping manner starting from

the shortest maturity ๐‘ข1. It is done by solving the forward PDE such that the local volatility surface is

able to reproduce the vanilla call prices at the prescribed log-moneyness pillars ๐‘˜๐‘– for each of the

maturities ๐‘ข๐‘—. The PDE can be solved using finite difference method1 on a uniform grid defined on log-

moneyness ๐‘˜ that extends to ยฑ5 standard deviations of the underlying spot. The choice of boundary

condition has little impact to the solutions of vanilla option prices because at ยฑ5 standard deviations the

transition probability becomes negligibly small. Our application uses linearity boundary condition for its

simplicity. To allow a higher tolerance to market data input and smoother calibration process, the

objective function may include a penalty term to suppress unfavorable concavity of a local volatility

smile. Again, there can be many ways to define the objective function as well as the penalty function. In

this essay, we will only focus on the simplest objective (e.g. at maturity ๐‘ข๐‘— ): the least square

minimization of vanilla call prices

argmin๐œŽ๐‘—(๐‘˜๐‘–)

โˆ‘(๐‘ˆ๐‘ก,๐‘ง|๐‘ข๐‘—,๐‘˜๐‘–๐ต๐‘† โˆ’ ๐‘ˆ๐‘ก,๐‘ง|๐‘ข๐‘—,๐‘˜๐‘–

๐‘ƒ๐ท๐ธ )2

๐‘›

๐‘–=1

(92)

where ๐‘ˆ๐‘ก,๐‘ง|๐‘‡,๐‘˜ is the normalized forward call price defined in (68), the superscript โ€œBSโ€ denotes the

theoretical price by Black-Scholes model and the โ€œPDEโ€ denotes the numerical value by forward PDE.

Note that without a penalty term, the minimization can lead to an exact solution given a proper2 implied

volatility surface.

3.6. Barrier Option Pricing

In contrast to the calibration, the pricing of a barrier option relies on the backward PDE (88) in

line with proper terminal condition (i.e. payoff function) and boundary conditions defined by the

characteristics of the barrier option. Barrier options often demand a spatial grid defined on log-spot ๐“ =

ln ๐‘†๐‘ข , which allows an easier fit of time-invariant barrier (e.g. with European or American type of

1 A brief introduction to finite difference method can be found in my notes โ€œIntroduction to Interest Rate Modelsโ€,

which can be downloaded from http://www.cs.utah.edu/~cxiong/. 2 A proper implied volatility surface should well behave and admit no arbitrage.

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

26

observation window) into the domain. For example, an up-and-out barrier option would be priced on a

domain with upper bound at the barrier level ๐‘ where Dirichlet boundary condition is applied (the lower

bound and its boundary condition remain the same as for vanilla options).

Changwei Xiong, October 2017 http://www.cs.utah.edu/~cxiong/

27

REFERENCES

1. Clark, I., Foreign Exchange Option Pricing - A Practitionerโ€™s Guide, Wiley-Finance, 2011, pp.82

2. Online resource: http://itf.fys.kuleuven.be/~nikos/papers/lect4_localvol.pdf

3. Gatheral, J., The Volatility Surface: A Practitionerโ€™s Guide, Wiley-Finance, 2006, pp. 13-14

top related