12.09.08: Amino Acid Metabolism (Nitrogen Metabolism)

Post on 12-Jan-2015

1277 Views

Category:

Education

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Slideshow is from the University of Michigan Medical School's M1 Renal sequence View additional course materials on Open.Michigan: openmi.ch/med-M1Renal

Transcript

Author: Robert Lyons, Ph.D., 2008 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution – Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/ We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content. For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use. Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition. Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Citation Key for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

Make Your Own Assessment

Creative Commons – Attribution License

Creative Commons – Attribution Share Alike License

Creative Commons – Attribution Noncommercial License

Creative Commons – Attribution Noncommercial Share Alike License

GNU – Free Documentation License

Creative Commons – Zero Waiver

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

Public Domain – Expired: Works that are no longer protected due to an expired copyright term.

Public Domain – Government: Works that are produced by the U.S. Government. (17 USC §105)

Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair. To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

{ Content Open.Michigan has used under a Fair Use determination. }

M1 Renal: Nitrogen Metabolism (and Related Topics)

Fall 2008

• Amino Acid Metabolism (Nitrogen metabolism) • Folate Metabolism (“One-Carbon pathways”) • Nucleotide Metabolism

Dr. Robert Lyons Assistant Professor, Biological Chemistry

Director, DNA Sequencing Core Web: http://seqcore.brcf.med.umich.edu/mcb500

Supplementary study material on the Web: http://seqcore.brcf.med.umich.edu/mcb500

R. Lyons

Glu, Gln,Asp, NH3

Amino Acid metabolism Folate metabolism

Nucleic Acid metabolism

MethyleneTHF

MetCycle

Pu rin e s Py rim id in e s

Uric Acid

Urea

Amino acids

DNARNA

(energy)

TCA Cyclefumarate

oxaloacetate

R. Lyons

Protein Degradation: • Endogenous proteins degrade continuously

- Damaged - Mis-folded - Un-needed

• Dietary protein intake - mostly degraded Nitrogen Balance - expresses the patient’s current status - are they gaining or losing net Nitrogen?

Transaminases Collect Amines

General reaction overview:

C

H

R COO

NH2

aminoacid

C

H

R COO

NH2

aminoacid

(typically glutamate)

1 2CR COOO

!-ketoacid

(typicallyalpha-ketoglutarate)

(-)+ +2

CR COOO

!-ketoacid

(-)

1(-) (-)

Details of reaction mechanism:

C

H

R COO

NHC

H

R COO

N

N

CHO

CH

CH

OHOP

pyridoxalphosphate

aminoacid

+

H O2

3

2

CH

CH

CHOHOP

3

2

2

C

H

R COO

N

CHCH

CH

OHOP

3

2

+

H+

+

C

H

R COO

N

CH

CH

CHOHOP

3

2

+

CR COO

NH

CH

O

CH

CH

OHOP

pyridoxaminephosphate

+

3

2

2

+

H

!-ketoacid

(-)(-) (-) (-)

(-)

NH

NH

NH N

H

R. Lyons

NH

N

CH

CH

CH

OHOP

pyridoxaminephosphate

3

2

2

H

+

H

+ CR COOO

!-ketoacid

N

CHO

CH

CH

OHOP

pyridoxalphosphate

3

2

H

++ C

H

R COO

NH2

aminoacid

(-)

Transfer the amine back to an acceptor α-keto acid

R. Lyons

Some amino acid + α-ketoglutarate à some alpha keto acid + Glutamate

In other words, alpha-ketoglutarate is the preferred acceptor, and Glutamate is the resulting amino acid:

In peripheral tissues, transaminases tend to form Glutamate when they catabolize amino acids

Glutamate can donate its amines to form other amino acids as needed

Glutamate + oxaloacetate à α-ketoglutarate + aspartate

A specific example - production of Aspartate in liver (described a few slides from now):

Gett in g Amin es In to the L iv er

O C CH CH C

H

NH

CO

2

2 2 2 2

glutamate

NAD(P)

NAD(P)H

O C CH CH C CO2 2 2 2

!-ketoglutarate

+ NH3

ammonia

(-) (-) (-) (-)

O(mito)

C

H

OOC CH2

NH3(+)

(-)CH2COO(-)

glutamate glutamine

C

H

OOC CH2

NH3(+)

(-)CH

2C

O

NH2

NH3

ATP ADP Pi+ +

GlutamateDehydrogenase:

GlutamineSynthetase:

R. Lyons

In th e L iv er: Precursers for Urea Cycle

Glutamine is hydrolyzed to glutamate and ammonia:

C

H

OOC CH2

NH3(+)

(-) CH2C

glutamate

O

OH

glutamine

C

H

OOC CH2

NH3(+)

(-)CH2C

O

NH2

H O2 NH3

Glutamate donates its amino group to form aspartate:

Glutamate aspartateoxaloacetate

+ +

!-ketoglutarate

O C CH CH C

H

N H

CO

2

2 2 2 2(- ) (-) O CC H C

H

CO2 2 2

( -) ( -) O C CH CH C

O

C O2 2 2 2

(- ) (-) O C CH C

H

NH

CO

2

2 2 2(- ) (-)

O

Glutamate-aspartate aminotransferase:

.

.

Ammonia can also be formed by the glutamate dehydrogenase reaction and several other reactions as well.

R. Lyons

Liver mitochondrion

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

(+)

Arginine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

O

Citrulline

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH C

O

Citrulline

2ATP + HCO +3

NH2 C

O

3OPO(-)

Carbamoylphosphate

Pi

2ADP + Pi

O CCH C

H

2 2 2

aspartate

(-) (-)CO

i

ATP

AMP + PP

C

H

OOC CH2

NH3

(+)

(-)CH

2CH

2NH C

O CCH C

H

2 2 2(-) (-)CO

(+)

Argininosuccinate

Liver cytoplasm

O C C CH

2 2(-) (-)CO

H

Fumarate

H O2

CO

Urea

NH2

NH2

NH2

NH3

NH2

NH2

NH2

NH2

NH2NH2

1

5

4

3

2

R. Lyons

C a rbam oy l p h o s ph a te sy n th e ta s e I

H O C

O

O

A T P

A D P

P

N H

P

(- ) H O C

O

O

b ic ar b on at ec ar bo ny l

ph os p ha te i

3

H O C

O

N H2

ca rb a ma te

A T P

A D P

O C

O

N H2

P

ca rb a mo yl

ph os p ha te

R. Lyons

O rn ith in e T ra n s ca rb am oy las e

C

H

OO C C H2

N H3

(+ )

( -)C H

2C H

2N H3

(+ )

O rn ith in e

C

H

O O C C H2

N H3(+ )

(- )C H

2C H

2N H

2N HC

O

C it ru llin e

N H2

C

O

3O P O( -)

C arb am o y l p ho s p hateP i

C H2N H3

(+ )

R. Lyons

A rg in ino su c c in a te s yn the tas e

O CCH

C

H

NH2

2 2 2

aspartate

(-) (-)CO

C

H

OOC CH2

NH3(+)

(-)CH

2CH2NH

2NHC

O

Citrulline

iATP AMP + PP

C

H

OOC CH2

NH3

(+)

(-)CH

2CH2NH C NH

O CCH C

H

NH2

2 2 2(-) (-)CO

2(+)

Argininosuccinate

R. Lyons

A rg in in o s u cc ina te ly a se

C

H

OOC CH2

NH3(+)

(-)CH

2CH2NH NH

2CNH

2(+)

Arginine

C

H

OOC CH2

NH3

(+)

(-)CH

2CH2NH C NH

O CCH C

H

NH2

2 2 2(-) (-)CO

2(+)

ArgininosuccinateO C C C

H2 2

(-) (-)COH

Fumarate

R. Lyons

A rg in as e

C

H

OOC CH2

NH3(+)

(-)CH

2CH2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-)CH2CH

2NH NH2C

NH2(+)

ArginineNH2 C

ONH

2

Urea

H2O

R. Lyons

Liver mitochondrion

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

(+)

Arginine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

O

Citrulline

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH C

O

Citrulline

2ATP + HCO +3

NH2 C

O

3OPO(-)

Carbamoylphosphate

Pi

2ADP + Pi

O CCH C

H

2 2 2

aspartate

(-) (-)CO

i

ATP

AMP + PP

C

H

OOC CH2

NH3

(+)

(-)CH

2CH

2NH C

O CCH C

H

2 2 2(-) (-)CO

(+)

Argininosuccinate

Liver cytoplasm

O C C CH

2 2(-) (-)CO

H

Fumarate

H O2

CO

Urea

NH2

NH2

NH2

NH3

NH2

NH2

NH2

NH2

NH2NH2

1

5

4

3

2

R. Lyons

Urea Cycle Connects to TCA Cycle

Arginine

CitrullineO CCH C

H

NH2

2 2 2

Aspartate

(-) (-)CO

Argininosuccinate

O C C CH

2 2(-) (-)CO

H

Fumarate

MalateOxaloacetate

TCA Cycle

!-Ketoglutarate

Citrate

Urea

Ornithine

Urea Cycle

R. Lyons

Gett in g Amin es In to the L iv er

O C CH CH C

H

NH

CO

2

2 2 2 2

glutamate

NAD(P)

NAD(P)H

O C CH CH C CO2 2 2 2

!-ketoglutarate

+ NH3

ammonia

(-) (-) (-) (-)

O(mito)

C

H

OOC CH2

NH3(+)

(-)CH2COO(-)

glutamate glutamine

C

H

OOC CH2

NH3(+)

(-)CH

2C

O

NH2

NH3

ATP ADP Pi+ +

GlutamateDehydrogenase:

GlutamineSynthetase:

R. Lyons

Liver mitochondrion

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

(+)

Arginine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

O

Citrulline

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH C

O

Citrulline

2ATP + HCO +3

NH2 C

O

3OPO(-)

Carbamoylphosphate

Pi

2ADP + Pi

O CCH C

H

2 2 2

aspartate

(-) (-)CO

i

ATP

AMP + PP

C

H

OOC CH2

NH3

(+)

(-)CH

2CH

2NH C

O CCH C

H

2 2 2(-) (-)CO

(+)

Argininosuccinate

Liver cytoplasm

O C C CH

2 2(-) (-)CO

H

Fumarate

H O2

CO

Urea

NH2

NH2

NH2

NH3

NH2

NH2

NH2

NH2

NH2NH2

1

5

4

3

2

R. Lyons

C P S I is S t im u la ted by N A G

H O C

O

O

A T P

A D P

P

N H

P

( -) H O C

O

O

bi ca rb o na tec a rb on y l

p ho s ph at e i

3

H O C

O

N H2

c ar ba m at e

A T P

A D P

O C

O

N H2

P

c ar ba m oy l

p ho sp h at e

g lu t am ate

C

H

O O C C H2

N H3

( +)

( - )

C H2C

O

O H+ CoA -

C

H

O O C C H2

N H

( - )

C H2C

O

O H

C O

C H3

C O

C H3

a cety l Co A N -acety l g lu t am a te(N AG )

N -a ce ty lg lu ta m a tesy n th e tase

( re pe a t in g the f igu re from pa ge 3 o f y ou r h an do u t)

R. Lyons

Muscle

Liver

Glucose Pyruvate

Alanine

Amino acids

(Amines)

!-ketoglutarate

Glutamate

Alanine

PyruvateGlucose

bloodtransport

!-ketoglutarate

Glutamate NH3

Urea

--

R. Lyons

Arginine

Amino acids:

Alanine Glutamate

Glutamine

Transamination Deaminationpurine

deamination:

NH4(+)

Glutamine

Alanine NH4(+)

Citrulline

NH4(+) Urea

Muscle:

Liver:

Intestine:

Alanine

AspartateGlu

Glutamine

NH3

Kidney:

Arginine

Citrulline

Glutamine

NH4(+)

Complicating the picture: Other tissues may be involved

R. Lyons

Why is Ammonia Toxic?

Why is Ammonia Toxic? • Possible neurotoxic effects on

glutamate levels (and also GABA)

(due to shifting equilibria of reactions involving these compounds)

Why is Ammonia Toxic? • Possible neurotoxic effects on

glutamate levels (and also GABA)

(due to shifting equilibria of reactions involving these compounds)

• Possible metabolic/energetics effects: - alpha-ketoglutarate levels - glutamate levels - glutamine

Liver mitochondrion

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

(+)

Arginine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

O

Citrulline

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH C

O

Citrulline

2ATP + HCO +3

NH2 C

O

3OPO(-)

Carbamoylphosphate

Pi

2ADP + Pi

O CCH C

H

2 2 2

aspartate

(-) (-)CO

i

ATP

AMP + PP

C

H

OOC CH2

NH3

(+)

(-)CH

2CH

2NH C

O CCH C

H

2 2 2(-) (-)CO

(+)

Argininosuccinate

Liver cytoplasm

O C C CH

2 2(-) (-)CO

H

Fumarate

H O2

CO

Urea

NH2

NH2

NH2

NH3

NH2

NH2

NH2

NH2

NH2NH2

1

5

4

3

2

R. Lyons

Defects are diagnosed based on the metabolites seenin the blood and/or urine.

CPSD

OTCD

ASD

ALD

AD

No elevation except ammonia; diagnosed by elimination.Elevated CP causes synthesis of OrotateElevated citrullineElevated argininosuccinateElevated arginine

Inherited Defects of Urea Cycle Enzymes: Diagnosis

Liver mitochondrion

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

(+)

Arginine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

O

Citrulline

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH C

O

Citrulline

2ATP + HCO +3

NH2 C

O

3OPO(-)

Carbamoylphosphate

Pi

2ADP + Pi

O CCH C

H

2 2 2

aspartate

(-) (-)CO

i

ATP

AMP + PP

C

H

OOC CH2

NH3

(+)

(-)CH

2CH

2NH C

O CCH C

H

2 2 2(-) (-)CO

(+)

Argininosuccinate

Liver cytoplasm

O C C CH

2 2(-) (-)CO

H

Fumarate

H O2

CO

Urea

NH2

NH2

NH2

NH3

NH2

NH2

NH2

NH2

NH2NH2

1

5

4

3

2

R. Lyons

C P S I is S t im u la ted by N A G

H O C

O

O

A T P

A D P

P

N H

P

( -) H O C

O

O

bi ca rb o na tec a rb on y l

p ho s ph at e i

3

H O C

O

N H2

c ar ba m at e

A T P

A D P

O C

O

N H2

P

c ar ba m oy l

p ho sp h at e

g lu t am ate

C

H

O O C C H2

N H3

( +)

( - )

C H2C

O

O H+ CoA -

C

H

O O C C H2

N H

( - )

C H2C

O

O H

C O

C H3

C O

C H3

a cety l Co A N -acety l g lu t am a te(N AG )

N -a ce ty lg lu ta m a tesy n th e tase

( re pe a t in g the f igu re from pa ge 3 o f y ou r h an do u t)

R. Lyons

Liver mitochondrion

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

(+)

Arginine

C

H

OOC CH2

NH3(+)

(-) CH2CH

2NH C

O

Citrulline

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH C

O

Citrulline

2ATP + HCO +3

NH2 C

O

3OPO(-)

Carbamoylphosphate

Pi

2ADP + Pi

O CCH C

H

2 2 2

aspartate

(-) (-)CO

i

ATP

AMP + PP

C

H

OOC CH2

NH3

(+)

(-)CH

2CH

2NH C

O CCH C

H

2 2 2(-) (-)CO

(+)

Argininosuccinate

Liver cytoplasm

O C C CH

2 2(-) (-)CO

H

Fumarate

H O2

CO

Urea

NH2

NH2

NH2

NH3

NH2

NH2

NH2

NH2

NH2NH2

1

5

4

3

2

R. Lyons

Clinical Management of Urea Cycle Defects

• Dialysis to remove ammonia • Provide the patient with alternative ways to excrete

nitrogenous compounds: • Levulose - acidifies the gut • Low protein diet

* Intravenous sodium benzoate or phenylacetate * Supplemental arginine

Ornithine

Arginine

Citrulline

i

ATP

AMP+PPArgininosuccinate

HO2

CO

UreaNH2NH2 Aspartate

Excreted by kidney

Excreted by kidney

XDietaryArginine

carbamoylphosphate

XASD

ALD

R. Lyons

Degrading the Amino Acid Carbon Backbone

Easily-degraded products after transamination:

O C CH C

H

NH3

2 2 2

aspartate

(-)COtransamination

O CCH CO

2 2 2(-)CO

oxaloacetate

(-) (-)

(+)

O C CH C

H

NH3

2 2 2

glutamate

(-)

transaminationCH C

O2 2

(-)

!-ketoglutarate

CH2

O C2

CH2

CO CO(-) (-)

(+)

CH C

H

NH3

3 2

alanine

(-)COtransamination

CH C

O3 2

(-)CO

pyruvate(+)

We also already know how to degrade Glutamine: Glutamine ----------------> glutamate + ammonia Asparagine ---------------> aspartate + ammonia

…and by analogy, how to degrade Asparagine:

glutaminase

asparaginase

glutaminase

R. Lyons

Many amino acids are purely glucogenic: Glutamate, aspartate, alanine, glutamine, asparagine,…

Some amino acids are both gluco- and ketogenic: Threonine, isoleucine, phenylalanine, tyrosine, tryptophan

Amino Acids are categorized as ‘Glucogenic’ or ‘ketogenic’ or both.

The only PURELY ketogenic Amino Acids: leucine, lysine

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH NH

2C

NH2(+)

Arginine

Urea (viathe urea cycle)

C

H

OOC CH2

NH3(+)

(-)CH

2CH

2NH3

(+)

Ornithine!-ketoglutarate

glutamate

C

H

OOC CH2

NH3

(+)

(-)CH

2C

glutamate - 5 - semialdehyde

O

H

NAD(P)

NAD(P)H

(+)

C

H

OOC CH2

NH3(+)

(-)CH

2C

glutamate

O

OH

! - ketoglutarate

NH

(+)OOC(-)

Proline

glutamine

C

H

OOC CH2

NH3(+)

(-)CH

2C

O

NH2

H O2

NH3

Amino acids with 5-carbon backbones tend to form α-ketoglutarate

R. Lyons

C

H

OOC NH3(+)

(-)

H

Glycine

NAD NADH(+)

THF N -N - methylene THF5 10

+CO NH4

(+)

2

CH

OOC NH3(+)

(-)2

GlycineTHF N -N - methylene THF5 10Serine

CHOOC NH3(+)

(-)

CH OH2

GlycineSynthase:

SerineHydroxymethyl-transferase:

Serine

CHOOC NH3(+)

(-)

CH OH2

H O2

COOC NH3

(+)(-)

CH2

COOC NH2

(+)(-)

CH3

COOC(-)

CH3

H O2

NH4

(+)

OSerine

Dehydratase:

Degradation and Biosynthesis of Serine and Glycine

R. Lyons

C

H

COOCH2

NH3

(+)

(-)CH2

Methionine

Serine

C

H

COOCH2

NH3(+)

(-)HO

SCH3

C

H

COOCH2

NH3(+)

(-)CH2

S-Adenosyl Methionine

SCH3

ATP +H O2

PPi +Pi

(+)

CH2

O

HH H

HOH OH

Adenine

C

H

COOCH2

NH3

(+)

(-)CH2

Homocysteine

HS

C

H

COOCH2

NH3(+)

(-)CH2

S-Adenosyl Homocysteine

HS(+)

CH2

O

HH H

HOH OH

Adenine

BiosyntheticMethylation

reaction

Methyl acceptor

Methylated acceptor*see examples

C

H

COOCH2

NH3(+)

(-)

Cysteine

HS

(remainder ofhomocysteine

degradedfor energy)

tetrahydrofolate

N5 methyltetrahydrofolate

Methionine Cycle And Biological Methyl Groups

R. Lyons

Phenylalanine and Tyrosine

CH2 CH COO

NH3(+)

(-)

Phenylalanine

Tetrahydrobiopterin + O2Dihydrobiopterin + H2O

CH2 CH COO

NH3(+)

(-)

Tyrosine

HO

Homogentisate

Enzyme:Phenylalaninehydroxylase

Enzyme:homogentisatedioxygenaseCH2 C COO

(-)

Phenylpyruvate

O

Phenylketonuria(no phenylalanine

hydroxylase)

(Normal path shown in black, pathological reaction shown in red)

(you don’t need to know the rest)

Deficiency: Alkaptonuria “Ochronosis”

R. Lyons

Branched Chain Amino Acids

Isoleucine Leucine Valine

CH COO(-)

NH3(+)

CHCH2CH3

CH3

CH COO(-)

NH3(+)

CHCH 2CH3

CH3

CH COO(-)

NH3(+

)

CHCH3

CH3

C COO(-)

O

CHCH2CH3

CH3

C COO(-)

CHCH 2CH3

CH3

C COO(-)

CHCH3

CH3

O O

C

O

CHCH2CH3

CH3

CCHCH 2CH3

CH3

C S-CoACHCH3

CH3

O O

NAD, CoASH+

NADH +CO

2

NAD, CoASH+ NAD, CoASH+

NADH + CO2 NADH + CO2

S-CoAS-CoA

!"KG !"KG !"KG

Glu Glu Glu

---------------- Transamination ----------------

--- Branched-chain !-keto acid dehydrogenase ---

(continues on to degradation path similar to #-oxidation of fatty acids)R. Lyons

Synthesis of Bioactive Amines

CH2 CH COO

NH3

(+)

(-)

Tyrosine

HO CH2 CH COO

NH3

(+)

(-)HO

HO

DihydroxyphenylalanineTyrosine

hydroxylase(L-DOPA)

HO

HO

CH2CH NH3

(+)

2

Dopamine

CH CH NH3

(+)

2

Norepinephrine

OH

H

HO

HO

CHCH NH

2

Epinephrine

OH

H

HO

HO

CH3

R. Lyons

N

CH2 CH COO

NH3(+)

(-) HO

N

CH2 CH COO

NH3(+)

(-)

Tryptophan 5-hydroxytryptophan

Tryptophanhydroxylase

CO2

HO

N

CH2 CH NH3(+)

Serotonin

2

PLP-dependentdecvarboxylation

NAD+

Synthesis of Bioactive Amines

R. Lyons

CH2 CH COO

NH3(+)

(-)CH2COO

(-)

Glutamate

Glutamatedecarboxylase

(PLP-dependent )

CH2 CH NH3(+)CH2COO

(-)

!-aminobutyric acid(GABA)

2

N

NH

CH2 CH COO

NH3(+)

(-)

Histidine

Histidinedecarboxylase

(PLP-dependent )

N

NH

CH2 CH NH3(+)

Histamine

2

Synthesis of Bioactive Amines

R. Lyons

Glutamate, aspartate, alanine, glutamine, asparagine, (proline), glycine, serine (cysteine, tyrosine)

NON-Essential Amino Acids:

Essential Amino Acids:

Arginine (!), phenylalanine, methionine, histidine, Isoleucine, leucine, valine, threonine, tryptophan, lysine

Slide 4: Robert Lyons Slide 5: Robert Lyons Slide 7: Robert Lyons Slide 8: Robert Lyons Slide 11: Robert Lyons Slide 12: Robert Lyons Slide 13: Robert Lyons Slide 14: Robert Lyons Slide 15: Robert Lyons Slide 16: Robert Lyons Slide 17: Robert Lyons Slide 18: Robert Lyons Slide 19: Robert Lyons Slide 20: Robert Lyons Slide 21: Robert Lyons Slide 22: Robert Lyons Slide 23: Robert Lyons Slide 24: Robert Lyons Slide 25: Robert Lyons Slide 29: Robert Lyons Slide 31: Robert Lyons Slide 32: Robert Lyons Slide 33: Robert Lyons Slide 34: Robert Lyons Slide 36: Robert Lyons Slide 38: Robert Lyons Slide 39: Robert Lyons Slide 40: Robert Lyons Slide 41: Robert Lyons Slide 44: Robert Lyons Slide 45: Robert Lyons

Additional Source Information for more information see: http://open.umich.edu/wiki/CitationPolicy

top related