YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Mechanical failure in SiC Bicrystals

1Department of Materials Science and Engineering

University of Arizona

November 14, 2014 S. Bringuier, MS&T 2013 1

Stefan Bringuier1 V.R. Manga1 , P.A. Deymier1 ,K. Runge1

and K. Muralidharan1

Mechanical failure in SiC Bicrystals And The Effect of Graphene

Page 2: Mechanical failure in SiC Bicrystals

Elevator Pitch ( Going Up)

November 14, 2014 S. Bringuier, MS&T 2013 2

Nature of failure (Intra- vs. Inter-granular) is grain

boundary misorientation dependent.

High angle GB

Inter-granular failure

Low angle GB

Intra-granular failure

Page 3: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 3

Graphene at GB influences tensile failure in low angle GB

Graphene mitigates shear failure at GB

Page 4: Mechanical failure in SiC Bicrystals

Why β-SiC Bicrystals?

• Understanding interfaces and the effect of

additives provides valuable insight into

mechanical properties.

• Molecular dynamics provides a fundamental

understanding of the phenomenology.

November 14, 2014 S. Bringuier, MS&T 2013 4

• Symmetric tilt grain boundaries (STGB) only two

DOF tilt axis and tilt angle.

Adapted from:

V. Randle, The Measurement of Grain

Boundary Geometry (IOP Publishing Ltd, Great

Britian, Lodon, 1993).

Talk given by Dr. Erica Corral

Slicon Nitride-graphene Composites with improved Strength

and Toughness Processed From Low Concentrations of Few

Layer Graphene Using SPS

Page 5: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 5

Minimization Procedure

[3] M. Wojdyr, S. Khalil, Y. Liu, and I. Szlufarska, Modelling

Simul. Mater. Sci. Eng. 18, 075009 (2010).

• LAMMPS MD package 1

• Potential: SiC Tersoff 1989 Si-Si cutoff

modified to 2.85 Å

• Minimization procedure to find lowest energy

interface (Adapted from M. Wojdyr et al.)2 :

1. Generate GB; choose deletion criteria.

2. Displace Grain 1 relative to Grain 2

3. Anneal under NVT conditions for 400 ps

4. Minimize using Conjugate Gradient method

[2] S. Plimpton, Journal of Computational Physics 117, 1 (1995).

Page 6: Mechanical failure in SiC Bicrystals

Generation of STGB

• Using Coincidence site lattice (CSL)

model to generate STGB.3

• Choice of the rotation axis is <001> and

boundary plane (110)

• Constructed under periodic boundary

conditions in 3D.

• Maintain overall stoichiometry.

November 14, 2014 S. Bringuier, MS&T 2013 6

[3] A. Sutton and R. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, 1995).

Adapted from:

V. Randle, The Measurement of Grain

Boundary Geometry (IOP Publishing Ltd, Great

Britian, Lodon, 1993).

Example of interpenetrating lattices

Removing Lattice 2 in

Lattice 1 and visa versa Translational shift

Page 7: Mechanical failure in SiC Bicrystals

GB Energy vs. Misorientation

November 14, 2014 S. Bringuier, MS&T 2013 7

GB Angle

(Degree

s)

Σ365 4.242

Σ145 6.733

Σ85 8.797

Σ61 10.389

Σ41 12.680

Σ25 16.26

Σ13 22.610

Σ17 28.072

Σ5 36.870

Σ is the coincident site density

•Low angle GBs show

considerable agreement

with Read-Shockley

behavior.

• Fairly good agreement in

parameters when assuming

isotropic behavior

𝑮 ⋅ 𝒃

𝟏 − 𝝂

𝜶

Calculated: 66.41 +/- 2.42

Literature : 63.00

3.001 +/-0.621

Page 8: Mechanical failure in SiC Bicrystals

GB Energy Surfaces

November 14, 2014 S. Bringuier, MS&T 2013 8

•Lower angle grain boundaries

shows dips.

•High angle grain boundaries

are fairly flat.

Σ365 – Low Angle

Σ25 – High Angle

Typical system size

~60,000 atoms

lx ~ 176 Å

ly ~ 174 Å

lz ~ 21.5 Å

𝐸𝐺𝐵 =𝐸𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒 − 𝐸𝑆𝑇𝐺𝐵

2 ∗ 𝐴𝑟𝑒𝑎𝐺𝐵

Page 9: Mechanical failure in SiC Bicrystals

GB Structure

November 14, 2014 S. Bringuier, MS&T 2013 9

Free-Volume is a

results of generation

method.

Free volume

Depends on

criteria used

to remove

atoms from

GB

Page 10: Mechanical failure in SiC Bicrystals

Introducing Strain

November 14, 2014 S. Bringuier, MS&T 2013 10

•Initially equilibrate system.

•Use non-periodic boundary conditions

and prescribe velocity (strain-rate) to

one end.

• 3 runs to gather statistics.

Example of ┴ strain

Values for elastic constants of single crystal SiC

Elastic

Constants (GPa)

This

work

Tersoff 1989

C11 436 420

C12 117 120

C44 257 260

Uniaxial Strain

Page 11: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 11

Intra-Granular Failure

•Nucleation of

void at GB causes

instability.

•Crack initiates

along void but

fails chaotically.

•Intragranular

failure

ε = 0.238 ε = 0.239

ε = 0.240 ε = 0.241

Cleavage

beginning

Initial void most

likely due to free

volume from

generating GB

Strain-rate : 1e9 s-1

Page 12: Mechanical failure in SiC Bicrystals

Inter-Granular Failure

November 14, 2014 S. Bringuier, MS&T 2013 12

• Rings break and form

amorphous regions

• Crack propagates

along GB. Inter-

granular failure

Voids forming

and coalescing

ε = 0.242

ε = 0.243 ε = 0.244

Page 13: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 13

Graphene Impacts Failure

Σ 365 – Low angle

• Transition from intra-granular to

inter-granular for low angle STGB.

• No difference in high angle STGB.

Σ 25 – High angle

Page 14: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 14

Shearing Of STGB

•Applied shear causes rigid body slip breaking symmetry

across GB.

• Low angle and high angle STGB show no significant

difference in response to shear.

Σ 365 – Low Angle Σ 25 – High Angle

Page 15: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 15

Graphene To The Rescue

• The addition of graphene nanoribbon perpendicular to

the GB prevents rigid body slip at GB.

.

Σ 365 – Low Angle Σ 25 – High Angle

Page 16: Mechanical failure in SiC Bicrystals

Elevator Pitch (Coming Down)

November 14, 2014 S. Bringuier, MS&T 2013 16

• Nature of failure (Intra- vs. Inter-granular) is grain boundary

misorientation dependent.

• Addition of graphene mitigates GB slip in shear.High angle GB

Inter-granular failure

Low angle GB

Intra-granular failure

Graphene at GB influences failure in low angle GB

Low angle GB

No slip

Page 17: Mechanical failure in SiC Bicrystals

Further question please contact:

Stefan Bringuier

Email: [email protected]

Website: www.u.arizona.edu/~stefanb

November 14, 2014 S. Bringuier, MS&T 2013 17

• Other STGB systems

• Multi-layered graphene platelets.

• Hall-Petch effect in nanocrystalline SiC with graphene.

Future Work

Thank You!Software used:

LAMMPS – MD http://lammps.sandia.gov/index.html

OVITO4 – Visualization http://ovito.org

[4] A. Stukowski, Modelling and Simulation in Materials Science

and Engineering 18, 015012 (2010).

Page 18: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 18

• Nonlinear elastic stress-strain

response. Result of Tersoff potential.

• Higher than experimental stresses and

strains can be attributed to limitations

in MD.

Σ365:

Fracture Stress:

77.134 +/- 0.598 GPa

Young’s Modulus:

301.521 +/- 2.645 GPa

Σ 25:

Fracture Stress:

73.771 +/- 0.770 GPa

Young’s Modulus:

287.990 +/- 3.592 GPa

Uniaxial Tension Of STGB

Page 19: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 19

SiC With Graphene ||

Fig. : Stress-Strain relationship with low and

high angle grain boundaries including single

layer graphene (SLG) parallel to the GB for a

strain-rate of 1*109 s-1 .

Considerable weakening due to

graphene.

Free volume acts as

stress concentrator

Σ 365

Σ 25

Σ365:

Fracture Stress:

44.036 +/- 1.99

Young’s Modulus:

317.009 +/- 4.10

Σ 25:

Fracture Stress:

41.778 +/- 2.102

Young’s Modulus:

359.578 +/- 4.83

Page 20: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 20

Fig. : Stress-Strain relationship with low and

high angle grain boundaries including single

layer graphene (SLG) perpendicular to the GB

for a strain-rate of 1*109 s-1 .

Failure transitions for low angle

grain boundary (Σ 365) from

intragranular to intergranular

when SLG is included

SiC With Graphene ┴

Σ365:

Fracture Stress:

75.025 +/- 0.442

Young’s Modulus:

305.425 +/- 1.988

Σ 25:

Fracture Stress:

67.606 +/- 0.634

Young’s Modulus:

286.575 +/- 2.301

Σ 365

Page 21: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 21

Shear Of STGB

365

Shear flow stress :18.796 GPa

Shear Modulus: 194.882 GPa

25

Shear flow stress : 18.405 GPa

Shear Modulus : 159.928 GPa

365 Graphene Perp

Shear flow stress :20.199 GPa

Shear Modulus: 181.586 GPa

Page 22: Mechanical failure in SiC Bicrystals

Intentionally Blank

November 14, 2014 S. Bringuier, MS&T 2013 22

Page 23: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 23

Strain Type Youngs Modulus

(GPa)

Fracture

stress(GPa)

┴ GB, 108 285.35 69.65

┴ GB, 109 291.39 72.96

|| GB, 108 255.28 73.54

|| GB, 109 285.43 73.01

Σ25

Strain Type Youngs Modulus

(GPa)

Fracture

stress(GPa)

┴ GB, 108 300.68 75.08

┴ GB, 109 312.81 80.73

|| GB, 108 389.30 117.14

|| GB, 109 370.63 116.01

Σ365

Page 24: Mechanical failure in SiC Bicrystals

November 14, 2014 S. Bringuier, MS&T 2013 24

But Not Always

Σ 365 – Low Angle

Σ 25 – High Angle

• Graphene sheet causes

significant weakening at GB.

• Failure is “atomically clean”.

Free volume acts as

stress concentrator


Related Documents